Linux Network Stack
Internals

Luca Abeni
luca.abeni@santannapisa.it

April 25, 2022



The Networking Stack

Networking stack: network driver(s) + protocols
A simple functioning implementation is not complex

e Receiving and sending network packets is not
difficult
e The TCP/IP stack is fairly well understood

e However, the “1inux/net” directory is quite
complex

e Lots of different protocols
e This is all performance critical code!

e S0, the modern Linux networking code is fine-tuned
for performance in many different situations

Advanced Kernel Programming The Network Stack



Linux and Networking

e The Linux networking stack is used on many
different devices

e Ranging from Android phones / small embedded
devices...

e ...To big servers...
...Passing through high-performance PCs and
similar stuff!

e The code must be designed to perform well in all
these situations

_ow memory footprint / low CPU usage
High throughput, resilent to various DoS attacks
_ow latency; performant for both TCP and UDP

Advanced Kernel Programming The Network Stack



Evolution of the Linux Stack — 1

e The original netorking stack did “just work”
e But was slow, and UP only
e Then, it was modified to run on multiple processors

e But it was not able to take advantage of the
hardware parallelism

e The throughput did not scale with the number of
CPUs

e |ssue: bottom half processing (only one bottom
half can execute simultaneously, regardless of
the number of CPU cores)

e Solution: use SoftIRQs

e No per-core concurency, but multiple SoftIRQs
can execute simultaneously on different cores

Advanced Kernel Programming The Network Stack



Evolution of the Linux Stack — 2

e Nextissue: receive livelock

e When packets arrive too fast, most of the time is
lost in raising/serving interrupts

e High userspace/kernelspace switch overhead, no
time left for using the received packets!

e Solution: some form of interrupt mitigation / polling

e NAPI: adaptive polling (in SoftIRQ context!),
activated only when interrupts fire too often

e Some Kkind of heuristic is used to activate the
NAPI polling mode

e This solves some possible DoS attacks

Advanced Kernel Programming The Network Stack



Evolution of the Linux Stack — 3

e With the advent of Gb and 10Gb ethernet, new
performance issues

e Things work well for large packets (jumbo frames,
etc...)
e A lot of overhead for smaller packets

e Solution: Generic Receive Offload (GRO)

e Iry to merge multiple small packets in large
buffers when possible

e Process these small packets in batches (instead
of processing them one at time)

e |Improves the receiving throughput a lot

e Of course, this makes the code much more complex!

Advanced Kernel Programming The Network Stack



The sk_buff Structure

e As the name suggests, struct sk_buff
represents a packet that can be sent/received
through a socket

e More generically, through a network interface

Easy in theory... But it is a quite complex structure!
Passed through the various layers of the network
stack, that can add/remove headers/trailers...
e Must allow to efficiently add/remove them without
copy
e (Contains various kinds of fields

e Related to lists
e Data

® s
Advanced Kernel Programming The Network Stack



sk _buff Lists

e sk _buff structures are stored in lists

e But they are not the “standard” Linux lists
e Why? For efficiency reasons
e Standard linux list: generic; sk_buff list: efficient

e Doubly linked lists: prev and next fields (pointers
to struct sk_buff)

e Must be the first fields of the structure
e Jomatch struct sk buff_head

e struct sk buff _head: headof a sk _buff list

e The first 2 fields are the same contained in
struct sk _buff
e Also contains a spinlock and a len

Advanced Kernel Programming The Network Stack



Manipulating the Lists

sk_buff lists are not regular Linux lists — need
special functions to handle them

e Definedin net/core/skbuff.c and
include/linux/skbuff.h

e In general every function has an unlocked “__"
equivalent (often an inline function in skbuff.h)

skb_queue_head_init (): Initializes an sk_buff
list head

skb_queue_head () : Insert an sk_buff at the head
of a list

skb_queue_tail (): Insert an sk_buff atthe tail
skb_dequeue () : removes the first sk_buff from a
list

Advanced Kernel Programming The Network Stack



sk _buff Data

The structure contains different “data related” fields
First, there are some lenghts, for example:

len: current size of the data
data_len: Size of data contained in additional
fragments

e truesize: size of this buffer + sk buff
structure

e Then, there are various pointers to the buffer:

head: beginning of the buffer in memory

data: beginning of the data (= head +
headroom)

tail: end of the data (= end of buffer - tailroom)
end: end of the buffer in memory

Advanced Kernel Programming The Network Stack



Adding/Removing Headers/Tailers

e When a sk buff Is allocated, head = data =tail;
end = head + size

e No headroom, everything is tailroom
e len = 0
e No data in the buffer

e Then, the size of the buffer can be increased with
skb_put () and skb_push ()

e Grow the buffer using tailroom and headroom
Need enough space in *room... But the
headroom is initially empty! How can
skb_push () work?

