
The CPU Scheduler

Luca Abeni

luca.abeni@santannapisa.it

The Scheduler

Kernel Programming 2 The Scheduler

• Scheduler: part of the OS kernel responsible for
deciding how to assign resources to tasks

• CPU scheduler: decides which task(s) to execute

• Implements the CPU scheduling algorithm
• Responsible for building the schedule

σ : N → (Γ ∪ idle)M (M is the number of CPUs)

• Function σ(t) = (τ1, ...τM) mapping time in a
set of scheduled tasks

• In Linux, function schedule() (defined in
kernel/sched/core.c)

• Remember? To block a task:

• Change its state (set task state())
• Invoke the scheduler (schedule())

Single-Processor vs Multi-Processor Scheduling

Kernel Programming 2 The Scheduler

• Single CPU: σ(t) = τ (where τ can be “idle”)

• Function mapping time in one single task (can be
the idle task)

• M CPUs: σ(t) = (τ1, ...τM)

• Function mapping time in a tuple of M tasks

• How to implement this in practice?
• Various possibilities, including:

• Partitioned scheduling
• Global scheduling

Global Scheduling

Kernel Programming 2 The Scheduler

• The scheduler is free to move tasks between
different CPUs

• Tasks are “migrated” to respect some kind of
global invariant

• The m “best” (highest priority, earliest deadline,
smallest virtual time, ...) tasks are scheduled on m

CPUs / cores

• m = min{M, |Γ|}

• From the conceptual point of view, one single global
queue

• From the implementation point of view, various
possibilities

Partitioned Scheduling

Kernel Programming 2 The Scheduler

• Each task is associated to a CPU

• The scheduler does not generally migrate tasks

• One ready task queue per CPU / core

• Single-processor scheduling algorithms can be
reused

• Appropriate task partitioning is fundamental

• Can be performed by the programmer or by the
kernel

• Possible load-balancing - re-partitioning

Scheduling in Unix / POSIX

Kernel Programming 2 The Scheduler

• Multiple scheduling policies

• Policy == Scheduling Algorithm
• Defined per-task
• Handled on a priority basis

• SCHED OTHER: for “regular” tasks; optimized for
throughput

• SCHED RR / SCHED FIFO: priority based scheduling
algorithm, provides more control to the user

• Other (non-standard) policies can be added by the
OS kernel

The Linux CPU Scheduler

Kernel Programming 2 The Scheduler

• Per-CPU ready task queues (runqueues)

• Note: this is an implementation detail
• Does not mean that Linux uses partitioned

scheduling only!

• From the algorithmic point of view:

• Partitioned scheduling with periodic re-balancing
for SCHED OTHER

• Global scheduling (or similar) for SCHED FIFO /
SCHED RR

• Additional scheduling policy (SCHED DEADLINE)
based on global scheduling

• The schedule() function works on a single
runqueue

Migrations between CPUs

Kernel Programming 2 The Scheduler

• Migrations: implemented by moving a task from a
runqueue to a different one

• WARNING: locking!

• Can happen periodically (load balancing) as in
SCHED OTHER

• Or can happen when needed to respect a global
invariant!

• When? Every time a task wakes up or blocks
• Again, locking issues... Migration should happen

only in “safe” instants ⇒ callbacks!

• “Safe instant”: when releasing the local
runqueue lock is safe

Scheduling Classes

Kernel Programming 2 The Scheduler

• Every scheduling policy is associated to a
“scheduling class”

• Scheduling class: set of functions to be invoked

• When a task changes its state
• When a new task needs to be scheduled
• When a task is preempted / dispatched
• Periodically at every system tick
• Plus some other migration-related callbacks

• The schedule() function asks all the scheduling
classes (starting from the highest priority one) for a
task to be executed

• pick next task()

Scheduling Code in Linux

Kernel Programming 2 The Scheduler

• Implementation of the scheduler: kernel/sched

• Lot of code, because Linux provides a huge
amount of advanced functionalities (cgroup
scheduling, cpusets, autogroup, ...)

• core.c: main scheduler functionalities (including
schedule() and friends)

• A compilation unit (.c file) for each scheduling class
• Additional code for advanced functionalities
• kernel/sched/sched.h: private definitions for

the scheduler

Scheduler Internals

Kernel Programming 2 The Scheduler

• Ready tasks queue: runqueue → struct rq (in
kernel/sched/sched.h)

• Actually, different policies have different queues
(struct cfs rq, struct rt rq, struct
dl rq)

• Task descriptor: struct task struct (in
include/linux/sched.h)

• “Shared” in all the kernel sources...
• Contains some “scheduling entities” (different

policies use different entities)

• Scheduling policies: defined by
kernel/sched/{rt,deadline,fair}.c and
used by kernel/sched/core.c

schedule(): Some Details

Kernel Programming 2 The Scheduler

• Invoked when a task blocks or wakes up, to select
the next task

• This is an over-simplification; check the
comments before schedule()

• Scheduler: must not be interrupted (by interrupts, or
others)

• Avoid recursive scheduler invocations...
• Disable preemption and invoke schedule()

• Use spinlocks, not mutexes!

• schedule(): selects a new current

• prev = rq->curr / current
• next = task to be scheduled
• next == prev ⇒ no context switch

schedule(): Some Details

Kernel Programming 2 The Scheduler

• First, check if prev is going to block

• prev->state different from 0 (TASK RUNNING)
• Notice: only if no signal pending!!!

• Then, select new task:

• next = pick next task()

• Check all the scheduling classes (in priority
order)

• Some optimizations for common cases

• If next 6= prev, context switch!!!
• Notice: the runqueue is locked, but can be unlocked

for migrations

Implementation of Fixed Priorities

Kernel Programming 2 The Scheduler

• Fixed priority schedulers can be implemented with
an array of queues (one per priority level)

• Insertion into the queue (task wake-up) → O(1)
operation

• Extraction of the highest priority task from the queue
(scheduling decision)

• Find the highest priority non-empty queue
• O(n) search!!! Too much overhead!!!

• Overhead due to naive implementation, not to an
inherent problem

More Efficient Implementation

Kernel Programming 2 The Scheduler

• The scheduler scalability can be improved by using a
bitmap

• Array of bits to mark the queues that are
non-empty

• The highest priority queue can be found by finding
the most significant bit in a word

• Extraction becomes O(1) if there is an Assembly
instruction that returns the first 1 bit in a word
(CLZ)

• If not, table to implement the operation ⌈logw⌉

Implementation of fixed priority - I

Kernel Programming 2 The Scheduler

	The Scheduler
	Single-Processor vs Multi-Processor Scheduling
	Global Scheduling
	Partitioned Scheduling
	Scheduling in Unix / POSIX
	The Linux CPU Scheduler
	Migrations between CPUs
	Scheduling Classes
	Scheduling Code in Linux
	Scheduler Internals
	schedule(): Some Details
	__schedule(): Some Details
	Implementation of Fixed Priorities
	More Efficient Implementation
	Implementation of fixed priority - I

