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The Kernel

e Part of the OS which manages the hardware
Runs with the CPU in Supervisor Mode (high
privilege level)

e Privilege level known as Kernel Level (KL) -

execution in Kernel Space
e Regqular programs run in User Space

e Mechanisms for increasing the privilege level (from
US to KS) in a controlled way

Interrupts (+ traps / hw execptions)
Instructions causing a hardware exception
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Interrupts and Hardware Exceptions

e Switch the CPU from User Level to Supervisor Mode

e Enter the kernel
e Can be used to implement system calls

e A partial Context Switch is performed

Flags and PC are pushed on the stack
If processor is executing at User Level, switch to
Kernel Level, and eventually switch to a kernel
stack

e Execution jumps to a handler in the kernel —
save the user registers for restoring them later
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Back to User Space

e Return to low privilege level (execution returns to
User Space) through a “return from interrupt”
Assembly instruction (IRET on x86)

e Pop flags and PC from the stack
e Eventually switch back to user stack

e Return path for system calls and hardware interrupt
handlers
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Simplified CPU Execution

e [o understand interrupts, consider simplified CPU
execution first

e Simplification respect to the
fetch/decode/load/execute/save cycle
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e Fetches an instruction (address given by PC)

Increases the PC

Executes the instruction (might update the PC on
jump...)
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CPU Execution with Interrupts

e More realistic execution model
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e Interrupt: cannot fire during the execution of an
Instruction
e Hardware exception: caused by the execution of an
Instruction

trap, syscall, sc, ...
e |/O instructions at low privilege level, Page faults,
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Processing Interrupts
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e Interrupt table — addresses of the handlers

e Interrupt n fires = after eventually switching to
KS and pushing flags and PC on the stack

o Read the address contained in the n'" entry of
the interrupt table, and jump to it!
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Interrupt Tables

e Implemented in hardware or in software

e Xx86 — Interrupt Description Table composed of
interrupt gates. The CPU automatically jumps to
the n'" interrupt gate

e Other CPUs jump to a fixed address — a
software demultiplexer reads the interrupt table
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Software Interrupt - System Call
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Execution passes from US to KS (change stack,
push PC & flags, increase privilege level)

The invoked syscall executes. Maybe, it is blocking
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Hardware Interrupt
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1. While ~, Is executing, a hardware interrupt fires
Execution passes from US to KS (change stack,
push PC & flags, increase privilege level)

The proper Interrupt Service Routine executes
The ISR can unblock 7 — when execution returns
to US, 71 Is scheduled
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e [|he execution flow enters the kernel for two reasons:

e Reacting to events “coming from up” (syscalls)
Reacting to an event “coming from below” (an
hardware interrupt from a device)

e The kernel executes in the context of the interrupted
task
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Blocking / Waking up Tasks...

e A system call can block the invoking task, or can
unblock a different task
An ISR can unblock a task
If a task is blocked / unblocked, when returning to
user space a context switch can happen

The scheduler is invoked
when returning from KS to US
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Example: 1/0 Operation

e Consider a generic Input or Output to an external
device (example: a PCI card)

e Performed by the kernel
e User programs must use a syscall

e The operation if performed in 3 phases

1. Setup: prepare the device for the I/O operation
2. Wait: wait for the end of the operation
3. . complete the operation

e (Can be done using polling, PIO, DMA, ...
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e User programs invoke the kernel; execution in kernel
space until the operation is terminated

e The kernel cyclically reads (polls) an interface status
register to check if the operation is terminated

e Busy-waiting in kernel space!

e No user task can execute while waiting for the 1/0O
operation...

e The operation must be very short!
/O operation == blocking time
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1. The user program raises a software input

2. Setup phase - in kernel: in case of input operation,
nothing is done; in case of output operation, write a
value to a card register

3. Wait - in kernel: cycle until a bit of the card status
register becomes 1

4. Cleanup - in kernel: in case of input, read a value
from a card register; in case of output, nothing is
done. Eventually return to phase 1

5. IRET

Kernel Programming The Kernel



e User programs invoke the kernel; execution returns
to user space while waiting for the device

e The task that invoked the syscall blocks!

e An interrupt will notify the kernel when the “wait”
phase is terminated

e The interrupt handler will take care of performing
the 1/O operation

e Many, frequent, short interruptions of unrelated
user-space tasks!!!
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1. The user program raises a software input

2. Setup phase - in kernel: instruct the device to raise
an input when it is ready for I/O

3. Wait - return to user space: block the invoking task,
and schedule a new one (IRET)

4. Cleanup - in kernel: the interrupt fires — enter
kernel, and perform the |/O operation

5. Return to phase 2, or unblock the task if the
operation is terminated (IRET)
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Programmed I/O Mode
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DMA / Bus Mastering

e User programs invoke the kernel; execution returns
to user space while waiting for the device

e The task that invoked the syscall blocks!

e |/O operations are not performed by the kernel on
interrupt,
e Performed by a dedicated HW device

e An interrupt is raised when the whole 1/O
operation is terminated
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DMA / Bus Mastering - 2

1. The user program raises a software input

2. Setup phase - in kernel: instruct the DMA (or the
Bus Mastering Device) to perform the 1/O

3. Wait - return to user space: block the invoking task,
and schedule a new one (IRET)

4. Cleanup - in kernel: the interrupt fires — the
operation is terminated. Stop device and DMA

5. Unblock the task and invoke the scheduler (IRET)
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DMA / Bus Mastering - 3
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Invoking the Kernel

e Kernel — part of an OS that interacts with the
hardware

Runs with CPU in privileged mode
User Level < Kernel Level switch through special
CPU instructions (INT for Intel x86)

e User Level applications

e Run with the CPU in non-privileged mode
invoke system calls or IPCs

Applications J ;E;%,
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System Libraries

e Applications generally don’t invoke system calls
directly

e They generally use system libraries (like glibc),
which

e Provide a more advanced user interface
(example: fopen () VS open ())

e Hide the US < KS switches

e Provide some kind of stable ABI (application
binary interface)

e Example: let's see how system calls are converted in
regular library calls
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System Library Example

e Standard C library: exports some functions...
... I'hat are just converted in system calls! (example:

getpid())

e Let's see how this works...
e Some Assembly is needed

syscall:
pushl %ebp
pushl %edi
pushl %esi
pushl %ebx

/+ arguments 1in registers =/
movl 44 (%esp), %$ebp
movl 40 (%esp), %edi

VA 4
int $0x80
popl %ebx
VA 4
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ENTRY (system_call)

pushl %eax # save orig_eax

SAVE_ALL

GET_THREAD_INFO (%ebp)

cmpl $(nr_syscalls), %eax

jae syscall_ badsys
syscall_call:

call xsys_call_table(, $eax, 4)

movl %eax,PT_EAX (%esp) # store the ret wval
syscall_exit:

VA 4
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Static vs Shared Libraries - 1

e Libraries can be static or dynamic
e <libname>.a VS <libname>.so
e Static libraries (. a)

e C(ollections of object files (. o)
Application linked to a static library = the needed
objects are included into the executable

e Only needed to compile the application
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Static vs Shared Libraries - 2

e Dynamic libraries (. so, shared objects)

Are not included in the executable
Application linked to a dynamic library = only the
library symbols names are written in the
executable

e Actual linking is performed at loading time

e .so files are needed to execute the application

e Linking static libraries produces larger executables...

e ...Butthese executables are “self contained”
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