
The Kernel Latency

Advanced Operating Systems

Luca Abeni

luca.abeni@santannapisa.it



Latency

Advanced Operating Systems The Kernel Latency

• Latency: measure of the difference between the
theoretical and actual schedule

• Task τ expects to be scheduled at time t . . .
• . . . but is actually scheduled at time t′

• ⇒ Latency L = t′ − t

• The latency L can be modelled as a blocking time ⇒

affects the guarantee test

• Similar to what done for shared resources
• Blocking time due to latency, not to priority

inversion



Effects of the Latency

Advanced Operating Systems The Kernel Latency

• Upper bound for L? If not known, no schedulability
tests!!!

• The latency must be bounded: ∃Lmax : L < Lmax

• If Lmax is too high, only few task sets result to be
schedulable

• Large blocking time experienced by all tasks!
• The worst-case latency Lmax cannot be too high



Sources of Latency

Advanced Operating Systems The Kernel Latency

• A task τi is a stream of jobs Ji,j arriving at time ri,j
• Job Ji,j is scheduled at time t′ > ri,j

• t′ − ri,j is given by:

1. Ji,j ’s arrival is signalled at time ri,j + L1

2. Such event is served at time ri,j + L1 + L2

3. Ji,j is actually scheduled at ri,j +L1 +L2 +L3

L1 2 L3L



Analysis of the Various Sources

Advanced Operating Systems The Kernel Latency

• L = L1 + L2 + L3

• L3 is sometimes called scheduler latency

• But it is not really a latency!!!
• Interference from higher priority tasks
• Already accounted for by RTA / TDA or similar →

let’s not consider it

• L2 is the non-preemptable section latency (Lnp)
• L1 is due to the delayed interrupt generation



Non-Preemptable Section Latency

Advanced Operating Systems The Kernel Latency

• Delay between time when an event is generated and
when the kernel handles it

• Due to non-preemptable sections in the kernel,
which delay the response to hardware interrupts

• Composed by various parts: interrupt disabling,
bottom halves delaying, . . .

• Depends on how the kernel handles the various
events...

• Will talk about it later!

Scheduler

Event Delivery Dispatch
Event Time Latency



Interrupt Generation Latency

Advanced Operating Systems The Kernel Latency

• Hardware interrupts: generated by devices
• Sometimes, an interrupt should be generated at time

t . . .
• . . . but it si actually generated at time t′ = t+ Lint

• Lint is the Interrupt Generation Latency

• It is due to hardware issues
• It is generally small compared to Lnp

• Exception: if the device is a timer device, the
interrupt generation latency can be quite high

• Timer Resolution Latency Ltimer



The Timer Resolution Latency

Advanced Operating Systems The Kernel Latency

• Interrupt generation latency for a hw timer device
• Ltimer can often be much larger than the

non-preemptable section latency Lnp

• Where does it come from?

• Kernel timers are generally implemented by using
a hardware device that produces periodic
interrupts

• Can we do anything about it?



Ticks and Timers

Advanced Operating Systems The Kernel Latency

• Periodic timer interrupt → tick
• Example: periodic task (setitimer(), Posix

timers, clock nanosleep(), . . .) τi with period Ti

• Job end → τi sleeps for the next activation
• Activations are triggered by the periodic interrupt

• Periodic tick interrupt, with period T tick

• Every T tick, the kernel checks if the task must be
woken up

• If Ti is not multiple of T tick, τi experiences a timer
resolution latency



The Periodic Tick

Advanced Operating Systems The Kernel Latency

• Traditional operating systems: timer device
programmed to generate a periodic interrupt

• Example: in a PC, the Programmable Interval
Timer (PIT) is programmed in periodic mode

• At every tick the execution enter kernel space
• The kernel executes and can

• Wake up tasks
• Adjust tasks priorities
• Run the scheduler, when returning to user space

→ possible preemption



Tick Tradeoff

Advanced Operating Systems The Kernel Latency

• Timer interrupt period: trade-off between
responsiveness (low latency) and throughput (low
overhead)

• Large T tick → large timer resolution latency
• Small T tick → high number of interrupts

• More switches between US and KS
• Tasks are interrupted more often
• ⇒ Larger overhead



Trade-off Examples

Advanced Operating Systems The Kernel Latency

• For non real-time systems, it is possible to find a
reasonable tradeoff...

• But it still depends on the workload!

• Desktop or server?

• Example: the Linux kernel

• Linux 2.4: 10ms (HZ = 100)
• Linux 2.6: HZ = 100, 250, or 1000
• Other systems: T tick = 1/1024



Timer Resolution Latency

Advanced Operating Systems The Kernel Latency

• Experienced by all tasks that want to sleep for a
specified time T

T tick

timerL timerL

• τi must wake up at time ri,j = jTi

• But is woken up at time t′ =
⌈

ri,j
T tick

⌉

T tick



Timer Resolution Latency - Upper Bound

Advanced Operating Systems The Kernel Latency

• The timer resolution latency is bounded:

• t = ri,j
• t′ =

⌈

ri,j
T tick

⌉

T tick

Ltimer = t′ − ri,j =

⌈

ri,j
T tick

⌉

T tick − ri,j =

=

(⌈

ri,j
T tick

⌉

−
ri,j
T tick

)

T tick ≤ T tick



Problems with Periodic Ticks

Advanced Operating Systems The Kernel Latency

• Reducing T tick below 1ms is generally not
acceptable. . .

