Monadic Input/Output

Luca Abeni
luca.abeni@santannapisa.it

Lazy Evaluation and 1/O

Lazy evaluation: expressions are evaluated “only
when needed’...

Consequence: the evaluation order is often
undefined

e Thinkabout“g(f_.1(x), f.2(x))”..

A lazy language does not specify if “£_1 (x)”Is
evaluated before “£_2 (x) ” or after it

What happens with that do 1/O?

e Example: “g(hello (), world())”, where
“hello ()” prints “hello” and “worl () ” prints
“‘world!”

e What is printed on the screen???

Functional Programming Techniques Monadic I/O

The Core of the I/O Issues

Every time we do 1/O, we to impose an
ordering between functions...
...Otherwise, the program output is not deterministic!

However, imposing an order in functions execution is
against the lazy execution idea
How to address this issue?

e |/O cannot be performed in functions!
e S0, who performs the I/O??7

In a lazy language, I
But to be useful a program to perform some
/0!

Functional Programming Techniques Monadic I/O

Functions and Actions

Impure code (I/0O and similar) has to be confined in
specific components
Functions implement the core of the program, and

are pure
Actions (or effects) encode the “dirty work” (impure)
and are executed by some “non functional engine”
There is a strict distinction between these two things

Functional Programming Techniques Monadic I/O

Input/Output as a Value

Algebraic data type “I10 a”

e Itis a parametric data types
e Depends on the type variable “a”

Represents an I/O “action” (or “effect”) to be
executed by the non-functional runtime

A value of type “I0 a” (often called “action”; also
kKnown as “computation” or “effect”) has two aspects:

e Represents an “action” that, when executed, can
perform 1/O

e (Contains a “regular value” of type “a” (the value
actually returned by the |/O operation!)

Functional Programming Techniques Monadic I/O

I/O Actions: Example

“Something” that reads a a character from the
keyboard and returns it...

...Cannot be a function (it has side effects!)

So, what is it? An I/O action: a value of type “I0

Char”
e IO because it returns a character (type
“Char”)

getChar :: 10 Char

Functional Programming Techniques Monadic I/O

I/O Actions: Another Example

How to print a character to the screen? Not with a
function (side effects are needed!)
The character is printed by a specific /O action

e The type of the I/O action looks strange, because
It Is not associated to any returned value...

e Remember the unit type? This is its purpose! So,
the type of the I/O action is “I0 ()"

The I/O action is generated based on the characted
to be printed...

So, we have a function that give the character
produces an |/O action: “Char -> I0 ()’

putChar :: Char — 10 ()

Functional Programming Techniques Monadic I/O

Again on I/O Actions

I/O actions look like a smart trick to hide side effects

e getChar Is not a function, but a value encoding
a side effect

e The putChar function does not have any side
effect (does not perform any I/O), but returns a
value that encodes side effects!

So, all functions are still pure, and the side effects
are all in some kind of runtime that executes the 1/O

actions
e Compare with a functional program in C++: side

effects can be isolated in the main () function,
leaving the rest of the program purely functional

Functional Programming Techniques Monadic I/O

Combining I/0 Actions

So, what’s special in using an “I0 a” datatype to
encode |/O actions?

e Let'slook at how I/O actions can be combined!

To have a deterministic output, I/O actions must be
executed using an evaluation order

e Or a well-defined order anyway
This i1s OK, because actions are not functions...

e ...50, there is no need to lazily evaluate/execute
them!
e Lazyness is only for functions, not for actions!

So, we need some kind of operator to combine |/O
actions

Functional Programming Techniques Monadic I/O

Combining I/O Actions: the Issue

Assume we need to read a character and then print
it on the screen

e Something like the imperative

char ¢ = getchar();
putchar(c);

How can we do this in a functional way?

e We need something like
“outChar (getChar ()) ...

e If“getChar” hastype “I0 Char” and
“putChar” has type “Char -> I0 ()"...

e ..We end up with “putChar getChar”, which
does not typecheck!!!

Functional Programming Techniques Monadic I/O

The Issue — Again

“putChar getChar” is not possible because
“putChar” wants a “Char”, but “getChar”is a “I0
Char’lll

Here, the type system is really saving us...
....getChar’ | Its
“execution” actually returns a character...

e S0, passing “getChar” as an argument to
“outChar’ |

We need a way to force the execution of the
‘getChar” I/O action and pass the result to
“outChar’

In other words, we need an operator/function that
“extracts” the value of type “Char” from “getChar”
Spoiler: this function is named “bind

Functional Programming Techniques Monadic I/O

Here Come the Monads

Instead of inventing random functions/operators, let’s
look at some theory...

