
Virtual Machine Monitors

Luca Abeni

luca.abeni@santannapisa.it

June 13, 2019

Virtual Machines

Advanced Operating Systems Virtual Machine Monitors

• Virtual Machine: efficient, isolated duplicate of a
physical machine

• Execution environment essentially identical to the
physical machine

• Programs only see a small decrease in speed
• A “monitor” or “hypervisor” is in full control of

physical resources

• Programs running in a VM should not see
differences respect to real hw

• Virtualization should be efficient
• Programs should not be able to access resources

outside of the VM

VMs and OSs

Advanced Operating Systems Virtual Machine Monitors

• How is an OS related to Virtual Machines?

• The OS should provide support for the Virtual
Machine Monitor / hypervisor

• The OS could be optimized to run inside a VM

• OS suport for virtualization (as host or as guest)

• Impact on resource management
• Impact on the exposed features
• Impact on the I/O devices support

• Impact on the OS architecture?

• Host: type-I hypervisors, µ-kernel systems
• Guest: library OSs, unikernels, vertically

structured OSs

CPU Virtualization

Advanced Operating Systems Virtual Machine Monitors

• First idea: simulate the CPU hw in software

• Software implementation of an abstract machine
implementing the fetch-decode-execute-(write)
cycle

• Fails the efficency requirement!!!

• Other idea: directly execute the virtualized
instructions on the CPU

• Virtual ISA: exact copy of the host ISA
• Might fail the third (VMM is in control)

requirement
• Limited to unprivileged instructions (with VMM

executing at a high privilege level)
• What to do for privileged instructions?

Virtualizable CPU Architectures

Advanced Operating Systems Virtual Machine Monitors

• The monitor should be able to “intercept” some
machine instructions

• Some kind of trap / exception / software interrupt
must be generated

• Not always possible (think about x86 ring 0)

• The CPU must provide some support for full
virtualization

• “More than supervisor” mode→ hypervisor mode

• Introduce two operating modes: “root mode” and
“non-root mode”; non-root mode can only modify
a shadow copy of the CPU privileged state

• ...

OSs for Virtualizable Architectures

Advanced Operating Systems Virtual Machine Monitors

• Virtualizable ISA: how to use it?

• VMM or hypervisor responsible for managing
VMs and other resources

• Re-invent an OS, or using an existing one?

• OS support for hypervisors

• Hosted hypervisor
• Dom0
• ...

• Difference between a hypervisor and a µ-kernel???

• Are we reinventing an old idea?

ParaVirtualization

Advanced Operating Systems Virtual Machine Monitors

• So, CPU virtualization can be easy and efficient

• Provided that the ISA is virtualizable
• Provided host OS support / hypervisor

• What about I/O devices?

• Virtualizing real hardware can be complex and
inefficient

• Idea: device passthrough
• Other possibility: paravirtulization

• Paravirtualization: the guest knows that it is running
in a VM

• Memory buffers can be (securely) shared
between guest and host

• ...

Example of (Toy) CPU

Advanced Operating Systems Virtual Machine Monitors

Registers
ALU

Control
Unit

Bus
DRAR

PC, IR,...

• Toy CPU: just an example with many simplifications
• Modern (real) CPUs are much more complex!

• Pipeline
• Parallel execution
• ...

CPUs, Programs, & Friends

Advanced Operating Systems Virtual Machine Monitors

• CPU→ executes programs

• Stored in main memory
• Use data from main memory

• Program: formal description of an algorithm

• Using a programming language

• Sequence of machine instructions

• Actions having effects on some objects
• “Object”: data stored in main memory

• Instance of program in execution: sequence of
actions on objects

• Example: int mcd(int a, int b) and its
execution

Executing a Program

Advanced Operating Systems Virtual Machine Monitors

Fetch

Save Data

Execute

Load Data

Decode

• CPU: cyclical execution (fetch /
decode / load / execute / save)

• Machine instructions are exe-
cuted (mainly) sequentially

• Machine designed to execute its
own language!

• Machine Language

Physical Machines...

