
Managing Concurrency with

POSIX

Real Time Operating Systems and Middleware

Luca Abeni

luca.abeni@unitn.it



Processes

Kernel Programming 2 Managing Concurrency with POSIX

• A process implements the notion of protection

• Each process has its own address space

• And other private resources...

• A process can write/read in its address space
• But is not allowed to touch other processes’

resources

• Two processes can share some resources for
communication, but this has to be explicitly
allowed by them!

• Processes usually communicate through message
passing

• pipes, sockets, signals, ...



Processes as Active Entities

Kernel Programming 2 Managing Concurrency with POSIX

• A process is more than a set of private resources...
• ...It is an active entity!
• Two aspects:

• Protection / Resource Ownership
• Execution

• A process contains at least a schedulable
entity, which can access the process’s
resources

• Scheduling parameters
• This schedulable entity is also characterized

by (at least) a CPU state and a stack



Single-Threaded Process

Kernel Programming 2 Managing Concurrency with POSIX

Each process has only one
thread

• One address space per
process

• One stack per process
• One PCB per process
• Other private re-

sources...
• One single execution

flow per process

Single-threaded
process model

User
Block
Control
Process

User
Address
Space

Kernel
Stack

Stack



Multi-Threaded Process

Kernel Programming 2 Managing Concurrency with POSIX

A process can have multi-
ple threads running in it

• One address space
• One PCB
• Multiple execution flows

in a single process
• Multiple stacks (one per

thread)
• A TCB (Thread Control

Block) per thread

Multi-threaded
process model

Block
Control
Process

User
Address
Space

User

Kernel
Stack

Stack

Block
Control
Thread

User

Kernel
Stack

Stack

Block
Control
Thread

User

Kernel
Stack

Stack

Block
Control
Thread



A Small Summary about Processes

Kernel Programming 2 Managing Concurrency with POSIX

• Let’s recall some quick ideas about processes
• As usual, focus on POSIX (sometimes, Unix / Linux)

• Not intended to be a complete description about
multiprogramming in Unix

• Refer to manpages (man <function name>

for more info)

• We will see

• Process creation / termination
• Synchronization (IPC, signals)



Process Memory Layout

Kernel Programming 2 Managing Concurrency with POSIX

• Private Address Space

• User Memory
• Stack
• Heap

• User Memory is divided in:

• Initialized Data Segment
• BSS

• Uninitialised global variables

• Text Segment (program code)

• The heap:

• Usable through malloc() & friends
• Can grow (brk() and sbrk())



Process Identification

Kernel Programming 2 Managing Concurrency with POSIX

• Each process is identified by a Process ID (PID)
• A PID is unique in the system

• When a new process is created, its PID is
returned

• Each process can obtain its pid by calling
getpid()

pid_t getpid(void)

• Note that getpid() never fails

• It never returns values ≤ 0



Process Creation

Kernel Programming 2 Managing Concurrency with POSIX

• A new process can be created by calling fork()

pid_t fork(void)

• The new process (child process) contains a copy
of the parent’s address space

• The call has one entry point, and two exit points

• In the child, 0 is returned
• In the parent, the PID of the child is returned

• As usual, a negative value is returned in case of
error

• See TaskCreation/fork.c

https://gitlab.retis.sssup.it/l.abeni/ExampleCode/raw/master/TaskCreation/fork.c


Using fork()

Kernel Programming 2 Managing Concurrency with POSIX

• Typical usage:

1 child_pid = fork();
2 if (child_pid < 0) {
3 perror("Fork");
4 return -1;
5 }
6 if (child_pid == 0) {
7 /* Child body */
8 } else {
9 /* Father body */

10 }

• Simpler version:
1 ...
2 if (child_pid == 0) {
3 /* Child body */
4 exit(0);
5 }
6 /* Father body */

Problem: the child ad-
dress space is a copy of
the parent’s one, so the
child’s text segment is
the same as the father’s
one ⇒ both the parent’s
body and the child body
must be in the same ex-
ecutable file.
Solution: exec()



Changing the Process Text and Data

Kernel Programming 2 Managing Concurrency with POSIX

• Exec: family of functions allowing to replace the
process address space (text, data, and heap)

• execl(), execlp(), execle(), execv(),
execvp()

• They differer in the arguments; see the manpage

• Loads a new program, and jump to it

• Does not create a new process!!! (same PID,
same PCB, ...)

