
Linux Memory Management

Luca Abeni

luca.abeni@santannapisa.it



Memory Management in the Kernel

Kernel Programming 2 Memory Management

• In user space, we are used to malloc(), new and
friends

• What we see is virtual memory
• Easy to allocate arbitrary amounts of memory
• Lazy memory allocation and advanced features,

...

• The OS kernel is the one generally implementing
virtual memory

• For the sake of simplicity, let’s forget µ-kernels
and hypervisors

• How is virtual memory implemented?



Physical Memory and Virtual Memory

Kernel Programming 2 Memory Management

• The kernel directly accesses the hardware

• It manages physical memory

• The kernel provides functionalities to user-space

• It manages virtual memory too
• It handles the translation of virtual addresses into

physical addresses

• MMU configuration, page faults handling,
etc...

• So, the kernel contains both a virtual memory and a
physical memory manager!



Paging

Kernel Programming 2 Memory Management

• Translation of virtual addresses into physical
addresses is generally performed using paging

• The MMU uses a page table for the translation

• Can be a complex data structure (hierarchical
paging)

• The kernel is responsible for managing the page
table

• Physical memory allocator: allocates physical pages
of memory

• Virtual memory allocator: allocates virtual memory
ranges



Memory Allocator

Kernel Programming 2 Memory Management

• Goal: allow to allocate memory buffers of specified
size

• Simplest idea: list of free memory fragments

• Ordered by size: makes allocation easier
• Ordered by memory address: makes deallocation

(compacting adiacent fragments) easier

• In general, a single list of free memory fragments is
not a good idea...

• Better idea: multiple lists (for different fragment
sizes)



Multiple Free Memory Lists: Buddies

Kernel Programming 2 Memory Management

• Constraints: memory fragments have sizes power of
2

• Multiple lists, containing fragments with different
sizes

• The ith queue contains fragments of size 2b+i

• Allocation of buffer of size s:

• Find the smallest i such that 2b+i > s

• If the ith queue is not empty, return a memory
fragment from it

• Otherwise, split a fragment from the (i+ 1)th

queue, and insert 2 fragments in the ith queue.
Then allocate one of them

• Might split a fragment from the (i+ 1)th queue
if needed (and so on)



Buddy Allocator: Deallocation

Kernel Programming 2 Memory Management

• When a fragment from the (i+ 1)th queue is split in 2
fragments of the ith queue, such fragments are
named buddies

• Generally, when a fragment is split one of the two
buddies is used

• When it is released, the two buddies can be
recompacted

• On free, it is easy to see if the buddy of the freed
fragment is in a list

• Need to compute the buddy address...



Buddy Allocator and Pages

Kernel Programming 2 Memory Management

• The ith list contains fragments of 2i pages

• i: order of the allocation

• At the beginning, only the highest-order list (say, list
m) is not empty

• When a i-order allocation is requested, a fragment
from list m is split in two buddies

• One is inserted in list m− 1, the other one is split
in 2 buddies...

• ...And so on, until buddies are inserted in list i.
• Then, a memory fragment composed by 2i pages

is allocated (and the other one remains in the ith

list



Buddy and Pages: Deallocation/Merging

Kernel Programming 2 Memory Management

• When a memory fragment is freed, need to check if
its buddy is free too

• In this case, they can be merged!

• Order i deallocation: the fragment is composed by 2i

pages...

• Look at the page number of the first page of the
freed segment: the i rightmost bits are 0

• Then look at bit i: the buddy will have this bit
swapped

• So, buddy_number = page_number ˆ (1 << i)

• The merged fragment has order i+ 1 (so, it has the
rightmost i+ 1 bits set to 0)

• merged_number = page_number & buddy_number



Physical Memory Allocator in Linux

Kernel Programming 2 Memory Management

• Allocates fragments composed by contiguous
physical pages

• A physical page is sometimes known as page
frame

• It is not possible to allocate arbitrary amounts of
memory

• Only fragments composed by 2i pages
• i is the allocation order
• Special case: allocate 1 physical memory page

(0-order allocation)

• Linux uses a buddy allocator for physical pages



Allocating Physical Pages

Kernel Programming 2 Memory Management

• 2i pages can be allocated with
struct page *alloc_pages(gfp_t m, unsigned int i)

• i is the order of the allocation
• m indicates which kind of pages to allocate, and

how

• The return value is a pointer to a struct page,
describing the first physical page of the fragment

• Each physical page is described by a page

structure, also identified by a page frame number
(pfn)

• There are functions to convert a pointer to frame

structure into its pfn, and vice-versa
• The conversion depends on the memory model



Allocating Physical Pages — 2

Kernel Programming 2 Memory Management

• alloc pages() returns the pointer to a struct

page

• What to do to actually access the content of the
page?