. very scary name (exercize: just try to search
for “monad” on your favourite search engine)

e We can find monads in philosophy (for example,
see Leibniz, ...), mathematics (hyper-real
analysis, category theory, ...), computer science,
science fiction, ...

So, what is a monad??? Can be a lot of things
e FEven a burrito...

Here, let’s not look at all the complex theoretical
detalls...
...Let’s just consider what’s important in this context!

Functional Programming Techniques Monadic I/O

Why Monads?

Why talking about monads, here???

e Because they can provide what we need for
combining I/O actions

e Actually, they can provide much more (option
types, computations with a state, exceptions, ...)

The “relevant monads” for us are the monads from
computer science (related to ...

e Informally, a monad is a type derived from type «
associated to two functions: bind and return

e The bind and return functions must provide some
important properties

e Category theory discusses these properties and
their consequences

Functional Programming Techniques Monadic I/O

Practical Monads

Monad: algebraic data type ‘M a”

e Parametric type dependent on type variable “a
(type « Iin type theory)

Two functions “bind” and “return” must exist.

bind has domain “a” and codomain “M a

return is more complex
it is a curryified function: had domain ‘@@ a” and
codomain the set of functions from “a —> M b”

to "M Db
Using the Haskell syntax:
e rteturn :: a —>Ma
bind :: Ma—>((@—->MDb)—>MDb

Functional Programming Techniques Monadic I/O

Practical Monads: Informal Interpretation
“return” transforms a value of type “a” into a monadic
value of type ‘M a”
“bind” allows to apply a function “a -> M b”to a
monadic value ‘M a”

e |t must somehow extract the “a” value from the
monad, and apply the function to it!

e M a -> (a -—> M b) —> M b’canbe seen
as a function with two arguments of type ‘M a”
and “a —-> M b”and a result of type ‘M b”

A type “M a” with these 2 functions is a monad if 3
properties hold

e Basically equivalent to commutative and additive
properties

Functional Programming Techniques Monadic I/O

The I/0O Monad

/O monad: “10 a”

e The “bind” function performs the action encoded
by “I0 a, then extracts “a” from this value and
passes it to the function received as a second
argument

e It returns a second I/O action!

e The “return” function just encapsulates a value
in an /O action (that does not actually perform
any input or output)

In Haskell, “bind” is the “>>=" operator

Functional Programming Techniques Monadic I/O

I/O Monad Example

Let's see the I/O monad in action... In Haskell,
getChar >>= putChar

Executes the “getChar” action (of type “IO0 Char”)
Then, extracts the “Char” value from it...

...And passes such a value to “putChar” (a function
“‘Char —-> IO ()”that, given the character, returns
an “Io0 () ” value)

When the action returned by “putChar” Is executed,
the character is printed to the screen!!!

So, this allows to easily combine I/O actions

The whole complex monads theory from category
theory just makes sure that the actions’ combination
IS sound!

Functional Programming Techniques Monadic I/O

Haskell: I/0 Serialization

In Haskell, “getChar >>= putChar” evaluates to
an I/O action that reads a character and prints is
Now, let’s try to read a character and print it twice

getChar >>= (\c¢ — (putChar c >>= (\x —>

The second bind looks funny

e The return value of “butChar c”Iis quite useless
(it is of type “IO ()7)...

e ..Infact, “\x —> putChar c” discards the “()”
value!

The input of the second X is only needed to serialize
the output!!!

e This is a strong sign that something impure is
going on...

Functional Programming~Techniques Monadic I/O

Haskell: I/0 Serialization

“a >>= (\x —> b)” can be written “a >> b’
An action that reads a character, prints a CR, and

then prints the character twice is:
getChar >>= (\c¢ — (putChar '\n’ >>= (\y —> putChar ¢ >>= (\x —> putChar c))))

Haskell also allows to write it as

getChar >>= \C —>
putChar ’\n’ >>= \y —
putChar c >>= \X —>
putChar c

or

getChar >>= \C —>
putChar ’\n’ >>
putChar c >>
putChar c

It starts to look like an imperative program???

Functional Programming Techniques Monadic I/O

Haskell: More Complex I/O

We saw that the “bind” function can be used to
sequentially compose |/O actions...
What is “return” used from?

e We know it can forge monadic values from
non-monadic ones

Example: read some characters and return a single
“|O a” value containing all of them:

getChar >>= \a —>

getChar >>= \b —

. \X —>

return (a, b, ..., x)
The I/O action encoded by “return a” does not
perform any |/O...