• Returns only on error!

• See TaskCreation/exec.c

https://gitlab.retis.sssup.it/l.abeni/ExampleCode/raw/master/TaskCreation/exec.c


Typical Exec Usage

Kernel Programming 2 Managing Concurrency with POSIX

1 child_pid = fork();
2 if (child_pid < 0) {
3 perror("Fork");
4 return -1;
5 }
6 if (child_pid == 0) {
7 char *args[3] = {"arg1", "arg2", "arg3"};
8

9 execve("child_body", args, NULL);
10 perror("Exec"); /* Why don’t we check the return value? *
11 return -1;
12 }
13 ...

• Note: some (non POSIX compliant) systems do not
make a distinction between program and process,
and only provide a “fork + exec” combo

• POSIX also provides a system() function, which
does fork + exec (+ wait)



Terminating a Process

Kernel Programming 2 Managing Concurrency with POSIX

• A process terminates:

1. When it invokes the library call exit() or the
system call exit()

2. When it returns from its main function
3. When it is killed by some external event (a

signal)

• When it terminates explicitly, a process can return a
result to the parent

• Every process can register a hook to be called on
regular process termination
int atexit(void (*function)(void))

• Handlers are not called if exiting with exit()...
Why?



Waiting for a Process

Kernel Programming 2 Managing Concurrency with POSIX

• First form of synchronization between processes:

• A parent waits for its child’s termination
• wait(), waitpid(), wait4()

pid_t wait(int *status)

• No children ⇒ wait() fails (return < 0)
• At least one terminated child ⇒ wait()

returns the child’s exit value, and child’s
private resources are freed

• No terminated children ⇒ wait() blocks

• Extended versions of wait(): waitpid()
(POSIX), wait3(), wait4() (BSD)

• Permit to select the child to wait for



Wait, Again

Kernel Programming 2 Managing Concurrency with POSIX

• After a process terminates, its private resources are
not freed until its parent performs a wait()

• Until the wait(), a terminated process is in zombie
state

• A good parent has to wait for its children!
• When the parent of a process dies, the process is

reparented to init (a system process, with PID
1)

• ⇒ when a process dies, all its zombies are
eliminated

• A process can be notified about the termination of a
child process through an asynchronous event
(signal: SIGCLD)



Sinchronization through Signals

Kernel Programming 2 Managing Concurrency with POSIX

• Concurrent processes interact in different ways

• Competition
• Cooperation

• Cooperation can be implemented through signals

• Sometimes, a process has to wait until
cooperating processes have completed some
operation

• ⇒ process τi waits for an asynchronous event
generated by another process τj, or by the
system



Signals

Kernel Programming 2 Managing Concurrency with POSIX

• Signal: asynchronous event directed to process τ

• Process τ can:

• Wait for a signal
• Perform some other work in the meanwhile, and

the signal will interrupt it



Handling Signals

Kernel Programming 2 Managing Concurrency with POSIX

• Signals → software equivalent of interrupts
• A process receiving a signal can:

• Ignore it
• Interrupt its execution, and jump to a signal

handler
• Abort

• A signal that has not generated one of the previous
actions yet is a pending signal

• We will see how to:

• Specify how a process handles a signal
• Mask (block) a signal
• Check if there are pending signal for a process
• Generate (or ask the kernel to generate) signals



Signal Handlers

Kernel Programming 2 Managing Concurrency with POSIX

• Signal Table

• Per process, private, resource
• Specifies how the process handle each signal
• At process creation, default values

• The table entries can be modified by using
signal(), or sigaction() (POSIX, more
portable)

• Signal handler: void sighand(int n)

int sigaction(int signum, const struct sigaction *
struct sigaction *oldact)

• signum is the number of the signal we want to
modify

• If oldact is not null, returns the old handler



Setting a Signal Handler

Kernel Programming 2 Managing Concurrency with POSIX

struct sigaction {
void (*sa_handler)(int);
sigset_t sa_mask;
int sa_flags;

}

• sa handler is the signal handler, or SIG DFL

(default action), or SIG IGN (ignore the signal)
• sa mask is a mask of signals to disable when the

handler runs

• Can be modified using sigemptyset(),
sigfillset(), sigaddset(), and
sigdelset()

• sa flags defines the signal handling behaviour
through a set of flags (see manpage)