Advanced Kernel Programming The Network Stack



Making Space for Headers

e When a sk buff iIs allocated, head = data = no
headroom

e But skb_push () works by decreasing head...
e Before using skb_push () some space has to be
created in the headroom!!!

e Space can be added to headroom with
skb_reserve ()

e Does not actually copy data: just moves head
(and tail)
e Must be called before putting data in the buffer

Advanced Kernel Programming The Network Stack



alloc_skb () : allocate empty (1en = 0) buffer
skb_reserve () : grow the headroom of a buffer
(decreasing the tailroom)

e skb_put (): grow the buffer size (data len) at the
end (getting memory from tailroom)

e skb_push (): grow the buffer size (data len) at the
beginning (getting memory from headroom)

e This makes space for a new protocol header

e skb._pull (): decrease the buffer size (data len) at
the beginning (this removes a protocol header)

Advanced Kernel Programming The Network Stack



Fragmented sk _buffs

Network packets can be split in various memory
fragments

The first fragment is described by the sk _buff
structure

What about the other ones?

e Atthe end of the data buffer (end field), there is a
skb_shared_info structure
e A pointer to it can be obtained through the end

flield

This structure contains information about the number
of fragments, and a list to them

Advanced Kernel Programming The Network Stack



Cloning sk_buffs...

e Cloning a sk buff is an unexpensive operation

e Only the sk_buff structure is duplicated; the
data buffer is shared
e Specialized copy operation, to be more efficient!

cloned flag set to 1
There also Is a usage counter (dataref)

e Obviously, it cannot be in the sk _buff
structure...
e I|tisinthe shared skb_shared_info structure!l!

e When a sk buff Is freed, the data buffer is released
only if dataref is 0

Advanced Kernel Programming The Network Stack



...And Copying Them!

e [he content of the data buffer of cloned sk _ buffsis
shared between all che clones

e Hence, it cannot be modified!
Only (atomic) changes to some fields of
skb_shared_info are allowed

What to do if a real copy of a packet is needed?
There is a function (skb_copy () ) to duplicate both
sk_buff and data buffer

e pskb_copy () also duplicates fragments

Advanced Kernel Programming The Network Stack



Network Devices Structures

e A network device is handled by using a set of kernel
structures

e Traditionally, a struct net_device contained
all the information

e Even a pointer to the pol1l () method used by
NAPI!

e Joday, information are spread over multiple data
structures

net_device IS still the central one
e But for receiving packets a napi_struct Is used

e Interrupts are associated to a NAPI structure,
and the net_device structure is linked from it

Advanced Kernel Programming The Network Stack



The net_device Structure

“Traditional” descriptor for a physical or virtual
network device

e Structure containing all the information needed to
operate the device

e Various kinds of information

e Related to hardware (or virtual description) of the
device

e General information about the device (name,
state, list-related fields, ...)

e Information about the interface (MTU, header
size, queue len, ...)

e Some kinds of device methods (function pointers,
grouped Iin structures)

Advanced ﬁerne&gmﬁmﬁgatiStiCS The Network Stack



Hardware-Related Information

Memory ranges for memory-mapped devices
/O base

Used interrupt number

Everything else that can be useful...

Also, there is some “private state” for the driver

e No pointer in the structure, but appended at the
end

e |n modern drivers, tends to obsolete the fields
presented above

e Today, most of the important hardware-relate
iInformation are stored in the private structure, not in
struct net_device

e Example: struct net_device has only one
Advanced Kernemagmrngs bUt many mOdern NICS can ra'i“:"PI% Network Stack



Device Information

Device name
Numeric identifier for the device (interface index
ifindex)

e Information about the interface address

e For example, permanent MAC address of the
board, list of assigned MAC addresses, ...

e Some lists the network device can be into

e Gilobal list of network devices
e Some additional lists for specific things (NAPI,
devices being closed/unregistered, ...)

