The Lambda Calculus

Luca Abeni

luca.abeni@santannapisa.it

Minimalistic Functional Programming Languages

- What is the simplest possible functional programming language?
- Difficult to say what is the simplest, but a lot of high-level features are not essential...
 - Global environment / let expressions
 - Multivariable functions
 - Data types
 - ...
- What is really needed?
 - Names / identifiers (irreducible terms)
 - Function definition (abstaction)
 - Function application

Defining Functions: Lambda!

- Function definition: expression evaluating to a function
 - Various languages have it: Standard ML has
 fn x => e, C++ has [] (auto x) {return e; }; ...
 - x: formal parameter
 - e: expression dependent on x
- ullet Mathematical notation: λ parameter . expression
 - \bullet $\lambda x.e$
 - x is called bound variable
 - e is the expression
- This is the core of Lambda Calculus!!!
 - Yes, but... What can it be used for?
 - Formal mathematical definitions for FP!

Applying Functions

- Avoid "useless" parentheses
- All functions have the same domain and codomain: set of λ -expressions
 - Functions apply to functions and return functions...
- Function application is left-associative
 - abc means (ab)c
 - Possible interpretation: "the a function is applied to b and c"...
 - Remember the currying thing?

Lambda Calculus: Formal Definitions

- Lambda Calculus expression (λ-expression): name, function or function application
 - Or a combination of the three...
- Function: λ name.expression; Application: expression expression
- More formally, $e = x | \lambda x \cdot e | e e$
 - x is an identifier (variable, function, ...)
 - e is a generic λ -expression
- In practice, some parentheses can make things more readable:
 - \bullet e = x | $(\lambda x.e)$ | (e e)
 - Not really needed, but $((f_1f_2)f_3)f_4$ is more understandable than $f_1f_2f_3f_4...$

Lambda Calculus and Functional Programming

- Looking at the definition of λ -expressions, we can recognize abstractions ($\lambda x.e$) and applications (e e)
 - ullet Abstractions: bind the x variable in e
 - Changing λx into λy and changing all the x of e into y, the meaning of e does not change!!!
 - Example in "standard" math: $f(x) = x^2$ is equivalent to $f(y) = y^2$
 - Applications: performed by substitution
- This recalls the reduction of functional programs!

Lambda Calculus and Functional Programming — 2

- Lambda Calculus: based on abstraction and application
- Same concepts used for executing/evaluating/reducing functional programs
- The Lambda Calculus is based on more formal definitions and can be the mathematical model for functional programming!

Lambda Expressions and their Reduction

- ullet λ -expression: composed by identifiers, abstractions and applications
 - Reduced through substitution (in an application e_1e_2 , if e_1 is an abstracrion $\lambda v.e_1'$, replace "v" with " e_2 " in " e_1' ")
- Redex (**red**ucible **ex**pression): application of an abstraction to a λ -expression
 - \bullet $(\lambda v.e_1)e_2$
- β reduction: reduce a redex
 - $(\lambda v.e_1)e_2 \rightarrow_{\beta} e_3$, where " e_3 " is equal to " e_1 " with "v" replaced by " e_2 "
- ullet λ -expressions that do not contain redex cannot be

Equivalence between Expressions

- When can we say that two expressions e_1 and e_2 are equivalent?
 - Intuitive answer: when the only differences are in the names of bound variables!
- If y is not used in e, $\lambda x.e \equiv \lambda y.e[y/x]$
 - λx bevomes λy
 - All the occurrences of x in expression e are changed into y
- This is named Alpha Equivalence!!! \equiv_{α}
- Two expressions are α -equivalent if one of the two can be obtained by replacing parts of the other one with α -equivalent parts

eta Reduction, Again

- β reduction: introduces a relation between λ -expressions
- It is not a symmetric relation: $e_1
 ightarrow_{eta} \overline{e_2 \not\Rightarrow e_2
 ightarrow_{eta} e_1}$
 - So, it is not an equivalence relation...
 - ...But we can define a β -equivalence relation $=_{\beta}$ (reflexive, symmetric, transitive closure of \rightarrow_{β})
- Informally: $e_1 =_{\beta} e_2$ means that there is a chain of β -reductions that somehow "links" e_1 and e_2
 - The "direction" of such β -reductions does not matter!

