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Memory Management in the Kernel

Kernel Programming 2 Memory Management

• In user space, we are used to malloc(), new and
friends

• What we see is virtual memory
• Easy to allocate arbitrary amounts of memory
• Lazy memory allocation and advanced features,

...

• The OS kernel is the one generally implementing
virtual memory

• For the sake of simplicity, let’s forget µ-kernels
and hypervisors

• How is virtual memory implemented?



Physical Memory and Virtual Memory
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• The kernel directly accesses the hardware

• It manages physical memory

• The kernel provides functionalities to user-space

• It manages virtual memory too
• It handles the translation of virtual addresses into

physical addresses

• MMU configuration, page faults handling,
etc...

• So, the kernel contains both a virtual memory and a
physical memory manager!



Paging
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• Translation of virtual addresses into physical
addresses is generally performed using paging

• The MMU uses a page table for the translation

• Can be a complex data structure (hierarchical
paging)

• The kernel is responsible for managing the page
table

• Physical memory allocator: allocates physical pages
of memory

• Virtual memory allocator: allocates virtual memory
ranges



Memory Allocator
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• Goal: allow to allocate memory buffers of specified
size

• Simplest idea: list of free memory fragments

• Ordered by size: makes allocation easier
• Ordered by memory address: makes deallocation

(compacting adiacent fragments) easier

• In general, a single list of free memory fragments is
not a good idea...

• Better idea: multiple lists (for different fragment
sizes)



Multiple Free Memory Lists: Buddies
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• Constraints: memory fragments have sizes power of
2

• Multiple lists, containing fragments with different
sizes

• The ith queue contains fragments of size 2b+i

• Allocation of buffer of size s:

• Find the smallest i such that 2b+i > s

• If the ith queue is not empty, return a memory
fragment from it

• Otherwise, split a fragment from the (i+ 1)th

queue, and insert 2 fragments in the ith queue.
Then allocate one of them

• Might split a fragment from the (i+ 1)th queue
if needed (and so on)



Buddy Allocator: Deallocation
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• When a fragment from the (i+ 1)th queue is split in 2
fragments of the ith queue, such fragments are
named buddies

• Generally, when a fragment is split one of the two
buddies is used

• When it is released, the two buddies can be
recompacted

• On free, it is easy to see if the buddy of the freed
fragment is in a list

• Need to compute the buddy address...



Buddy Allocator and Pages
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• The ith list contains fragments of 2i pages

• i: order of the allocation

• At the beginning, only the highest-order list (say, list
m) is not empty

• When a i-order allocation is requested, a fragment
from list m is split in two buddies

• One is inserted in list m− 1, the other one is split
in 2 buddies...

• ...And so on, until buddies are inserted in list i.
• Then, a memory fragment composed by 2i pages

is allocated (and the other one remains in the ith

list



Buddy and Pages: Deallocation/Merging
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• When a memory fragment is freed, need to check if
its buddy is free too

• In this case, they can be merged!

• Order i deallocation: the fragment is composed by 2i

pages...

• Look at the page number of the first page of the
freed segment: the i rightmost bits are 0

• Then look at bit i: the buddy will have this bit
swapped

• So, buddy_number = page_number ˆ (1 << i)

• The merged fragment has order i+ 1 (so, it has the
rightmost i+ 1 bits set to 0)

• merged_number = page_number & buddy_number



Physical Memory Allocator in Linux
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• Allocates fragments composed by contiguous
physical pages

• A physical page is sometimes known as page
frame

• It is not possible to allocate arbitrary amounts of
memory

• Only fragments composed by 2i pages
• i is the allocation order
• Special case: allocate 1 physical memory page

(0-order allocation)

• Linux uses a buddy allocator for physical pages



Allocating Physical Pages
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• 2i pages can be allocated with
struct page *alloc_pages(gfp_t m, unsigned int i)

• i is the order of the allocation
• m indicates which kind of pages to allocate, and

how

• The return value is a pointer to a struct page,
describing the first physical page of the fragment

• Each physical page is described by a page

structure, also identified by a page frame number
(pfn)

• There are functions to convert a pointer to frame

structure into its pfn, and vice-versa
• The conversion depends on the memory model



Allocating Physical Pages — 2
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• alloc pages() returns the pointer to a struct

page

• What to do to actually access the content of the
page?

• We need to know the virtual address where the
page is mapped...

• Can be computed with
void * page_address(struct page *page)

• get free pages() combines alloc pages()

and page address()...
• ...Casting the result (a pointer to void) to unsigned

long



Allocating One Single Physical Page
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• Two functions specialized for 0-order allocations:

• struct page *alloc_page(gfp_t gfp_mask)

•

unsigned long __get_free_page(gfp_t gfp_mask)

• They end up invoking alloc pages() and
get free pages() with second parameter equal

to 0



Memory Zones
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• Linux organizes the physical memory pages in zones

• Zone: set of pages with similar properties
• Which properties? Can be used by DMA devices,

can lack a mapping to virtual pages, ...