Sending a Signal

Kernel Programming 2 Managing Concurrency with POSIX

• A process can send a signal to other processes by
using the kill() system call

• Note that it must have the proper permissions
(user root can send signals to everyone, regular
users can send signals only to their own
processes)

int kill(pid_t pid, int sig)

• This is what the kill command uses, too...
• Do not be fooled by the name: it is not only used to

kill a process (example: kill -HUP)



Signal Numbers

Kernel Programming 2 Managing Concurrency with POSIX

• Signals are identified by numbers, and by some
macros

• SIGUSR1 and SIGUSR2: user defined
• SIGALRM, SIGVTALRM, and SIGPROF are used by

process timers (remember?...)
• SIGKILL is used to kill a program (used by ”kill -9”)
• SIGCLD is raised every time that a child dies

• Useful for avoiding zombies (the SIGCLD handler
can perform a wait())

• If SIGCLD is ignored, strange behaviour:
zombies are not created

• See
www.disi.unitn.it/˜abeni/RTOS/oscillator.c

(try to compile with -DNOZOMBIE or -DHANDLER1)

www.disi.unitn.it/~abeni/RTOS/oscillator.c


Problems with Signals

Kernel Programming 2 Managing Concurrency with POSIX

• Almost all of the signals are reserved for the system

• Only SIGUSR{1,2} are free for user programs

• Signals can be lost

• If a signal arrives more than 1 time while it is
blocked, it is not queued (it will fire only one time)

• This makes signals quite unreliable for RT IPC...

• Signals do not transport information

• only the signal number is available to the handler

• Solution: POSIX Real-Time signals



Real-Time Signals

Kernel Programming 2 Managing Concurrency with POSIX

• Multiple instances of real-time signals can be
queued

• Real-time signals can transport information

• Either an integer or a pointer
• An extended signal handler has to be used

void sig_action(int signum, siginfo_t *info, void *ignored)

• Use sigaction(), set the SA SIGINFO flag,
and set sa sigaction() instead of sa handler

• There are at least SIGRTMAX - SIGRTMIN available
signals for user applications

• They must be referred as SIGRTMIN + n

• Use sigqueue() to send the signal
• www.disi.unitn.it/˜abeni/RTOS/rtsig.c

www.disi.unitn.it/~abeni/RTOS/rtsig.c


RT Signal Information

Kernel Programming 2 Managing Concurrency with POSIX

• Real-time signals carry information, in siginfo t
1 typedef struct {

2 int si_signo;

3 int si_code;

4 union sigval si_value;
5 } siginfo_t

6
7 union sigval {

8 int sival_int;

9 void *sival_ptr;

10 }

• si signo: signal number (same as signo)
• si value: information carried by the signal
• si code identifies the cause of the signal

• SI USER: sent by a user process (kill())
• SI QUEUE: sent by a user process

(sigqueue())
• SI TIMER: a POSIX timer expired
• ... (see documentation)



Sending RT Signals

Kernel Programming 2 Managing Concurrency with POSIX

int sigqueue(pid_t p, int n, const union sigval value)

• As usual, returns < 0 in case of error
• If no error occurs, queue a signal n for process p
• Information value is transmitted with the signal
• RT Signals can also be generated by the kernel

• Described by struct sigevent

1 struct sigevent {
2 int sigev_notify;
3 int sigev_signo;
4 union sigval;
5 void(*)(unsigned sigval) sigev_notify_function
6 (pthread_attr_t*) sigev_notify_attributes;
7 }

• sigev notify: SIGEV NONE, SIGEV SIGNAL,
or SIGEV THREAD



Real-Time Scheduling in POSIX

Kernel Programming 2 Managing Concurrency with POSIX

• POSIX provides support for Real-Time scheduling
• Priority scheduling

• Multiple priority levels
• A task queue per priority level
• The first task from the highest-priority, non empty,

queue is scheduled

• POSIX provides multiple scheduling policies

• A scheduling policy describes how tasks are
moved between the priority queues

• Fixed priority: a task is always in the same
priority queue



Real-Time Scheduling in POSIX

Kernel Programming 2 Managing Concurrency with POSIX

• POSIX specifically requires four scheduling policies:

• SCHED FIFO

• SCHED RR

• SCHED SPORADIC

• SCHED OTHER

• SCHED FIFO and SCHED RR have fixed priorities
• SCHED SPORADIC is a Sporadic Server →

decreases the response time for aperiodic real-time
tasks

• SCHED OTHER is the “traditional” Unix scheduler

• Dynamic priorities
• Scheduled in background respect to fixed

priorities



Fixed Priorities - 1

Kernel Programming 2 Managing Concurrency with POSIX

• SCHED FIFO and SCHED RR use fixed priorities

• They can be used for real-time tasks, to
implement RM and DM

• Remember: the application developer is in
charge of assigning priorities to tasks!