Advanced Kernel Programming The Network Stack



Device Methods

e The methods are grouped in various structures (eth
methods, device methods, header-related methods,

)

e Struct net_device_ops (ndo_ methods)

¢ ndo_init ()/ndo_uninit ()
e ndo_open ()/ndo_stop ()

e ndo_start_xmit ()

®

e Struct header_ops

create ()
parse ()

Advanced Kernel Programming The Network Stack



Sending/Receiving Packets through Devices

e A packet is sent by invoking the ndo_start_xmit ()
method of net _device

e Generally not invoked directly, but through
netdev_start_xmit()

e dev_queue_xmit () also passes through the
network scheduling framework

e How is a packet received?

e The device driver installs an interrupt handler that
somehow manages to push the packet up to the
network device structure...

Advanced Kernel Programming The Network Stack



Interrupt Handlers and NAPI

e The device driver installs ISRs with request_irg ()

e request_irqg() allows to specify a data
structure that will be passed to the ISR

e (Can be a device-private structure (see
igb/igb_main.c), a per-irq structure (see
ixgbe/ixgbe_main.c) or the net_device
structure (see e1000e/netdev.c)

e This structure contains a pointer to a
napi_struct

e ThelSR invokes napi_schedule_prep () to check
If NAPI is already polling or is disabled

e Ifnapi_schedule_prep () returns true,
__napi_schedule () IS invoked

Advanced Kernel Programming The Network Stack



NAPI Processing

e _napi_schedule () disables interrupts, gets the
per-cpu softirqg context, and triggers the softirq
(____napi_schedule())

e Notice: interrupt (and migration!) disabling is
needed to use per-cpu data

e ___napi_schedule () adds the NAPI structure to
the per-cpu softnet data structure (it has a poll list)
e Then, itraises the NET RX_SOFTIRQ

e net_rx_action () Isthe handler for
NET_RX_SOFTIRQ

e It gets the per-cpu softnet_data and iterates
onits poll_list, invoking napi_poll () on the
engueued napi structures

Advanced Kernel Programming The Network Stack



The Polling Method

napi_poll () invokes the poll () method of the
napi_struct

e Function pointer named “poll”, member of
napil_struct

Then, It calls napi_complete (),
napi_gro_flush () and finally
gro_.normal_list ()

e napili_complete () INnvokes
napi_complete_done () — disable NAPI
polling (can re-enable it if needed!)

The driver's pol1 () function (poll method in
napi_struct) ends up calling
napl_gro_receive ()

Advanced Kernel Programming The Network Stack



GRO: Theory of Operation

e When a packet is received, the NIC computes a
hash on it

e The driver stores this “RSS hash” in the skbuff

e A NAPI structure has GRO_HASH_BUCKET (equal to
2') GRO lists (gro_hash[])

e A packet can go in the GRO list indicated by the :
rightmost bits of its hash

e Ifitisinthe same flow of the other packets in the
list, the it is inserted there

e If a packet is not inserted in any GRO list (GRO
normal packet), it is inserted in rx_1ist

e This allows to process packets in batches

Advanced Kernel Programming The Network Stack



GRO and Packet Queuing

e When the driver passes a packet to the network
stack (napi_gro_receive (), It is inserted In
grow_hash[j] orin rx_list

e napi_gro_flush () sends up the packets merged
by GRO and pending on this napi_struct (stored
IN grow_hash([])

e Done by invoking napi_gro_complete () —
Invoke gro_complete () callbacks for higher
level protocols

e gro_normal_list () Invokes
netif _receive_skb_list_internal () onthe
packets that have been received and enqueued on
the napi_struct rx_1list (sends them up)

Advanced Kernel Programming The Network Stack



Receiving Packets (with GRO Complications)

e Intheory, napi_gro_receive () should just pass
the packet up to higher-level protocols...
e ...But GRO complicates things a little bit!

e dev_gro_receive () checks if the packet can
be “merged” with other packets...

e ...To do this, it needs to invoke higher-level
callbacks (to check TCP/UDP flows, etc...)

e Then, napi_skb_finish () passes up the
packet (only if it has not been GROed!)

e Invokes gro_normal_one (), that enqueues
a packet to rx_1ist of the NAPI structure

e When enough packets have been enqueued,
gro_normal_list () to send them!

Advanced Kernel Programming The Network Stack



Network Interface Receive

e netif receive_skb list_internal ()
processes lists of packets
e Another complication: RPS!

e Up to now, processing happened on the core that
received the interrupt

e Can “migrate” the processing to another (less
busy) core

e This allows to automatically spread packet
processing on all the cores!