• DMA and DMA32 zones: the pages can be accessed
by DMA/bus mastering devices

• HIGHMEM zone: the pages are not always mapped in
the virtual address space

• What? A physical page not mapped in a virtual
page??? 32bit systems (4GB virtual address
space) with more than 4GB of RAM

• Possible on 32bit x86 CPUs by Intel, thanks to
something called “PAE”



Get Free Pages Flags
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• All the allocation functions have an argument of type
gfp t: the gfp mask

• gfp stands for get free pages

• This is a bitmask that can contain multiple flags
• Some flags specify where to allocate the memory

from

• GFP DMA, GFP DMA32, GFP HIGHMEM

• Some other flags specify constraints for the allocator

• GFP WAIT, GFP IO, GFP NOFAIL, ...

• Some constants combine important gfp flags:

• GFP ATOMIC, GFP NOWAIT, GFP NOIO, ...
GFP KERNEL, GFP USER, ...



Virtual Memory Allocator in Linux

Kernel Programming 2 Memory Management

• kmalloc()/kfree() and vmalloc()/vfree()
allow to allocate arbitrary amounts of memory in the
virtual address space

• Difference: kmalloc() allocates contiguous
physical memory, while vmalloc() allocate
fragments of virtual memory that might be
non-contiguous in physical memory

• They are based on
get free pages()/get free page() at the lower
level

• Upper layer to support allocation of memory
fragments with size different from 2i pages



Details on kmalloc()
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• If the size of the memory to be allocated is larger
than a KMALLOC MAX CACHE SIZE, then round it up
to 2i pages and call get free pages()

• See check in
include/linux/slab.h::kmalloc()

• Otherwise, allocate memory from a cache of
allocated objects (slab)

• In any case, the allocated memory is contiguous in
both physical and virtual memory!

• A “linear mapping” can be used to convert
between virtual and physical addresses

• No need to modify the page table...



Details on vmalloc()
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• Physical memory is allocated by invoking
get free page() multiple times

• So, it is not necessarily contiguous in physical
memory!

• No “linear mapping”; need to modify the page
table to make the memory region contiguous in
virtual memory

• Higher overhead than kmalloc() (page table
modifications), but easier to allocate large buffers

• Can use kmalloc() internally, for its own data
structures



Caching Memory Allocations
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• The kernel often allocates/deallocates similar
objects a lot of times

• Think about skbufs, task structs, inode
structures, dentry structures, ...

• To avoid the cost of fully allocating/initializing them
all the times, some caching mechanism can be used

• Cache of allocated physical pages (when freed,
cache them instead of returning them to the
buddy allocator)

• Cache of deallocated “memory objects”



Slabs

Kernel Programming 2 Memory Management

• The buddy allocator can only allocate 2i pages (i:
order of the allocation)

• How to allocate arbitrary amounts of memory?

• Need for an additional software layer over the
buddy allocator

• Allow to allocate “memory objects” of various
sizes

• Support different object sizes

• slab: portion of memory containing multiple memory
objects, all of the same size

• slab size: multiple of the page size, depending on
architecture and allocator



Slabs and SLAB
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• Software layer handling slabs

• Allocating/caching objects
• Requesting physical pages to the buddy allocator

• Originally called SLAB

• So, there is a SLAB allocator working on slabs...
• But SLAB != slab...
• ...Confusing!

• Now, SLUB and SLOB are also available

• So, there are 3 different slab allocators: SLAB,
SLUB and SLOB!!!

• What a mess...



SLAB, SLUB and SLOB
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• SLAB, SLUB, and SLOB are all slab allocators

• So, they all export the same API
• What changes is the the internal implementation

• They differ in how slabs are internally managed, and
how objects are cached

• To be precise, SLOB is not actually a slab allocator:
it exports the API of a slab allocator, but does not
internaly use slabs...



Objects, slabs and Caches
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• slabs are stored in caches
• Cache: manager for allocating objects of a given

type

• All objects in a cache have the same size

• The main difference between SLUB and SLAB is in
how the slab caches are organized (a single list vs
multiple lists, ...)

• Try “sudo cat /proc/slabinfo” to have an idea
of the caches present in your system

• The “kmalloc-*” caches are used... By
kmalloc()!!!



Allocator API
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• kmem cache create(): creates a new object
cache

• kmem cache shrink(): removes free slabs from a
cache, freeing pages

• kmem cache alloc(): allocates an object from the
cache

• kmem cache free(): frees an object returning it to
the cache

• kmem cache destroy(): deallocates all the
objects allocated from a cache, and destroys the
cache

• kmalloc() and kfree() are based on these...