Advanced Operating Systems Virtual Machine Monitors

• Computer: (physical) machine designed to execute
programs

• Every machine executes programs written in its own
language

• Relationship between machine and language

• A machine has its own language (the language it
can parse and execute)

• A language can be “understood” (parsed and
executed) by multiple different machines

• Program execution: (infinite) cycle
fetch/decode/load/execute/save

• CPU: hw implementation of this cycle

...And Abstract Machines!

Advanced Operating Systems Virtual Machine Monitors

• The fetch/decode/load/execute/save cycle can be
implemented in hw or in sw...

• Software Implementation: Abstract Machine

• Algoritmhms and data structures used to store
and execute programs

• Once upon a time referred as “Virtual Machine”

• Today, the term “Virtual Machine” (VM) is used
with a slightly different meaning

Abstract Machines and Languages

Advanced Operating Systems Virtual Machine Monitors

• Similarly to physical machines (CPUs), each
abstract machine has its own machine language

• Machine language for a CPU: sequence of 0 / 1

• Assembly makes it more readable

• Abstract machines generally have higher level
machine languages (C, Java, etc...)

• ML: abstract machine understanding language L

• L is the machine language ofML

• Program: sequence of instructions written in L

• ML is just a possibile way to describe L

Abstract Machines Behaviour

Advanced Operating Systems Virtual Machine Monitors

• To execute a program written in L,ML has to:

1. Execute some “elementary operations”

• In hw, ALU

2. Manage the execution flow

• Execution is not only sequential (jumps,
loops, etc...)

• In hw, PC handling

3. Move data from / to memory

• Addressing modes, ...

4. Take care of memory management

• Dynamic allocation, stack management,
etc...

Abstract Machine Example

Advanced Operating Systems Virtual Machine Monitors

Fetch

Load Data

Decode

Save Data

HaltOp 1 Op 2 Op n

Start

Stop

• Execution cycle: very
similar to a CPU...

• ... But it is imple-
mented in software!

Implementing a Language

Advanced Operating Systems Virtual Machine Monitors

• ML undestands its machine language L

• One single machine language per abstract
machine

• L can be executed by multiple different abstract
machines

• Might differ in implementation, data structures, ...

• Implementation of language L: abstract machine
ML that understands programs written in language
L

• Implementation in hw, sw, firmware, ...

Software Implementation

Advanced Operating Systems Virtual Machine Monitors

• ML in software (can execute programs written in L)
• Executes on a Host MachineMoLo (having machine

language Lo)
• Two possible implementations: interpreter or

compiler

• Interpreter: program written in Lo that
understands and executes L

• Implements the fetch/decode/load/exec/save
cycle

• Compiler: program translating other programs
from L to Lo

Pure Interpreters

Advanced Operating Systems Virtual Machine Monitors

written in L

Input

Output

Execution

Data

Data

L interpreter

written in Lo

Host Machine
Mo

Program

• Interpreter: program written in Lo (executes on
MoLo) understanding programs written in L

• Translates Lo in L “instruction by instruction”

Pure Compilers

Advanced Operating Systems Virtual Machine Monitors

written in L

Execution

Abstract Machine
Ma

Input

Execution

Host Machine
Mo

Program Compiler

from L into Lo

Program

written in Lo

Data

Output
Data

• Translates the whole program from L to Lo before
executing it

• Translation performed by a dedicated program, the
Compiler

• Compiler: not necessarely written in Lo
• Can execute on an abstract machineMa

different fromMoLo

Hybrid Implementation

Advanced Operating Systems Virtual Machine Monitors

written in L

Execution

Ma

written in Li

Abstract Machine

Input

Output

Execution

written in Lo

Host Machine
Mo

from L into Li

Program Li interpreter

Data

Data

Program Compiler

• Not a pure compiler nor a pure interpreter
• Compiler translate in an intermediate language Li
• Interpreter executes onMoLo programs written in Li

• Java: compiler→ bytecode, then JVM
• C: compiler generally produces code that needs

SO and runtime to execute

CPU Emulators

Advanced Operating Systems Virtual Machine Monitors

• CPU Emulator: software implementation of the
fetch/decode/load/exec/save cycle

• Can be an interpreter, some sort of compiler, or a
hybrid implementation

• Different complexity / performance / flexibility
trade-offs depending on the implementation
strategy

• Performance penalty respect to direct execution on
the emulated CPU

• Allows to emulate target CPU architectures different
from the host CPU architecture

• L and Lo can be different
• No constraints on the emulated or host ISA

Interpreting CPU Instructions

Advanced Operating Systems Virtual Machine Monitors

• Simplest CPU emulator: software cycle interpreting
CPU instructions

• Read CPU instructions one by one← according
to the syntax defined in ISA manuals

• Machine language instructions can have fixed
size (RISC) or variable size (x86, ...)