• . . .So, periodic tasks can expect a blocking time due
to Ltimer up to 1ms

• How large is the effect on the schedulability
tests?

• Additional problems:

• Tasks’ periods are rounded to multiples of T tick

• Limit on the minimum task period: ∀i, Ti ≥ T tick

• ...



Useless Timer Interrupts

Advanced Operating Systems The Kernel Latency

• Additional problem: a lot of useless timer interrupts
might be generated

T tick



Timers and Clocks

Advanced Operating Systems The Kernel Latency

• Remember?

• Timer: generate an event at a specified time t
• Clock: keep track of the current system time

• A timer can be used to wake up a periodic task τ , a
clock can be used to read the system time
(gettimeofday())

• Timer Resolution
• Clock Resolution



Timer and Clock Resolution

Advanced Operating Systems The Kernel Latency

• Timer Resolution: minimum interval at which a
periodic timer can fire

• If periodic ticks are used, the timer resolution is
T tick

• Clock Resolution: minimum difference between two
different times returned by the clock

• What’s the expected clock resolution?



Clock Resolution

Advanced Operating Systems The Kernel Latency

• Traditional OSs use a “tick counter”

• Very fast clock: return the number of ticks (jiffies
in Linux) from the system boot

• Clock Resolution: T tick

• Modern PCs have higher resolution time sources...

• On x86, TSC (TimeStamp Counter)
• High-Resolution clock: use the TSCto compute

the time since the last timer tick...

• Summary: High-Resolution clocks are easy!

• Every modern OS kernel provide them



Clock Resolution vs Timer Resolution

Advanced Operating Systems The Kernel Latency

• Even using a “traditional” periodic timer tick, it is
easy to provide high-resolution clocks

• Time can be easily read with a high accuracy

• On the other hand, timer resolution is limited by the
system tick T tick (= 1 / HZ)

• It is impossible to generate events at arbitrary
instants in time, without latencies



Timer Devices

Advanced Operating Systems The Kernel Latency

• Timer devices (ex: PIT - i8254) generally work in 2
modes: periodic and one-shot

• Programmed writing a value C in a counter register
• The counter register is decremented at a fixed rate
• When the counter is 0, an interrupt is generated

• If the device is programmed in periodic mode, the
counter register is automatically reset to the
programmed value

• If the device is programmed in one-shot mode,
the kernel has to explicitly reprogram the device
(setting the counter register to a new value)



Using the One-Shot Mode

Advanced Operating Systems The Kernel Latency

• The periodic mode is easier to use! This is why most
kernels use it

• When using one-shot mode, the timer interrupt
handler must:

1. Acknowledge the interrupt handler, as usual
2. Check if a timer expired, and do its usual stuff...
3. Compute when the next timer must fire
4. Reprogram the timer device to generate an

interrupt at the correct time

• Steps 3 and 4 are particularly critical and difficult



Reprogramming the Timer Device - 1

Advanced Operating Systems The Kernel Latency

• When the kernel reprograms the timer device (step
4), it must know the current time...

• ...But the last known time is the time when the
interrupt fired (before step 1)...

• A timer interrupt fires at time t1
• The interrupt handler starts (enter KS) at time t′

1

• Before returning to US, the timer must be
reprogrammed, at time t′′

1

• Next interrupt must fire at time t2; the counter
register is loaded with t2 − t1

• Next interrupt will fire at t2 + (t′′
1
− t1)



Reprogramming the Timer Device - 2

Advanced Operating Systems The Kernel Latency

• The error described previously accumulates
• ⇒ Risk: drift between real time and system time
• A free run counter (not stopped at t1) is needed
• The counter is synchronised with the timer device ⇒

the value of the counter at time t1 is known
• This permits to know the time t′′

1
⇒ the new counter

register value can be computed correctly
• On a PC, the second PIT counter, or the TSC, or the

APIC timer can be used as a free run counter



High Resolution Timers

Advanced Operating Systems The Kernel Latency

• Serious real-time kernels → High-Resolution Timers
(use hw timer in one-shot mode)

• Already implemented in RT-Mach
• Also implemented in RTLinux, RTAI and others

• General-Purpose kernels are more concerned about
stability and overhead

• Too much overhead for GP kernels?