The Devil...

- ...As usual, is in the details! Consider $(\lambda y.(\lambda x.xy))(xz)$
- If we β -reduce by blindly substituting y with xz, we get:
 - $(\lambda y.(\lambda x.xy))(xz) \rightarrow_{\beta} \lambda x.xxz...$
 - ...Which looks wrong!
- In $(\lambda y.(\lambda x.xy))xz$, x and x should be two different variables!
 - x is bound by a λ , x is not...
 - In FP jargon, the free variable x has been captured
- How to solve the issue? By renaming x: $(\lambda y.(\lambda x.xy))(xz) \equiv_{\alpha} (\lambda y.(\lambda h.hy))(xz) \rightarrow_{\beta} \lambda h.hxz$

Normal Forms

- Normal form: expression without any redex \rightarrow cannot be β -reduced
 - $\lambda x.\lambda y.x$ is a normal form, $\lambda x.(\lambda y.y)x$ is not $((\lambda y.y)x \rightarrow_{\beta} x$, so $\lambda x.(\lambda y.y)x =_{\beta} \lambda x.x)$
- ullet eta-reductions can bring to a normal form...
- ...Or can continue forever!
 - $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (xx)[(\lambda x.xx)/x] = (\lambda x.xx)(\lambda x.xx)...$
- This is like endless recursion (or endless loops)...

Confluence Theorem

• Consider β -reductions of expressions with multiple redex...

"If e reduces to e_1 after some (β -)reduction steps and e reduces to e_2 after some (β -)reduction steps, then it exists an expression e_3 so that both e_1 and e_2 reduce to e_3 after some (β -)reduction steps"

• If e reduces to a normal form, then such a normal form does not depend on the reduction order

λ Calculus: What can it Do?

- λ calculus as just defined can look "not powerful enough"
 - Expressions are composed only by variables, abstractions and applications...
 - Something like $\lambda x.x + 2$ is not a valid λ -expression
 - 2 and + are not variables
- However λ calculus is Turing complete!
 - Can code all the "useful" algorithms
 - So, it must allow to encode constants, mathematical operations, ...
 - How???

Example: Encoding Natural Numbers

- Encoding based on Peano's definition:
 - 0 is a natural number
 - If n is a natural number, then its next (succ(n)) is also a natural number
- Alonso Church did something similar...
 - ullet 0 is encoded as $\lambda f.\lambda x.x$ (f applied 0 times to x)
 - succ(n): apply f to n
- in practice : 0 = function applied 0 times to a variable, 1 = function applied 1 time, ...
- n: function applied n times to a variable
- So, what's the formal definition of "succ()"?

Natural Numbers: Computing the Next — 1

- $succ(n) = \lambda n.\lambda f.\lambda x.f((nf)x)$
 - It should simply add an f to n...
- Informally, n is encoded as $\lambda f.\lambda x.$ followed by n times f and by x
 - "Body" of this function: $\widehat{f(\ldots f(x)\ldots)}$
 - Must be "extracted" from n (removing $\lambda f.\lambda x.$), then an "f" can be added, and the expression can be abstracted again respect to f and x
- How can we do this, more formally?
 - Using abstractions and applications

Natural Numbers: Computing the Next — 2

- We saw how to increase a natural number (remove $\lambda f.\lambda x$, add an "f" on the left, add $\lambda f.\lambda x$ again...):
- Let's see how to do it in practice:
 - "Exctracting" the function body: apply n to f and then to $x \to ((nf)x)$
 - Add "f": easy... $\rightarrow f((nf)x)$
 - Abstract again: $\lambda f.\lambda x.f((nf)x)$
- All this depends on n: $\lambda n.\lambda f.\lambda x.f((nf)x)$

Encoding Natural Numbers - 1, 2, ...

