
Kernels and Locking

Luca Abeni

luca.abeni@santannapisa.it

Critical Sections in Kernel Code

Advanced Operating Systems Kernel Locking

• Old Linux kernels used to be non-preemptable...
• Kernel⇒ Big critical section
• Mutual exclusion was not a problem...
• Then, multiprocessor systems changed everything

• First solution: Big Kernel Lock← very bad!

• Removed BKL, and preemptable kernels, ...

• Multiple tasks can execute inside the kernel
simultaneously⇒ mutual exclusion is an issue!

• Multiple critical sections inside the kernel

Enforcing Mutual Exclusion

Advanced Operating Systems Kernel Locking

• Mutual exclusion is traditionally enforced using
mutexes

• Mutexes are blocking synchronisation objects

• A task trying to acquire a locked mutex is
blocked. . .

• . . .And the scheduler is invoked!

• Good solution for user-space applications...
• But blocking is sometimes bad when in the kernel!

Blocking is Bad When...

Advanced Operating Systems Kernel Locking

• Atomic Context

• Code in “task” context can sleep (task blocked)
• . . .But some code does not run in a task context

(example: IRQ handlers)!
• Other situations (ex: interrupts disabled)

• Efficiency

• small critical sections→ using mutexes, a task
would block for a very short time

• Busy-waiting can be more efficient (less context
switches)!

Summing up...

Advanced Operating Systems Kernel Locking

• In some particular situations. . .
• . . .We need a way to enforce mutual exclusion

without blocking any task

• This is only useful in kernel programming
• Remember: in general cases, busy-waiting is

bad!

• So, the kernel provides a spinning lock mechanism

• To be used when sleeping/blocking is not an
option

• Originally developed for multiprocessor systems

Spinlocks - The Origin

Advanced Operating Systems Kernel Locking

• spinlock: Spinning Lock

• Protects shared data structures in the kernel
• Behaviour: similar to mutex (locked / unlocked)
• But does not sleep!

• Basic idea: busy waiting (spin instead of blocking)
• Might neeed to disable interrupts in some cases

Spinlocks - Operations

Advanced Operating Systems Kernel Locking

• Basic operations on spinlocks: similar to mutexes

• Biggest difference: lock() on a locked spinlock

• lock() on an unlocked spinlock: change its state
• lock() on a locked spinlock: spin until it is unlocked

• Only useful on multiprocessor systems

• unlock() on a locked spinlock: change its state
• unlock() on an unlocked spinlock: error!!!

Spinlocks - Implementation

Advanced Operating Systems Kernel Locking

1 int lock = 1;
2
3 void lock(int *sl)
4 {
5 while (TestAndSet(sl, 0) == 0);
6 }
7
8 void unlock(int *sl)
9 {

10 *sl = 1;
11 }

A possible algorithm
(using test and set)

1 lock:
2 decb %0
3 jns 3
4 2:
5 cmpb $0,%0
6 jle 2
7 jmp lock
8 3:
9 ...

10 unlock:
11 movb $1,%0

Assembly implemen-
tation (in Linux)

Spinlocks and Livelocks

Advanced Operating Systems Kernel Locking

• Trying to lock a locked spinlock results in spinning⇒
spinlocks must be locked for a very short time

• If an interrupt handler interrupts a task holding a
spinlock, livelocks are possible...

• τi gets a spinlock SL

• An interrupt handler interrupts τi...
• ...And tries to get the spinlock SL

• ⇒ The interrupt handler spins waiting for SL
• But τi cannot release it!!!

Avoiding Livelocks

Advanced Operating Systems Kernel Locking

• Resource shared with ISRs→ possible livelocks

• What to do?
• The ISR should not run during the critical section!

• When a spinlock is used to protect data structures
shared with interrupt handlers, the spinlock must
disable the execution of such handlers!

• In this way, the kernel cannot be interrupted
when it holds the spinlock!

Spinlocks in Linux

Advanced Operating Systems Kernel Locking

• Defining a spinlock: spinlock t my lock;
• Initialising: spin lock init(&my lock);

• Acquiring a spinlock: spin lock(&my lock);

• Releasing a spinlock: spin unlock(&my lock);

• With interrupt disabling:

• spin lock irq(&my lock),
spin lock bh(&my lock),
spin lock irqsave(&my lock, flags)

• spin unlock irq(&my lock), ...

Spinlocks - Evolution

Advanced Operating Systems Kernel Locking

• On UP systems, traditional spinlocks are no-ops

• The irq variations are translated in cli/sti

• This works assuming only on execution flow in the
kernel⇒ non-preemptable kernel

• Kernel preemptability changes things a little bit:

• Preemption counter, initialised to 0: number of
spinlocks currently locked

• spin lock() increases the counter
• spin unlock() decreases the counter

Spinlocks and Kernel Preemption

Advanced Operating Systems Kernel Locking

• preemption counter: increased when entering a
critical section, decreased on exit

• When exiting a critical section, check if the scheduler
can be invoked

• If the preemption counter returns to 0,
spin unlock() calls schedule()...

• ...And returns to user-space!

• Preemption can only happen on spin unlock()

(interrupt handlers lock/unlock at least one
spinlock...)

Spinlocks and Kernel Preemption

Advanced Operating Systems Kernel Locking

• In preemptable kernels, spinlocks’ behaviour
changes a little bit:

• spin lock() disables preemption
• spin unlock() might re-enable preemption (if

no other spinlock is locked)
• spin unlock() is a preemption point

• Spinlocks are not optimised away on UP anymore
• Become similar to mutexes with the Non-Preemptive

Protocol (NPP)
• Again, they must be held for very short times!!!

Sleeping in Atomic Context

Advanced Operating Systems Kernel Locking

• atomic context: CPU context in which it is not
possible to modify the state of the current task

• Interrupt handlers
• Scheduler code
• Critical sections protected by spinlocks
• . . .

• Do not call possibly-blocking functions from atomic
context!!!

Interrupt Handlers Context

Advanced Operating Systems Kernel Locking

• Remember: ISRs and BHs run in the context of the
interrupted process

• This is why they are in “Atomic Context”→
cannot use mutexes

• What about giving them a proper context?

• IRQ threads (hard - ISR - and soft - BH)
• They are kernel threads activated when an

interrupt fires
• Proper context→ can block, can use mutexes, ...

• When using IRQ threads, interrupt handler can be
scheduled (like the other tasks)

IRQ Threads

Advanced Operating Systems Kernel Locking

• Supported (optionally) by Linux
• Kernel thread: thread which always execute in kernel

mode

• Created with kthread run()

• Soft IRQ Threads and Hard IRQ Threads are just
“regular” kernel threads...

• Always blocked; become ready when a hardware
interrupt (Hard IRQ) fires or a BH (Soft IRQ) is
activated

• Can use all of the kernel functionalities
• A Hard IRQ Thread and a Soft IRQ Thread per

IRQ

	Critical Sections in Kernel Code
	Enforcing Mutual Exclusion
	Blocking is Bad When...
	Summing up...
	Spinlocks - The Origin
	Spinlocks - Operations
	Spinlocks - Implementation
	Spinlocks and Livelocks
	Avoiding Livelocks
	Spinlocks in Linux
	Spinlocks - Evolution
	Spinlocks and Kernel Preemption
	Spinlocks and Kernel Preemption
	Sleeping in Atomic Context
	Interrupt Handlers Context
	IRQ Threads