• Real-time tasks have priority over non real-time
(SCHED OTHER) tasks

• So... What is the difference between these two
policies?

• Only visible when more tasks have the same
priority



Fixed Priorities - 2

Kernel Programming 2 Managing Concurrency with POSIX

• SCHED FIFO: priority queues handled in FIFO order

• When a task start executing, only higher priority
tasks can preempt it

• SCHED RR: time is divided in intervals

• After executing for one interval, a task is removed
by the head of the queue, and inserted at the end

• So, there is a difference only if multiple tasks have
the same priority

• Never do this!



SCHED FIFO vs SCHED RR

Kernel Programming 2 Managing Concurrency with POSIX

• Only one task per priority level → SCHED FIFO and
SCHED RR behave the same way

• More tasks with the same priority

• With SCHED FIFO, the first task of a priority
queue can starve other tasks having the same
priority

• SCHED RR tries serve tasks having the same
priority in a more fair way

• The round-robin interval (scheduling quantum) is
implementation dependent

• RR and FIFO priorities are comparable. Minimum
and maximum priority values can be obtained with
sched get priority min() and
sched get priority max()



Setting the Scheduling Policy

Kernel Programming 2 Managing Concurrency with POSIX

int sched_get_priority_max(int policy)
int sched_get_priority_min(int policy)

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param)

int sched_setparam(pid_t pid,
const struct sched_param *param)

• If pid == 0, then the parameters of the running
task are changed

• The only meaningful field of struct sched param

is sched priority



Problems with Real-Time Priorities

Kernel Programming 2 Managing Concurrency with POSIX

• In general, “regular” (SCHED OTHER) tasks are
scheduled in background respect to real-time ones

• A real-time task can preempt / starve other
applications

• Example: the following task scheduled at high
priority can make the system unusable

1 void bad_bad_task()
2 {
3 while(1);
4 }

• Real-time computation have to be limited (use
real-time priorities only when really needed!)

• Running applications with real-time priorities
requires root privileges (or part of them!)



Memory Swapping and Real-Time

Kernel Programming 2 Managing Concurrency with POSIX

• The virtual memory mechanism can swap part of the
process address space to disk

• Memory swapping can increase execution times
unpredictabilities

• Not good for real-time applications

• A real-time task can lock part of its address space in
main memory

• Locked memory cannot be swapped out of the
physical memory

• This can result in a DoS (physical memory
exhausted!!!)

• Memory locking can be performed only by
applications having (parts of) the root privileges!



Memory Locking Primitives

Kernel Programming 2 Managing Concurrency with POSIX

• mlock(): lock some pages from the process
address space into main memory

• Makes sure this region is always loaded in RAM

• munlock(): unlock previously locked pages
• mlockall(): lock the whole address space into

main memory

• Can lock the current address space only, or all
the future allocated memory too

• Can be used to disable “lazy allocation”
techniques

• These functions are defined in sys/mman.h

• Please check the manpages for details


	Processes
	Processes as Active Entities
	Single-Threaded Process
	Multi-Threaded Process
	A Small Summary about Processes
	Process Memory Layout
	Process Identification
	Process Creation
	Using fork()
	Changing the Process Text and Data
	Typical Exec Usage
	Terminating a Process
	Waiting for a Process
	Wait, Again
	Sinchronization through Signals
	Signals
	Handling Signals
	Signal Handlers
	Setting a Signal Handler
	Sending a Signal
	Signal Numbers
	Problems with Signals
	Real-Time Signals
	RT Signal Information
	Sending RT Signals
	Real-Time Scheduling in POSIX
	Real-Time Scheduling in POSIX
	Fixed Priorities - 1
	Fixed Priorities - 2
	SCHED_FIFO vs SCHED_RR
	Setting the Scheduling Policy
	Problems with Real-Time Priorities
	Memory Swapping and Real-Time
	Memory Locking Primitives