- 1 = succ(0): $(\lambda n.\lambda f.\lambda x.f((nf)x))(\lambda f.\lambda x.x)$
 - $\bullet \quad (\lambda n.\lambda g.\lambda y.g((ng)y))(\lambda f.\lambda x.x)$
 - $\lambda g.\lambda y.g(((\lambda f.\lambda x.x)g)y)$
 - $\lambda g.\lambda y.g((\lambda x.x)y) = \lambda g.\lambda y.gy$
 - $\bullet \quad \lambda g. \lambda y. gy = \lambda f. \lambda x. fx$
- $2 = \operatorname{succ}(1)$: $(\lambda n.\lambda f.\lambda x.f((nf)x))(\lambda f.\lambda x.fx)$
 - $(\lambda n.\lambda g.\lambda y.g((ng)y))(\lambda f.\lambda x.fx)$
 - $\bullet \quad \lambda g. \overline{\lambda y. g(((\lambda f. \lambda x. fx)g)y)}$
 - $\bullet \quad \lambda g.\lambda y.g((\lambda x.gx)y)$
 - $\bullet \quad \lambda g.\lambda y.g(gy) = \lambda f.\lambda x.f(fx)$
- Similarly, $3 = succ(2) = \lambda f.\lambda x.f(f(fx))$, etc...

Summing Natural Numbers

- As said, $n \equiv f$ applied n times to x
- So, 2 + 3 = "Apply 2 times f to 3"
 - Apply 2 times f to "apply 3 times f to x"....
- n+m: apply n times f to m
 - ullet Extract the bodies of n and m
 - In n body, replace x with \overline{m}
 - Abstract again respect to f and x
 - Abstract respect to m and n
- How to do this:
 - m body : (mf)x
 - n body with x replaced by m body: (nf)((mf)x)
 - So, $\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x)$

Example of Sum

- 2+3: $\overline{\lambda f.\lambda x.f(fx) + \lambda f.\lambda x.f(f(fx))}$
 - +: $\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x)$
- $\bullet \quad (\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x))(\lambda f.\lambda x.f(fx))(\lambda f.\lambda x.f(f(fx)))$
 - $\bullet \quad (\lambda n.\lambda m.\lambda g.\lambda y.(ng)((mg)y))(\lambda h.\lambda z.h(hz))(\lambda f.\lambda x.f(f(fx)))$
 - $\bullet \quad \lambda g. \overline{\lambda y. ((\lambda h. \lambda z. \overline{h(hz)})g)(((\lambda \overline{f. \lambda x. f(f(fx))})g)y)}$
 - $\lambda g.\lambda y.(\lambda z.g(gz))((\lambda x.g(g(gx)))y)$
 - $\lambda g.\lambda y.(\lambda z.g(gz))(g(g(gy)))$
 - $\lambda g.\lambda y.(g(g(g(g(gy)))))$
- This is equal to $\lambda f.\lambda x.f(f(f(f(fx))))$
 - f applied 5 times to x: 5!
 - So, 2 + 3 = 5...

Yes We Can

- Lambda calculus can encode everything needed to be Turing-complete (not only natural numbers and arithmetic operations)
 - Boolean, conditionals (if ... then ... else), ...
- However, some encodings are everything but simple!
 - $2+3 \equiv (\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x))(\lambda f.\lambda x.f(fx))(\lambda f.\lambda x.f(f(fx)))$
- $\lambda x.x + 2$ is not a valid λ -expression...
 - But $\lambda x.((\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x))x(\lambda f.\lambda x.f(fx))$ is!
 - And it has the same meaning...

A Possible Extension

- Going beyond "pure" lambda calculus, it is possible to use natural numbers, operators, conditionals, and so on...
 - All these things can be implemented using "pure" λ -expressions (only variables, abstractions and applications)
- Things like $\lambda x.(x+2)$ or $\lambda x.\text{if } x = 1$ then 0 else ... become valid!
 - Symbols like $2, +, if \dots$ are like macros, that can be replaced with the appropriate encoding...
- "Extended" λ calculus (can be reduced to pure λ calculus by... Replacement!)