• We need to know the virtual address where the
page is mapped...

• Can be computed with
void * page_address(struct page *page)

• get free pages() combines alloc pages()

and page address()...
• ...Casting the result (a pointer to void) to unsigned

long



Allocating One Single Physical Page

Kernel Programming 2 Memory Management

• Two functions specialized for 0-order allocations:

• struct page *alloc_page(gfp_t gfp_mask)

•

unsigned long __get_free_page(gfp_t gfp_mask)

• They end up invoking alloc pages() and
get free pages() with second parameter equal

to 0



Memory Zones

Kernel Programming 2 Memory Management

• Linux organizes the physical memory pages in zones

• Zone: set of pages with similar properties
• Which properties? Can be used by DMA devices,

can lack a mapping to virtual pages, ...

• DMA and DMA32 zones: the pages can be accessed
by DMA/bus mastering devices

• HIGHMEM zone: the pages are not always mapped in
the virtual address space

• What? A physical page not mapped in a virtual
page??? 32bit systems (4GB virtual address
space) with more than 4GB of RAM

• Possible on 32bit x86 CPUs by Intel, thanks to
something called “PAE”



Get Free Pages Flags

Kernel Programming 2 Memory Management

• All the allocation functions have an argument of type
gfp t: the gfp mask

• gfp stands for get free pages

• This is a bitmask that can contain multiple flags
• Some flags specify where to allocate the memory

from

• GFP DMA, GFP DMA32, GFP HIGHMEM

• Some other flags specify constraints for the allocator

• GFP WAIT, GFP IO, GFP NOFAIL, ...

• Some constants combine important gfp flags:

• GFP ATOMIC, GFP NOWAIT, GFP NOIO, ...
GFP KERNEL, GFP USER, ...



Virtual Memory Allocator in Linux

Kernel Programming 2 Memory Management

• kmalloc()/kfree() and vmalloc()/vfree()
allow to allocate arbitrary amounts of memory in the
virtual address space

• Difference: kmalloc() allocates contiguous
physical memory, while vmalloc() allocate
fragments of virtual memory that might be
non-contiguous in physical memory

• They are based on
get free pages()/get free page() at the lower
level

• Upper layer to support allocation of memory
fragments with size different from 2i pages



Details on kmalloc()

Kernel Programming 2 Memory Management

• If the size of the memory to be allocated is larger
than a KMALLOC MAX CACHE SIZE, then round it up
to 2i pages and call get free pages()

• See check in
include/linux/slab.h::kmalloc()

• Otherwise, allocate memory from a cache of
allocated objects (slab)

• In any case, the allocated memory is contiguous in
both physical and virtual memory!

• A “linear mapping” can be used to convert
between virtual and physical addresses

• No need to modify the page table...



Details on vmalloc()

Kernel Programming 2 Memory Management

• Physical memory is allocated by invoking
get free page() multiple times

• So, it is not necessarily contiguous in physical
memory!

• No “linear mapping”; need to modify the page
table to make the memory region contiguous in
virtual memory

• Higher overhead than kmalloc() (page table
modifications), but easier to allocate large buffers

• Can use kmalloc() internally, for its own data
structures



Caching Memory Allocations

Kernel Programming 2 Memory Management

• The kernel often allocates/deallocates similar
objects a lot of times

• Think about skbufs, task structs, inode
structures, dentry structures, ...

• To avoid the cost of fully allocating/initializing them
all the times, some caching mechanism can be used

• Cache of allocated physical pages (when freed,
cache them instead of returning them to the
buddy allocator)

• Cache of deallocated “memory objects”



Slabs

Kernel Programming 2 Memory Management

• The buddy allocator can only allocate 2i pages (i:
order of the allocation)

• How to allocate arbitrary amounts of memory?

