The Kernel

Luca Abeni
luca.abeni@santannapisa.it

The Kernel

e Part of the OS which manages the hardware
Runs with the CPU in Supervisor Mode (high
privilege level)

e Privilege level known as Kernel Level (KL) -

execution in Kernel Space
e Regqular programs run in User Space

e Mechanisms for increasing the privilege level (from
US to KS) in a controlled way

Interrupts (+ traps / hw execptions)
Instructions causing a hardware exception

Kernel Programming The Kernel

Interrupts and Hardware Exceptions

e Switch the CPU from User Level to Supervisor Mode

e Enter the kernel
e Can be used to implement system calls

e A partial Context Switch is performed

Flags and PC are pushed on the stack
If processor is executing at User Level, switch to
Kernel Level, and eventually switch to a kernel
stack

e Execution jumps to a handler in the kernel —
save the user registers for restoring them later

Kernel Programming The Kernel

Back to User Space

e Return to low privilege level (execution returns to
User Space) through a “return from interrupt”
Assembly instruction (IRET on x86)

e Pop flags and PC from the stack
e Eventually switch back to user stack

e Return path for system calls and hardware interrupt
handlers

Kernel Programming The Kernel

Simplified CPU Execution

e [o understand interrupts, consider simplified CPU
execution first

e Simplification respect to the
fetch/decode/load/execute/save cycle

L

e The(C

Fetch
| nstruction

PU iteratively:

| ncrement Execute
Program |nstruction
Counter

e Fetches an instruction (address given by PC)

Increases the PC

Executes the instruction (might update the PC on
jump...)

Kernel Programming

The Kernel

CPU Execution with Interrupts

e More realistic execution model

=P e
| " N
e Interrupt: cannot fire during the execution of an
Instruction
e Hardware exception: caused by the execution of an
Instruction

trap, syscall, sc, ...
e |/O instructions at low privilege level, Page faults,

Kernel Programming The Kernel

Processing Interrupts

— ~~

e Process I
= \ Interrupt)
N~ el

-~ . . —

—_ s —

e Interrupt table — addresses of the handlers

e Interrupt n fires = after eventually switching to
KS and pushing flags and PC on the stack

o Read the address contained in the n'" entry of
the interrupt table, and jump to it!

Kernel Programming The Kernel

Interrupt Tables

e Implemented in hardware or in software

e Xx86 — Interrupt Description Table composed of
interrupt gates. The CPU automatically jumps to
the n'" interrupt gate

e Other CPUs jump to a fixed address — a
software demultiplexer reads the interrupt table

Kernel Programming The Kernel

Software Interrupt - System Call

12

A
'New task

T: ' scheduled U S
' Software |

' | nterrupt :

—

¥ |
Blocks K S

1. Task 7 executes and invokes a system call
Execution passes from US to KS (change stack,
push PC & flags, increase privilege level)

The invoked syscall executes. Maybe, it is blocking
71 blocks — back to US, and , is scheduled

Syscall

P~ Qo

Kernel Programming The Kernel

Hardware Interrupt

12

s | US

Hardware T 1 unblocks K S
I nterrupt

1. While ~, Is executing, a hardware interrupt fires
Execution passes from US to KS (change stack,
push PC & flags, increase privilege level)

The proper Interrupt Service Routine executes
The ISR can unblock 7 — when execution returns
to US, 71 Is scheduled

A~ CO

Kernel Programming The Kernel

e [|he execution flow enters the kernel for two reasons:

e Reacting to events “coming from up” (syscalls)
Reacting to an event “coming from below” (an
hardware interrupt from a device)

e The kernel executes in the context of the interrupted
task

Kernel Programming The Kernel

Blocking / Waking up Tasks...

e A system call can block the invoking task, or can
unblock a different task
An ISR can unblock a task
If a task is blocked / unblocked, when returning to
user space a context switch can happen

The scheduler is invoked
when returning from KS to US

Kernel Programming The Kernel

Example: 1/0 Operation

e Consider a generic Input or Output to an external
device (example: a PCI card)

e Performed by the kernel
e User programs must use a syscall

e The operation if performed in 3 phases

1. Setup: prepare the device for the I/O operation
2. Wait: wait for the end of the operation
3. . complete the operation

e (Can be done using polling, PIO, DMA, ...

Kernel Programming The Kernel

e User programs invoke the kernel; execution in kernel
space until the operation is terminated

e The kernel cyclically reads (polls) an interface status
register to check if the operation is terminated

e Busy-waiting in kernel space!

e No user task can execute while waiting for the 1/0O
operation...

e The operation must be very short!
/O operation == blocking time

Kernel Programming The Kernel

1. The user program raises a software input

2. Setup phase - in kernel: in case of input operation,
nothing is done; in case of output operation, write a
value to a card register

3. Wait - in kernel: cycle until a bit of the card status
register becomes 1

4. Cleanup - in kernel: in case of input, read a value
from a card register; in case of output, nothing is
done. Eventually return to phase 1

5. IRET

Kernel Programming The Kernel

e User programs invoke the kernel; execution returns
to user space while waiting for the device

e The task that invoked the syscall blocks!

e An interrupt will notify the kernel when the “wait”
phase is terminated

e The interrupt handler will take care of performing
the 1/O operation

e Many, frequent, short interruptions of unrelated
user-space tasks!!!