Iteration and Recursion

- How to encode iteration in λ expressions?
 - Functional paradigm: use recursion!
 - So the question is: how to encode recursion???
- This would need to "name" λx
 - ...But this would require a non-local environment! λ calculus does not have it
- How to implement recursion using abstraction and application only?
- Let's try a stupid example:

```
int f(int n) {return n == 0 ? 0 : 1 + f(n - 1);}
```

- Yes, this is really stupid... But is just an example
- It implements the identity function

```
int f(int n) {return n;}
```

Recursion in λ Calculus: an Example

- $f = \lambda n.$ if n == 0 then 0 else 1 + f (n 1)
- "f =" is not a definition, this is an equation...
 - f = G(f)...G(): higher-order function
 - Takes a function as an argument
 - Returns a function as a result
 - Solving the equation, we can find f... But, what does "=" mean?
- How can we solve this equation?
- First, define G by abstracting respect to f:
- $G = \lambda f.\lambda n. \text{if } n == 0 \text{ then 0 else 1} + f \text{ (n-1)}$
- So, we need to find $h: \overline{h} =_{\beta} \overline{Gh}$
 - Applying G to h we obtain something equivalent to h, again (using β -equivalence!)

Recursion - Example Continued

- $f=\lambda n.$ if n==0 then 0 else 1 + f (n-1) \to $\lambda f. \lambda n.$ if n==0 then 0 else 1 + f (n-1)
 - See? The Recursion Disappeared!!!
 - The function to be invoked recursively is passed as a parameter!
- Example:

```
std::function < int(int) > f = [&f](int n) \{ return n == 0 ? 1 : n * f(n-1); \};
\Rightarrow
auto g = [](std::function < int(int) > f, int n) \{ return n == 0 ? 1 : n * f(n-1); \};
```

- We need f1 such that f1 = g f1...
- Notice: [&f] is not needed, here

$[\lambda, \alpha, \beta, ... Y???]$

- Back to the problem: given a function G, find
 $f: f =_{\beta} Gf$
 - Here, "=" after some β -reduction on left or right side... β -equivalence!
- This requires to find the fixed point (fixpoint) of G...
- How? Y combinator! $Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$
 - Uh??? And WTH is it??? Consider e and try to compute Ye...

Y!!!

- $Ye = (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))e$
- $\bullet \quad (\overline{\lambda x.e(xx)})(\overline{\lambda x.e(xx)}) = (\overline{\lambda y.e(yy)})(\overline{\lambda x.e(xx)})$
- $\bullet \quad e(\lambda x.e(xx))(\lambda x.e(xx))$
- But $(\lambda x.e(xx))(\lambda x.e(xx))$ can be the result of a β -reduction...
 - $\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$ applied to e
- $e(\lambda x.e(xx))(\lambda x.e(xx)) =_{\beta}$ $e(\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))e) =_{\beta} e(Ye)$
 - Note: some of the steps did not happen by β-reduction!
- $Ye = e(Ye) \Rightarrow YG = G(YG)$: YG is a fixed point for G!!!!

Y... Combinator???

- Y Combinator: $\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$
- Combinator: λ -expression without free variables
 - \bullet $\lambda f.$...
 - It is a higher-order function: an argument (G) is a function and the result is a function
 - No free variables: all the symbols are bound through some λ
- Y is an expression λf without free variables \to it is a combinator!
- It is a special combinator: given a function f, it computes its fixed point (fixed point combinator)
 - Y is not the only fixed point combinator... Many other exist!

Functional Programmer or Functional Programmer of the Functional Programme

Fixed Poing Combinators

- Importance: allows to implement recursion in λ calculus
 - In a programming language, allows to implement recursion without naming a function
 - WTH???
- Y Combinator: works with evaluation by name
 - With evaluation by value (eager), infinite recursion...
- Other fixed point combinators can work with evaluation by value
 - Z Combinator: $\lambda f.((\lambda x.(f(\lambda y.(xx)y)))(\lambda x.(f(\lambda y.(xx)y))))$
- H Combinator: $\lambda f.((\lambda x.xx)(\lambda x.(f(\lambda y.(xx)y))))$ Functional Programming Lambda Calculus