• Fixed: hrtimers are in Linux since version 2.6.21



HRT and Timer Ticks

Advanced Operating Systems The Kernel Latency

• Compatibility with “traditional” kernels:

• The tick event can be emulated through
high-resolution timers

• ⇒ Timer device programmed to generate
interrupts both:

• When needed to serve a timer, and
• At tick boundaries

• ...But the “tick” concept is now useless

• Tickless (or NO HZ) system
• Good for saving power



Non-Preemptable Section Latency

Advanced Operating Systems The Kernel Latency

• The non-preemptable section latency Lnp is given by
the sum of different components

1. Interrupt disabling
2. Delayed interrupt service
3. Delayed scheduler invocation

• The first two are mechanisms used by the kernel to
guarantee the consistency of internal structures

• The third mechanism is sometimes used to reduce
the number of preemptions and increase the system
throughput



Disabling Interrupts

Advanced Operating Systems The Kernel Latency

• Remember? Before checking if an interrupt fired, the
CPU checks if interrupts are enabled...

Interrupts
Disabled?

No

Yes

Fired?
Interrupt

No

Yes

Hardware Exception

Increment
Program
Counter

Execute
Instruction

Fetch 
Instruction

Process
Interrupt

• Every CPU has some protected instructions
(STI/CLI on x86) for enabling/disabling interrupts



Interrupts and Latency

Advanced Operating Systems The Kernel Latency

• In modern system, only the kernel (or code running
in KS) can enable/disable interrupts

• Interrupts disabled for a time T cli → Lnp ≥ T cli

• Interrupt disabling is used to enforce mutual
exclusion between sections of the kernel and ISRs



Delayed Interrupt Service - 1

Advanced Operating Systems The Kernel Latency

• When the interrupt fire, the ISR is ran, but the kernel
can delay interrupt service some more...

• ISRs are generally small, and do only few things
• An ISR can set some kind of software flag, to

notify that the interrupt fired
• Later, the kernel can check such flag and run a

larger (and more complex) interrupt handler

• Hard IRQ handlers (ISRs) va “Soft IRQ handlers”



Delayed Interrupt Service - 2

Advanced Operating Systems The Kernel Latency

• Advantages of “soft IRQ handlers”:

• ISRs generally run with interrupts disabled,
• Soft IRQ handlers can re-enable hardware

interrupts
• Enabling/Disabling soft handlers is

simpler/cheaper

• Disadvantages:

• Increase NP latency: Lnp >> T cli

• “Soft IRQ handlers” are often non-preemptable
increasing the latency for other tasks too...



Deferred Scheduling

Advanced Operating Systems The Kernel Latency

• Scheduler invoked when returning from KS to US
• Sometimes, return to US after a lot of activities

• Try to reduce the number of KS ↔ US switches
• Reduce the number of context switches
• Throughput vs low latency

• ISR executed at the correct time, soft IRQ handler
ran immediately, but scheduler invoked too late

Event Time

Scheduler

Latency

Event Delivery

Handlers

KS

US



Latency in the Standard Kernel

Advanced Operating Systems The Kernel Latency

 1

 10

 100

 1000

 10000

 100000

 20000 17000 11000 10000 9000 8000 7000 1000

La
te

nc
y 

(u
se

c)

Elapsed Time (msec)

m
em

or
y

ca
ps

 o
n

ca
ps

 o
ff

ch
vt

 3
ch

vt
 2

i/o pr
oc

 r
ea

d

fo
rk



Summing Up - 1

Advanced Operating Systems The Kernel Latency

• Lnp depends on some different factors
• In general, no hw reasons → it almost entirely

depends on the kernel structure

• Non-preemptable section latency is generally the
result of the strategy used by the kernel for
ensuring mutual exclusion on its internal data
structures



Summing Up - 2

Advanced Operating Systems The Kernel Latency

• To analyze / reduce Lnp, we need to understand
such strategies

• Different kernels, based on different structures, work
in different ways

• Some activities causing Lnp:

• Interrupt Handling (Device Drivers)
• Management of the parallelism



Example: Data Structures Consistency

Advanced Operating Systems The Kernel Latency

• HW interrupt: breaks the regular execution flow

• If the CPU is executing in US, switch to KS

• If execution is already in KS, possible problems:

1. The kernel is updating a linked list
2. IRQ While the list is in an inconsistent state
3. Jump to the ISR, that needs to access the list...

• Must disable interrupts while updating the list!
• Similar interrupt disabling is also used in spinlocks

and mutex implementations...


	Latency
	Effects of the Latency
	Sources of Latency
	Analysis of the Various Sources
	Non-Preemptable Section Latency
	Interrupt Generation Latency
	The Timer Resolution Latency
	Ticks and Timers
	The Periodic Tick
	Tick Tradeoff
	Trade-off Examples
	Timer Resolution Latency
	Timer Resolution Latency - Upper Bound
	Problems with Periodic Ticks
	Useless Timer Interrupts
	Timers and Clocks
	Timer and Clock Resolution
	Clock Resolution
	Clock Resolution vs Timer Resolution
	Timer Devices
	Using the One-Shot Mode
	Reprogramming the Timer Device - 1
	Reprogramming the Timer Device - 2
	High Resolution Timers
	HRT and Timer Ticks
	Non-Preemptable Section Latency
	Disabling Interrupts
	Interrupts and Latency
	Delayed Interrupt Service - 1
	Delayed Interrupt Service - 2
	Deferred Scheduling
	Latency in the Standard Kernel
	Summing Up - 1
	Summing Up - 2
	Example: Data Structures Consistency