• Decode and execute (eventually loading or
saving data) modifying the emulator’s state

• Can be easily implemented reading the CPU
documentation

• Example: Bochs (http://bochs.sf.net)

http://bochs.sf.net

Compiling Blocks of CPU Instructions

Advanced Operating Systems Virtual Machine Monitors

• Compiler-based approach: just-in-time translation of
CPU instructions from L to Lo

• More complex than a CPU interpreter, but can
provide better performance

• Example: loop translated 1 time and then execute
multiple times at near-native speed

• Additional issues with self-modifying code and
similar...

• Example: qemu

• Contains a “Tiny Code Generator” (TCG)→ sort
of simple compiler

Qemu TCG

Advanced Operating Systems Virtual Machine Monitors

• Compile a “Translation Block” (TB) when needed,
and then execute compiled instructions

• Different “backends” for each supported host
architecture (host language Lo)

• Convert machine instructions of L into “TCG
instructions”

• Different “frontends” for each supported target
(language L)

• Convert TCG instructions into machine
instructions of Lo

• Issues: identify TBs, invalidate them when needed,
etc...

CPU Virtualization

Advanced Operating Systems Virtual Machine Monitors

• Instead of emulating a CPU implementingML in
software, execute target instructions in the host

• This implies L == Lo!!!

• How can the monitor be in control of physical
resources?

• If the guest has control of the virtual machine...
• ...It risks to have full control of the physical

machine too!!!

• Only some of the guest instructions can be directly
executed on the host CPU

• Which ones? User application (low privilege
level) for sure...

The Monitor / Hypervisor

Advanced Operating Systems Virtual Machine Monitors

• The Virtual Machine Monitor (VMM) must be in
control of physical resources (requirement 3)

• It manages Virtual Machines like an OS kernel
manages processes

• Virtual Machine: contains user code
(unprivileged instructions) and (guest) OS kernel

• OS Kernel: runs in supervisor mode→ supervisor
for user code (user processes)

• VMM: supervises both user code and OS kernels→
supervisor of supervisors⇒ Hypervisor!!!

• How does it work?
• Mechanisms to control the execution of OS

kernel code (privileged instructions)?

Direct Execution of Untrusted Guest Code

Advanced Operating Systems Virtual Machine Monitors

• Some instructions cannot be executed

• Which ones? We need a formal definition...
• When the guest tries to execute these

instructions, the hypervisor / VMM must intercept
them

• OS kernels have similar issues

• When user code tries to execute a privileged
instruction, an exception fires→ the kernel
handles it

• Simple concept: user code cannot execute
privileged instructions

• Can something similar be done for CPU
virtualization?

Guest Code at Low Privilege Level

Advanced Operating Systems Virtual Machine Monitors

• Idea: execute the guest with a low privilege level

• Intel x86: ring 3

• Hypervisor / VMM at high privilege level

• When the guest tries to execute privileged
instructions, exception / trap!

• The VMM can handle it

• Will this work?

• Thinking about x86, we can immediately see
some issues...

• Example: some unprivileged instructions can
read some parts of the “CPU state” (AKA
machine status word) without generating
exceptions

More Formal Definitions: Popek and Goldberg

Advanced Operating Systems Virtual Machine Monitors

• Paper from 1974!!!