• Need for an additional software layer over the
buddy allocator

• Allow to allocate “memory objects” of various
sizes

• Support different object sizes

• slab: portion of memory containing multiple memory
objects, all of the same size

• slab size: multiple of the page size, depending on
architecture and allocator



Slabs and SLAB

Kernel Programming 2 Memory Management

• Software layer handling slabs

• Allocating/caching objects
• Requesting physical pages to the buddy allocator

• Originally called SLAB

• So, there is a SLAB allocator working on slabs...
• But SLAB != slab...
• ...Confusing!

• Now, SLUB and SLOB are also available

• So, there are 3 different slab allocators: SLAB,
SLUB and SLOB!!!

• What a mess...



SLAB, SLUB and SLOB

Kernel Programming 2 Memory Management

• SLAB, SLUB, and SLOB are all slab allocators

• So, they all export the same API
• What changes is the the internal implementation

• They differ in how slabs are internally managed, and
how objects are cached

• To be precise, SLOB is not actually a slab allocator:
it exports the API of a slab allocator, but does not
internaly use slabs...



Objects, slabs and Caches

Kernel Programming 2 Memory Management

• slabs are stored in caches
• Cache: manager for allocating objects of a given

type

• All objects in a cache have the same size

• The main difference between SLUB and SLAB is in
how the slab caches are organized (a single list vs
multiple lists, ...)

• Try “sudo cat /proc/slabinfo” to have an idea
of the caches present in your system

• The “kmalloc-*” caches are used... By
kmalloc()!!!



Allocator API

Kernel Programming 2 Memory Management

• kmem cache create(): creates a new object
cache

• kmem cache shrink(): removes free slabs from a
cache, freeing pages

• kmem cache alloc(): allocates an object from the
cache

• kmem cache free(): frees an object returning it to
the cache

• kmem cache destroy(): deallocates all the
objects allocated from a cache, and destroys the
cache

• kmalloc() and kfree() are based on these...

• How to support arbitrary sizes? They use
multiple caches... Will see later



The Linux SLAB Allocator

Kernel Programming 2 Memory Management

• Implements a slab allocator as a set of caches
sharing no data

• Per-cache locking

• Evey cache has 3 lists:

• Full slabs list (slabs containing no free objects):
slab full

• Partial slabs list (slabs containing some allocated
objects and some free objects) :slab partial

• Free slabs list (slabs containing only free
objects): slab free

• The Linux kernel is NUMA aware: 3 slab lists per
NUMA node!



The SLAB Cache

Kernel Programming 2 Memory Management

• The slab interface is described in
include/linux/slab.h; the SLAB details are in
include/linux/slab def.h and mm/slab.h

• struct kmem cache in
include/linux/slab def.h

• Contains some cache arguments and the cache
state

• Also contains an array of kmem cache node

structure (they contains the 3 lists!)

• slabs are enqueued in these lists

• Actually, the first page of each slab is enqueued
• See the slab list field in struct page



Using the 3 Lists

Kernel Programming 2 Memory Management

• Objects are generally allocated from slabs in
slab partial

• If slab partial is empty, slabs from slab free

can be used

• After allocating the object, the slab is moved to
slab partial

• If slab free is also empty, invoke
alloc pages() (actually,
alloc pages node()) to allocate a slab

• When an object is freed, add it to its slab

• If it was the last allocated object of the slab, move
the slab to slab free



Multi-Core Optimization

Kernel Programming 2 Memory Management

• The original SLAB algorithm was designed for
uni-processor systems

• Per-cache locks protecting the 3 lists (and other
kmem cache fields

• On multi-core systems, scales badly (high risk of
lock contention)

• Optimization: per-CPU (actually, per-core) cache of
free objects

• See the cpu cache field of kmem cache

• Can be accessed without locking, but is “percpu”
(disable preemption)



Example: Allocating an Object

Kernel Programming 2 Memory Management

• kmem cache alloc(), defined in mm/slab.c

invokes slab alloc()

• slab alloc() invokes do cache alloc()

which invokes cache alloc()