Finally, _netif _receive_skb_list () IS Iinvoked

At the end of the story,

_netif receive_skb core () will deliver the
packet to the handlers of higher-level protocols
deliver_skb ())

Advanced Kernel Programming The Network Stack



Using Network Devices

e struct net_device and friends are used to
manage hardware (or virtual devices)...

e ...Kernel code can use them directly, but user-space
does not see these structures

e User-space code generally uses a higher-level
programming interface exposing the whole
networking stack through sockets

e This includes higher-level (network and transport)
protocols

e The networking stack transforms user buffers in
sk_buffs

Advanced Kernel Programming The Network Stack



The Network Stack: Programmaer API

e Networking is accessed from user-space through
sockets

e Remember? Each socket has a “type”, a
“domain”, and a “protocol”

e The domain identifies a family of protocols

e Example: AF_INET: internet protocols (IPv4)

e The domain (or protocol family) is mainly used when
creating a socket, to select the appropriate protocol

e The kernel uses different data structures to
represent the user-space interface of a socket and
its internal representation

Advanced Kernel Programming The Network Stack



Socket Data Structures

e Data structure describing the “user-space vision” of
a socket: struct socket (see
include/linux/net .h)

e (Contains a (type and protocol dependent) set of
operations, the type (stream, datagram, ...) and a
link to an internal representation

e Data structure describing the socket’s internal
representation: struct sock (see
include/net/sock.h)

Advanced Kernel Programming The Network Stack



Higher Level Protocols

e Higher level protocols (for example |IP, UDP, TCP,
etc...) are registered at boot time

e Example:
net/ipv4/af_inet.c::inet_init ()

e Registers to socket the UDP and TCP protocols,
plus some other protocols

e Registers AF_INET sockets (INET family of
protocols)

e Reqisters TCP, UDP, ICMP and maybe IGMP to
the IP network protocol < mainly used for
receiving packets

e The INET family provides a create () method
(inet_create () ), while the protocols provide the
other methods to send packets, etc...

Advanced Kernel Programming The Network Stack



Creating a Socket and Sending a Packet

e When an INET socket is created, inet create ()
ends up being called

e sys_socket () searches for the protocol family
registered as AF_INET

e |t looks at type and protocol, searches for the
appropriate inet protocol, and sets its operations Iin
the socket structure

e Example: for a datagram protocol (such as UDP),
inet_dgram_ops IS used

o It also points to the UDP protocol operations:
udp_prot (see net/ipv4/udp.c)

Advanced Kernel Programming The Network Stack



Sending a Packet

e The “operations structure” ops of a struct
socket contains pointers to the user-invocable
operations

e Methods for operating on the socket (example:
sending or receiving packets)
e These methods are used by the syscalls

e Packets are sent with sock_sendmsg () (invoked,
for example, by sendto () )

e sock_sendmsg () Invokes
sock_sendmsg_nosec (), which invokes
sock—>ops—>sendmsg ()

e This points to inet _msg (), which invokes
sk—->sk_prot—->sendmsg () (notice: this are
Advanced Kernaqrr%tmgdependent OperationS) The Network Stack



Sending a Packet — Down the Protocol Stack

e The protocol-specific send () function is invoked
(example: udp_sendmsg () INnet/ipv4d/udp.c

e First of all, cope with “corked sockets” or similar
things

e Then, get the destination address (from the
message, or from the socket)

e Handle timestamps and “control messages” that do
not need to be sent, IP options, and multicast

e Finally, route the packet!

e Should be an IP protocol thing, but there is a
fastpath in UDP as an optimization...

e Call ip_.route_output_flow () and buffer the
result in struct sock

Advanced Kernel Programming The Network Stack



Sending a Packet — Identify the Destination

ip_route_output_flow () returns a structure
indicating how to send the data

e Technically, it is a routing table entry!
e First part: dst_entry structure

It indicates the device to be used for sending the
data

It also indicates the next hop to which data has to be
sent

e Parts of it are filled using the ARP protocol

It also contains function pointers for sending and
receiving data!

e For IPv4, they are set to ip_output () and
1p_local_deliver ()