Kernel Programming The Kernel

1. The user program raises a software input

2. Setup phase - in kernel: instruct the device to raise
an input when it is ready for I/O

3. Wait - return to user space: block the invoking task,
and schedule a new one (IRET)

4. Cleanup - in kernel: the interrupt fires — enter
kernel, and perform the |/O operation

5. Return to phase 2, or unblock the task if the
operation is terminated (IRET)

Kernel Programming The Kernel

Programmed I/O Mode

T2 |
A

T1 :

'1/O | .

' Operation '
#

v l '

starti/o ISR ISR ISR

T 1 Blocks 650 0 O T 1unblocks

Kernel Programming

KS

The Kernel

DMA / Bus Mastering

e User programs invoke the kernel; execution returns
to user space while waiting for the device

e The task that invoked the syscall blocks!

e |/O operations are not performed by the kernel on
interrupt,
e Performed by a dedicated HW device

e An interrupt is raised when the whole 1/O
operation is terminated

Kernel Programming The Kernel

DMA / Bus Mastering - 2

1. The user program raises a software input

2. Setup phase - in kernel: instruct the DMA (or the
Bus Mastering Device) to perform the 1/O

3. Wait - return to user space: block the invoking task,
and schedule a new one (IRET)

4. Cleanup - in kernel: the interrupt fires — the
operation is terminated. Stop device and DMA

5. Unblock the task and invoke the scheduler (IRET)

Kernel Programming The Kernel

DMA / Bus Mastering - 3

T2
A

T1 :

'1/O | .

' Operation '
#

v l '

start DMA ISR
T 1 Blocks T 1unblocks

Kernel Programming

KS

The Kernel

Invoking the Kernel

e Kernel — part of an OS that interacts with the
hardware

Runs with CPU in privileged mode
User Level < Kernel Level switch through special
CPU instructions (INT for Intel x86)

e User Level applications

e Run with the CPU in non-privileged mode
invoke system calls or IPCs

Applications J ;E;%,

" Kerne R
P o et

Kernel Programming The Kernel

System Libraries

e Applications generally don’t invoke system calls
directly

e They generally use system libraries (like glibc),
which

e Provide a more advanced user interface
(example: fopen () VS open ())

e Hide the US < KS switches

e Provide some kind of stable ABI (application
binary interface)

e Example: let's see how system calls are converted in
regular library calls

Kernel Programming The Kernel

System Library Example

e Standard C library: exports some functions...
... I'hat are just converted in system calls! (example:

getpid())

e Let's see how this works...
e Some Assembly is needed

syscall:
pushl %ebp
pushl %edi
pushl %esi
pushl %ebx

/+ arguments 1in registers =/
movl 44 (%esp), %$ebp
movl 40 (%esp), %edi

VA 4
int $0x80
popl %ebx
VA 4

Kernel Programming

ENTRY (system_call)

pushl %eax # save orig_eax

SAVE_ALL

GET_THREAD_INFO (%ebp)

cmpl $(nr_syscalls), %eax

jae syscall_ badsys
syscall_call:

call xsys_call_table(, $eax, 4)

movl %eax,PT_EAX (%esp) # store the ret wval
syscall_exit:

VA 4

The Kernel

Static vs Shared Libraries - 1

e Libraries can be static or dynamic
e <libname>.a VS <libname>.so
e Static libraries (. a)

e C(ollections of object files (. o)
Application linked to a static library = the needed
objects are included into the executable

e Only needed to compile the application

Kernel Programming The Kernel

Static vs Shared Libraries - 2

e Dynamic libraries (. so, shared objects)

Are not included in the executable
Application linked to a dynamic library = only the
library symbols names are written in the
executable

e Actual linking is performed at loading time

e .so files are needed to execute the application

e Linking static libraries produces larger executables...

e ...Butthese executables are “self contained”

Kernel Programming The Kernel

	The Kernel
	Interrupts and Hardware Exceptions
	Back to User Space
	Simplified CPU Execution
	CPU Execution with Interrupts
	Processing Interrupts
	Interrupt Tables
	Software Interrupt - System Call
	Hardware Interrupt
	Summing up...
	Blocking / Waking up Tasks...
	Example: I/O Operation
	Polling
	Polling - 2
	Interrupt
	Interrupt - 2
	Programmed I/O Mode
	DMA / Bus Mastering
	DMA / Bus Mastering - 2
	DMA / Bus Mastering - 3
	Invoking the Kernel
	System Libraries
	System Library Example
	Static vs Shared Libraries - 1
	Static vs Shared Libraries - 2