Functional Programming Techniques Monadic I/O

Even More Complex I/O

Read a line of characters (until CR is pressed)
This is a more complex example, using recursion:

myget = getChar >>= \c —>

if ¢c == '\n’
then

return |[]
else

myget >>= \rest_of_line —
return (c : rest_of_line)

Note: “getLine” can be used for this...
...We opencoded it only as an example!

Functional Programming Techniques Monadic I/O

Syntactic Sugar for Monads

We know that Haskell wants to look like an

iImperative language

e Remember how currying is hidden behind an
imperative-like notation?

Some syntactic sugar can “hide” monads

getChar

putChar ’'\n’

putChar c
putChar c

can be written as

do {
c <— getChar;
putChar ’'\n’;
putChar c;
putChar c

}

Functional Programming Techniques

>>= \C —>
e
>>= \X —>

Monadic /O

More about the do Notation

The “do notation” is just a different syntax for the
monads’ “bind” and “return”

e Again: nothing new... Just syntactic sugar!

Can be transformed into “regular bind and return” as
follows:

‘do x <—e;8" = ‘e >>=\x—>dos”
‘do e; " — “e >>do g
Hdo e!! % ueu

Notice that “<-" hides a lambda abstraction and a

bind

e This can be seen as similar to the creation of a
binding

e “x <— e”Dbindsthe name “x” to value “&”

Functional Programming Techniques Monadic I/O

do Notation and Bindings

In do notation, “x <- e” can be seen as a binding
But this is not an assignment!!!

e This “binding™ only modifies the environment;
there is no store function!

That is, this is valid:

do {
S <— putStr "What_is._your_name?.”;

s <— getLine;
return s

}
It will return a value of type “I0 String”
e |f “<-"was an assignement, this was not valid
because the type of “putstr” Is different from
the type of “getLine”

Functional Programming Techniques Monadic I/O

Haskell Programs

We know how to bind names to values, how to define
functions, how to do I/0O...

e We generally test things in a REPL (example:
ghci)

What are we missing to write a self-contained
program?

e T[heusualmain () function!

In C-like imperative languages, the entry point of a
program is a function (“int main (int argc,
char xargv([])”, or similar...)

What about Haskell? Can “main” be a function?

e Uhm... Functions are pure... They do not perform
any |/O...

Functional Programming Techniques Monadic I/O

Haskell and main

The “main” entry point in Haskell is actually an
action!

e |t cannot be a function, because it needs to do
some I/O

In Haskell, actions are encoded as values of the “10
a’ data type...

e ..S0,mainisavalueof“to ...”... Which type,
exactly?

Since main does not return any value, its type is “I0
()" (like “butChar” and friends)

e main is usually a function...

Functional Programming Techniques Monadic I/O

gcd3 a 0
ged3 a b

a
gcd3 b (a ‘mod’ b)

c2i ¢ = (fromEnum c) — (fromEnum ’'0°’)

s2i_1 [] res = res
s2i_1 (c:l) res = s2i_1 | ((c2i ¢c) + res = 10)
s2i s = s2i.1 s 0

main = getLine >>= \s1 —
getLine >>= \s2 —
print (gcd3 (s2i s1) (s2i s2))

Note: implementing “s21i” is useless (Haskell provides
“read”)

Functional Programming Techniques Monadic 1/O

gcd3 a 0
ged3 a b

a
gcd3 b (a ‘mod’ b)

{— Notice: | implemented ”s2i”, but we could use
"read” (which is more generic) instead —}

c2i ¢ = (fromEnum c) — (fromEnum °'0°)

s2i_1 [] res = res

s2i_1 (c:l) res = s2i_1 | ((c2i ¢) + res » 10)

s2i s = s2i.1 s 0

main = do {
s1 <— getLine;
s2 <— getLine;
print (gcd3 (s2i s1) (s2i s2))

}

Functional Programming Techniques Monadic 1/O

	Lazy Evaluation and I/O
	The Core of the I/O Issues
	Functions and Actions
	Input/Output as a Value
	I/O Actions: Example
	I/O Actions: Another Example
	Again on I/O Actions
	Combining I/O Actions
	Combining I/O Actions: the Issue
	The Issue — Again
	Here Come the Monads
	Why Monads?
	Practical Monads
	Practical Monads: Informal Interpretation
	The I/O Monad
	I/O Monad Example
	Haskell: I/O Serialization
	Haskell: I/O Serialization
	Haskell: More Complex I/O
	Even More Complex I/O
	Syntactic Sugar for Monads
	More about the do Notation
	do Notation and Bindings
	Haskell Programs
	Haskell and main
	Complete Example
	Complete Example