• Formal Requirements for Virtualizable Third
Generation Architectures

• Provides formal definitions for VMM (the term
“hypervisor” is only used in the keywords)

• Uses the formal definitions to determine a set of
requirements for easily and efficiently virtualize the
CPU

• If the requirements are satisfied, it is possible to
execute guest code in the host intercepting the
relevant instructions

• Distinction between sensitive instructions and
privileged instructions

Privileged and Sensitive Instructions

Advanced Operating Systems Virtual Machine Monitors

• Privileged instructions (we already know)

• Can be executed when the CPU is at high
privilege level

• Generate an exception when the CPU is at low
privilege level

• Sensitive instructions (these are the “problematic
ones”)

• Change the “CPU configuration” / CPU state
• Reveal something about the CPU state

• Popek and Goldberg provide formal definitions (for a
simplified system: only memory, no interrupts, no
paging, ...)

Sensitive Instructions

Advanced Operating Systems Virtual Machine Monitors

• These are the instructions relevant when virtualizing
the CPU!!!

• Control Sensitive Instructions: change the CPU state

• In Popek and Goldberg’s model, privilege level or
accessible memory - memory is the only
considered resource

• In real systems, interrupt table, paging table, ...

• Behavior Sensitive Instructions: effects depend on
the CPU state

• In Popek and Goldberg’s model, privilege level or
accessible memory

• In real systems, things are more complex...

Popek & Goldberg Requirements

Advanced Operating Systems Virtual Machine Monitors

A VMM can be easily and efficiently implemented if the
set of sensitive instructions is a subset of the privileged
instructions

• Intuition: all the “problematic” instructions cause an
exception if executed with low privilege level

• Hence a privileged VMM can intercept them by
executing the guest as unprivileged!!!

• More formally, instructions executed in user mode
either:

• Generate a result that does not depend on the
“CPU state”...

• ...Or generate an exception!

Real CPUs vs Popek & Goldberg

Advanced Operating Systems Virtual Machine Monitors

• Do real CPUs satisfy Popek & Goldberg
requirements?

• Some of them do... Mainly by IBM

• Other CPUs did not initially comply with the
virtualization requirements

• Motorola 68000: unprivileged instruction able to
read the whole status register

• Fixed in 68010

• ARM: some sensitive unprivileged instructions
• Intel x86: plenty of sensitive unprivileged

instructions
• MIPS had issue too... Fixed in Release 5 (2012)

Intel x86 vs Popek & Goldberg

Advanced Operating Systems Virtual Machine Monitors

• Original x86 architecture: plenty of sensitive
unprivileged instructions

• Mainly related to the accessibility of status flags
and to the privilege levels bits in segment
registers

• S{GDT, IDT, LDT, MSW}
• PUSHF and POPF

• LAR, LSL, VERR, VERW
• PUSH, and POP with segment registers
• ...

Instructions Accessing Special Registers

Advanced Operating Systems Virtual Machine Monitors

• GDTR, LDTR and IDTR: registers pointing to
descriptor tables (data structures controlling the
CPU operation

• SGDT, SLDT and SIDT allow to read the content of
these registers

• Sensitive instructions!
• A guest OS can use them to know the host

descriptor tables...

• Allowed in user mode (ring 3 - low privilege level)
without raising exceptions!

• SMSW allows to read the machine status word (part of
cr0)

• Sensitive too... And still not privileged!

PUSHF and POPF

Advanced Operating Systems Virtual Machine Monitors

• Flags register: contains sensitive information, such
as the interrupt flag

• PUSHF: pushes the flags register on the stack

• Can be used to know the state of the interrupt
flag

• Does not generate exceptions...

• POPF: pops the flags register from the stack

• Could be used to set / reset the interrupt flag???
• If executed from ring 3, the state of if is not

changed, but no exception is generated!!!

Instructions Accessing the Privilege Level

Advanced Operating Systems Virtual Machine Monitors

• LAR, LSL, VERR and VERW play with the privilege
level of a segment (least significant 2 bits of the
segment descriptor)

• Allow to read the privilege level of a segment
• Allow to check if a segment can be accessed

from current privilege level
• ...

• Again, no exception is generated

• A guest OS can easily know the host segments
• A guest OS kernel can know that it is not running

in ring 0
• ...

PUSH / POP with Segment Registers

Advanced Operating Systems Virtual Machine Monitors

• PUSH and POP can be used with segment registers
• Segment register: contain a segment descriptor

• Two rightmost bits: protection level for the
segment

• Can easily leak from host to guest!!!