Advanced Kernel Programming The Network Stack



Sending a Packet — Down the Protocol Stack

e After having a routing table entry and handling some
other special situation (multicast, broadcast, ARP

confirm, ...), the packet is passed down to the IP
layer

e ipmake_skb (), then udp_send_skb ()

e ipmake_skb() (see net/ipv4/ip_output.c)
generates an sk_buff () for the message

e Complex code, because generic (supports
corked sockets); for the non-corked case, creates
some “fake” corking structures

Advanced Kernel Programming The Network Stack



Sending a Packet — Allocating and Initializing the

skbuff

e __ip_append_data() allocates the sk buff

e Then reserves space for the headers and
allocates the network header
e Also notice “skb—>transport_header =

e Finally, it copies the data...

e __ipmake_skb () fills the IP header and finishes the
sk_buff Initialization

e Notice “skb_dst_set (skb, &rt->dst)”(and
remember that dst . output = ip_output ()!)

Advanced Kernel Programming The Network Stack



Sending a Packet — Down to Network Protocol

e udp_send_skb () fillsthe UDP header and finally
passes the packet down: ip_send_skb ()

e ip_send_skb () invokes ip_local_out (), that
calls __ip_local_out () to set packet len and
checksum, and then passes the packet to netfilter

e If netfilter agrees, then ip_local_out () calls
dst_output () to send the packet

e dst_output () does something like
skb_dst (skb) —output (skb)

e Looks atthe _skb_refdst field of sk_buff...
Set by __ip make_skb () using info coming from
the routing table entry

Advanced Kernel Programming The Network Stack



Sending a Packet — From Network to MAC Layer

dst_output () ends up calling ip_output ()
ip_output () sets skb—>dev, then calls
ip_finish_output () — 1p_finish_output2 ()

e ip_output2 () searches for a “neighbour” to send
the data, and invokes neigh_output () to it

We are finally out of the IP stack!!!
neigh_output checks if we know the MAC
address of the neighbour, and if yes it invokes
nelgh_hh_output ()

e If not, some ARP siuff is needed!

e neigh_hh_output () fills some headers and finally
calls dev_queue_xmit ()

e Itwill call the ndo_start_xmit () method of the
Advanced Kerneqieogj%ﬁnwhen needed The Network Stack



Receiving a Packet

e How are packets received?

e Thereis a recvmsg method in the socket
operations...
e ...But where does it get messages from?

e Remember deliver skb()?

e It searches for a network protocol handler
See for example
net/ipv4d/af_inet.c::ip_packet_type

e ForlP ip_rcv () ends up being called!

e It searches for a dst (using early demultiplexing if
needed)
e This sets the dst . input pointer to

1p_local_deliver ()
Advanced Kernel Programming The Network Stack



Receiving a Packet — 2

e After checking some headers,
ip_local_deliver () invokes
1p_local_deliver_finish ()

e The skbuff is then delivered to the appropriate
transport protocol

e Notice skb_pull () to remove the network
header

e ip.protocol_deliver_rcu () willinvoke
tcp_v4_rcv () Orudp_rcv

e Then, the skbuff will be enqueued to a sock
structure
e The rcvmsg method will get it from there...

Advanced Kernel Programming The Network Stack



	The Networking Stack
	Linux and Networking
	Evolution of the Linux Stack — 1
	Evolution of the Linux Stack — 2
	Evolution of the Linux Stack — 3
	The sk_buff Structure
	sk_buff Lists
	Manipulating the Lists
	sk_buff Data
	Adding/Removing Headers/Tailers
	Making Space for Headers
	Summing Up
	Fragmented sk_buffs
	Cloning sk_buffs...
	...And Copying Them!
	Network Devices Structures
	The net_device Structure
	Hardware-Related Information
	Device Information
	Device Methods
	Sending/Receiving Packets through Devices
	Interrupt Handlers and NAPI
	NAPI Processing
	The Polling Method
	GRO: Theory of Operation
	GRO and Packet Queuing
	Receiving Packets (with GRO Complications)
	Network Interface Receive
	Using Network Devices
	The Network Stack: Programmaer API
	Socket Data Structures
	Higher Level Protocols
	Creating a Socket and Sending a Packet
	Sending a Packet
	Sending a Packet — Down the Protocol Stack
	Sending a Packet — Identify the Destination
	Sending a Packet — Down the Protocol Stack
	Sending a Packet — Allocating and Initializing the skbuff
	Sending a Packet — Down to Network Protocol
	Sending a Packet — From Network to MAC Layer
	Receiving a Packet
	Receiving a Packet — 2