• cache alloc() looks at the per-CPU cache
(using cpu cache get()

• If the per-CPU cache is not empty, returns a free
object from it (ac->entry[--ac->avail])

• If the per-CPU cache is empty, refill it
(cache alloc refill())



Refilling the per-CPU Cache

Kernel Programming 2 Memory Management

• cache alloc refill() is invoked when the
per-CPU cache is empty and an object has to be
allocated

• It searches for a slab to be used (from some of the
lists, or from the buddy allocator)

• Then, it invokes alloc block() (to fill the per cpu

array with objects) and fixup slab list() (to
insert the slab in slabs full or slabs partial)

• fixup slab list() is eventually called by
cache grow end()



Slabs and Coloring

Kernel Programming 2 Memory Management

• A slab contains multiple objects

• The slab is some pages large
• The slab size is generally not an integer multiple

of an object size
• So, the first object can have an offset respect to

the beginning of the slab

• To be more hw-cache friendly, each slab has objects
starting at a slightly different offset

• Goal: distribute buffers evenly throughout the
cache



Coloring Example

Kernel Programming 2 Memory Management

• When a slab is initialized, the first buffer starts at a
different offset from the slab base (different color)

• This results in different colors because slabs are
page-aligned...

• Example: 200-byte objects, with 8-bytes alignment
requirement

• Slab 1: objects at offsets 0, 200, 400, ...
• Slab 2: objects at offsets 8, 208, 408, ...
• Slab 3: objects at offsets 16, 216, 416, ...

• When the maximum offset is reached, restart from 0



SLUB

Kernel Programming 2 Memory Management

• SLUB allocator: born to simplify the SLAB code

• The SLAB complexity went... Kind of out of
control

• Avoid multiple queues: all the slabs are in the same
list

• Full slabs are not inserted in any list
• Partial slabs and empty slabs are in the same list

• Try to reduce the memory overhead
• Goal: better scalability on many-core systems
• Some of the SLUB improvements have been ported

to SLAB



The Object Cache

Kernel Programming 2 Memory Management

• struct kmem cache, from
include/linux/slub def.h

• Similar to the SLAB kmem cache, but simpler
• Also, the per-CPU free objects cache is

implemented as a (lockless!) list (not an array)
• SLAB uses the Linux “percpu” thing, that disables

preemption

• Single slabs list (partial): see kmem cache node

in mm/slab.h



Example: Object Allocation

Kernel Programming 2 Memory Management

• kmem cache alloc(), defined in mm/slub.c

invokes slab alloc(), which invokes
slab alloc node()

• slab alloc node() gets first object from per-CPU
cache->freelist and updates freelist

• Lockless operation: if the list changed in the
meanwhile, redo

• If there are no objects in freelist, invokes
slab alloc()



Refilling the per-CPU Cache

Kernel Programming 2 Memory Management

• slab alloc() is invoked when the per-CPU free
objects list (freelist) is empty

• slab alloc() invokes new slab objects()

which invokes get partial()

• To get a slab from the partial list

• If get partial() fails (no slabs in the partial list),
new slab() invokes allocate slab() which
invokes alloc slab page() which invokes
alloc pages()


	Memory Management in the Kernel
	Physical Memory and Virtual Memory
	Paging
	Memory Allocator
	Multiple Free Memory Lists: Buddies
	Buddy Allocator: Deallocation
	Buddy Allocator and Pages
	Buddy and Pages: Deallocation/Merging
	Physical Memory Allocator in Linux
	Allocating Physical Pages
	Allocating Physical Pages — 2
	Allocating One Single Physical Page
	Memory Zones
	Get Free Pages Flags
	Virtual Memory Allocator in Linux
	Details on kmalloc()
	Details on vmalloc()
	Caching Memory Allocations
	Slabs
	Slabs and SLAB
	SLAB, SLUB and SLOB
	Objects, slabs and Caches
	Allocator API
	The Linux SLAB Allocator
	The SLAB Cache
	Using the 3 Lists
	Multi-Core Optimization
	Example: Allocating an Object
	Refilling the per-CPU Cache
	Slabs and Coloring
	Coloring Example
	SLUB
	The Object Cache
	Example: Object Allocation
	Refilling the per-CPU Cache