• Similar issues with segment registers in other
instructions

• STR

• MOVE

• CALL FAR / INT FAR

• ...

Example: POPF

Advanced Operating Systems Virtual Machine Monitors

movl $0, %eax
pushl %eax
popf

• Tries to load “0” in the flags register
• The flags register contains the interrupt flag⇒ clear

the interrupt flag!

• Clearly not possible at low privilege level (ring 3)
• The interrupt flag (and other flags) is not affected

by POPF at ring 3

• No exception is generated⇒ the VMM cannot know
that the guest is trying to clear if

A Dirty Workaround

Advanced Operating Systems Virtual Machine Monitors

• Does this mean that VMM / hypervisors could not be
implemented on x86?

• VMWare proved the opposite...

• Notice: Popek and Goldberg say that a VMM cannot
be easily and efficiently implemented

• If we accept complications and performance loss,
we can work around the issue...

• Idea: replace all the sensitive unprivileged
instructions with something that generate an
interrupt / exception!!!

• VMWare & friends used variations of this idea...
• Possibly patented?

The ARM Architecture

Advanced Operating Systems Virtual Machine Monitors

• ARM: RISC CPU (32-bit instructions, 16 registers, ...)
with pragmatic design

• Currently one of the major players in embedded
systems

• Many different versions of the ARM core

• Let’s consider ARM v7

• Multiple privilege levels: user (USR), system (SYS),
supervisor (SVC), interrupt (IRQ), fast interrupt
(FIQ), abort (ABT) and undefined (UND)

ARM vs Popek & Goldberg

Advanced Operating Systems Virtual Machine Monitors

• Original ARM: some sensitive unprivileged
instructions

• As for x86, mainly related to accessibility of the
CPU state (status flags and other)

• CPU state:

• Currently Active Processor Status Register
(CPSR), saved in SPSR when switching from user
mode to a privileged mode

• Some coprocessors (example: CP15 - system
coprocessor - controlling caches and similar)

• ...

Example: Accessing the PSR

Advanced Operating Systems Virtual Machine Monitors

• CPS modifies the CPSR

• Similar to x86 flags register: can disable
interrupts, etc...

• Obviously, can be done from a privileged mode
only!

• If executed with low privilege level (user mode), does
nothing!

• Does not trap!!!

• So it is control sensitive (can disable interrupts),
behaviour sensitive (its behaviour depends on the
privilege level) and unprivileged!

ARM Sensitive Unprivileged Instructions

Advanced Operating Systems Virtual Machine Monitors

• ARM handling of the PSR→ very similar to x86
handling of flags register

• Unprivileged instructions can read it

• Access to interrupt flag and other sensible
information (behaviour sensitive)

• Access to the privilege level (that is part of
PSR)← similar to x86 issues with segment
registers

• Unprivileged instructions can try to write it
without generating exceptions!

• Looks like ARM “inherited” from x86 some of the
issues that make it non-compliant with Popek &
Goldberg requirements

Virtual Memory

Advanced Operating Systems Virtual Machine Monitors

• Popek and Goldberg considered a very simple
model of virtual memory

• Segmented architecture with only one segment
• If V A > limit, memory fault (exception)
• Otherwise, PA = V A+ base

• Paging can also be supported, if P&G requirements
are met and the VMM can intercept page faults

• The VMM knows when the guest accesses the
page table register

• The VMM knows when the guest causes a page
fault

• The VMM can know when the guest accesses
the page table

Virtualized Paging

Advanced Operating Systems Virtual Machine Monitors

• The guest page table is not the “real” (host) page
table

• The VMM can intercept accesses to the page
table register...

• The guest can freely modify its “virtualized page
table”

• Without even knowing that it is not the real page
table!

• When the guest tries to use some of the mappings it
created, a host page fault is generated!