• How to support arbitrary sizes? They use
multiple caches... Will see later



The Linux SLAB Allocator
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• Implements a slab allocator as a set of caches
sharing no data

• Per-cache locking

• Evey cache has 3 lists:

• Full slabs list (slabs containing no free objects):
slab full

• Partial slabs list (slabs containing some allocated
objects and some free objects) :slab partial

• Free slabs list (slabs containing only free
objects): slab free

• The Linux kernel is NUMA aware: 3 slab lists per
NUMA node!



The SLAB Cache
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• The slab interface is described in
include/linux/slab.h; the SLAB details are in
include/linux/slab def.h and mm/slab.h

• struct kmem cache in
include/linux/slab def.h

• Contains some cache arguments and the cache
state

• Also contains an array of kmem cache node

structure (they contains the 3 lists!)

• slabs are enqueued in these lists

• Actually, the first page of each slab is enqueued
• See the slab list field in struct page



Using the 3 Lists
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• Objects are generally allocated from slabs in
slab partial

• If slab partial is empty, slabs from slab free

can be used

• After allocating the object, the slab is moved to
slab partial

• If slab free is also empty, invoke
alloc pages() (actually,
alloc pages node()) to allocate a slab

• When an object is freed, add it to its slab

• If it was the last allocated object of the slab, move
the slab to slab free



Multi-Core Optimization
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• The original SLAB algorithm was designed for
uni-processor systems

• Per-cache locks protecting the 3 lists (and other
kmem cache fields

• On multi-core systems, scales badly (high risk of
lock contention)

• Optimization: per-CPU (actually, per-core) cache of
free objects

• See the cpu cache field of kmem cache

• Can be accessed without locking, but is “percpu”
(disable preemption)



Example: Allocating an Object
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• kmem cache alloc(), defined in mm/slab.c

invokes slab alloc()

• slab alloc() invokes do cache alloc()

which invokes cache alloc()

• cache alloc() looks at the per-CPU cache
(using cpu cache get()

• If the per-CPU cache is not empty, returns a free
object from it (ac->entry[--ac->avail])

• If the per-CPU cache is empty, refill it
(cache alloc refill())



Refilling the per-CPU Cache
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• cache alloc refill() is invoked when the
per-CPU cache is empty and an object has to be
allocated

• It searches for a slab to be used (from some of the
lists, or from the buddy allocator)

• Then, it invokes alloc block() (to fill the per cpu

array with objects) and fixup slab list() (to
insert the slab in slabs full or slabs partial)

• fixup slab list() is eventually called by
cache grow end()



Slabs and Coloring
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• A slab contains multiple objects

• The slab is some pages large
• The slab size is generally not an integer multiple

of an object size
• So, the first object can have an offset respect to

the beginning of the slab

• To be more hw-cache friendly, each slab has objects
starting at a slightly different offset

• Goal: distribute buffers evenly throughout the
cache



Coloring Example
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• When a slab is initialized, the first buffer starts at a
different offset from the slab base (different color)

• This results in different colors because slabs are
page-aligned...

• Example: 200-byte objects, with 8-bytes alignment
requirement

• Slab 1: objects at offsets 0, 200, 400, ...
• Slab 2: objects at offsets 8, 208, 408, ...
• Slab 3: objects at offsets 16, 216, 416, ...

• When the maximum offset is reached, restart from 0



SLUB
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• SLUB allocator: born to simplify the SLAB code

• The SLAB complexity went... Kind of out of
control

• Avoid multiple queues: all the slabs are in the same
list

• Full slabs are not inserted in any list
• Partial slabs and empty slabs are in the same list

• Try to reduce the memory overhead
• Goal: better scalability on many-core systems
• Some of the SLUB improvements have been ported

to SLAB



The Object Cache
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• struct kmem cache, from
include/linux/slub def.h

• Similar to the SLAB kmem cache, but simpler
• Also, the per-CPU free objects cache is

implemented as a (lockless!) list (not an array)
• SLAB uses the Linux “percpu” thing, that disables

preemption

• Single slabs list (partial): see kmem cache node

in mm/slab.h



Example: Object Allocation
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• kmem cache alloc(), defined in mm/slub.c

invokes slab alloc(), which invokes
slab alloc node()

• slab alloc node() gets first object from per-CPU
cache->freelist and updates freelist

• Lockless operation: if the list changed in the
meanwhile, redo

• If there are no objects in freelist, invokes
slab alloc()



Refilling the per-CPU Cache
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• slab alloc() is invoked when the per-CPU free
objects list (freelist) is empty

• slab alloc() invokes new slab objects()

which invokes get partial()

• To get a slab from the partial list

• If get partial() fails (no slabs in the partial list),
new slab() invokes allocate slab() which
invokes alloc slab page() which invokes
alloc pages()
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