• The VMM can handle it adding a proper mapping
in the host page table

Example - 1

Advanced Operating Systems Virtual Machine Monitors

1. The guest sets the page table register (example:
cr3) to some value

• Exception→ the VMM intercept the write
• Now the VMM knows where the guest page

table is
• If the guest tries to read the page table register,

the read is intercepted by the VMM, that returns
this value

• The host page table is not affected

2. The guest modifies its page table mapping address
V A1 into PA1

• Nothing happens in the VMM / host

Example - 2

Advanced Operating Systems Virtual Machine Monitors

3. The guest accesses V A1

• V A1 is not mapped in the “real” page table⇒
page fault!

4. The VMM handles the page fault

• Look at the guest page table
• Find mapping for V A1

• Create appropriate mapping in the host page
table

5. The guest access to V A1 completes without issues

• Technique sometimes known as “shadow paging”

Shadow Paging - 1

Advanced Operating Systems Virtual Machine Monitors

• A “shadow page table” is used for converting guest
VA into host PA

• The guest page table is not really used by the
MMU!!!

• Used only by the VMM to update the shadow
page table

• The VMM handles page faults

• If a VA is not mapped in the guest page table,
page fault forwarded to the guest

• Otherwise, used to update the shadow page table

• A guest memory access can result in 2 page faults!!!

Shadow Paging - 2

Advanced Operating Systems Virtual Machine Monitors

• The VMM can detect accesses to the guest page
table, and update the shadow page table
immediately

• Avoid “lazy behaviour”
• Can avoid the double page fault...
• ...At the cost of introducing other page faults!
• More complex code

• In any case, huge overhead!!!

• Can we do better?
• Not without paravirtualization or hardware

support!

Hardware Support for Page Table Virtualization

Advanced Operating Systems Virtual Machine Monitors

• In non-virtualized CPUs, the MMU translates VAs to
PAs

• Translation performed in hw→ fast, efficient
• TLB-like caching tricks to improve performance

• What to do in virtualized CPUs?

• Additional level of indirection: VA→ PA→ MA
(Machine Address)

• VA and PA are guest addresses, MA is a host
address

• The MMU uses two page tables: guest page table
(VA→ PA) and host page table (PA→ MA)

• Can use TLB-like caches and trickery, etc...

Extended / Nested Page Tables

Advanced Operating Systems Virtual Machine Monitors

• Hardware feature provided by the major CPU
manufacturers

• Intel: Extended Page Tables (EPT)
• AMD: Nested Page Tables (NPT)
• ARM has a similar thing, too...

• Different naming, small differences, similar concepts

• The VMM can setup a Nested / Extended page
table to convert guest PAs in host MAs

• The guest can handle its page table (no need to
intercept accesses to the guest page table!)

• The VMM just needs to update its extended page
table when a guest tries to access a PA not
mapped in MA

	Virtual Machines
	VMs and OSs
	CPU Virtualization
	Virtualizable CPU Architectures
	OSs for Virtualizable Architectures
	ParaVirtualization
	Example of (Toy) CPU
	CPUs, Programs, & Friends
	Executing a Program
	Physical Machines...
	...And Abstract Machines!
	Abstract Machines and Languages
	Abstract Machines Behaviour
	Abstract Machine Example
	Implementing a Language
	Software Implementation
	Pure Interpreters
	Pure Compilers
	Hybrid Implementation
	CPU Emulators
	Interpreting CPU Instructions
	Compiling Blocks of CPU Instructions
	Qemu TCG
	CPU Virtualization
	The Monitor / Hypervisor
	Direct Execution of Untrusted Guest Code
	Guest Code at Low Privilege Level
	More Formal Definitions: Popek and Goldberg
	Privileged and Sensitive Instructions
	Sensitive Instructions
	Popek & Goldberg Requirements
	Real CPUs vs Popek & Goldberg
	Intel x86 vs Popek & Goldberg
	Instructions Accessing Special Registers
	PUSHF and POPF
	Instructions Accessing the Privilege Level
	PUSH / POP with Segment Registers
	Example: POPF
	A Dirty Workaround
	The ARM Architecture
	ARM vs Popek & Goldberg
	Example: Accessing the PSR
	ARM Sensitive Unprivileged Instructions
	Virtual Memory
	Virtualized Paging
	Example - 1
	Example - 2
	Shadow Paging - 1
	Shadow Paging - 2
	Hardware Support for Page Table Virtualization
	Extended / Nested Page Tables

