
Linux Network Stack

Internals

Luca Abeni

luca.abeni@santannapisa.it

March 19, 2024

The Networking Stack

Advanced Kernel Programming The Network Stack

• Networking stack: network driver(s) + protocols
• A simple working implementation is not complex

• Receiving and sending network packets is not
difficult

• The TCP/IP stack is fairly well understood

• However, the “linux/net” directory is quite
complex

• Lots of different protocols
• This is all performance critical code!

• So, the modern Linux networking code is fine-tuned
for performance in many different situations

Linux and Networking

Advanced Kernel Programming The Network Stack

• The Linux networking stack is used on many
different devices

• Ranging from Android phones / small embedded
devices...

• ...To big servers...
• ...Passing through high-performance PCs and

similar stuff!

• The code must be designed to perform well in all
these situations

• Low memory footprint / low CPU usage
• High throughput, resilent to various DoS attacks
• Low latency; performant for both TCP and UDP
• ...

Evolution of the Linux Stack — 1

Advanced Kernel Programming The Network Stack

• The original netorking stack did “just work”

• But was slow, and UP only

• Then, it was modified to run on multiple processors

• But it was not able to take advantage of the
hardware parallelism

• The throughput did not scale with the number of
CPUs

• Issue: bottom half processing (only one bottom
half can execute simultaneously, regardless of
the number of CPU cores)

• Solution: use SoftIRQs

• No per-core concurency, but multiple SoftIRQs
can execute simultaneously on different cores

Evolution of the Linux Stack — 2

Advanced Kernel Programming The Network Stack

• Next issue: receive livelock

• When packets arrive too fast, most of the time is
lost in raising/serving interrupts

• High userspace/kernelspace switch overhead, no
time left for using the received packets!

• Solution: some form of interrupt mitigation / polling

• NAPI: adaptive polling (in SoftIRQ - or dedicated
kernel thread - context!), activated only when
interrupts fire too often

• Some kind of heuristic is used to activate the
NAPI polling mode

• This solves some possible DoS attacks

Evolution of the Linux Stack — 3

Advanced Kernel Programming The Network Stack

• With the advent of Gb and 10Gb ethernet, new
performance issues

• Things work well for large packets (jumbo frames,
etc...)

• A lot of overhead for smaller packets

• Solution: Generic Receive Offload (GRO)

• Try to merge multiple small packets in large
buffers when possible

• Process these small packets in batches (instead
of processing them one at time)

• Improves the receiving throughput a lot

• Of course, this makes the code much more complex!

The sk buff Structure

Advanced Kernel Programming The Network Stack

• As the name suggests, struct sk buff

represents a packet that can be sent/received
through a socket

• More generically, through a network interface

• Easy in theory... But it is a quite complex structure!
• Passed through the various layers of the network

stack, that can add/remove headers/trailers...

• Must allow to efficiently add/remove them without
copy

• Contains various kinds of fields

• Related to lists
• Data
• ...

sk buff Lists

Advanced Kernel Programming The Network Stack

• sk buff structures are stored in lists

• But they are not the “standard” Linux lists
• Why? For efficiency reasons
• Standard linux list: generic; sk buff list: efficient

• Doubly linked lists: prev and next fields (pointers
to struct sk buff)

• Must be the first fields of the structure
• To match struct sk buff head

• struct sk buff head: head of a sk buff list

• The first 2 fields are the same contained in
struct sk buff

• Also contains a spinlock and a len

Manipulating the Lists

Advanced Kernel Programming The Network Stack

• sk buff lists are not regular Linux lists→ need
special functions to handle them

• Defined in net/core/skbuff.c and
include/linux/skbuff.h

• In general every function has an unlocked “ ”
equivalent (often an inline function in skbuff.h)

• skb queue head init(): initializes an sk buff

list head
• skb queue head(): insert an sk buff at the head

of a list
• skb queue tail(): insert an sk buff at the tail
• skb dequeue(): removes the first sk buff from a

list
• ...

sk buff Data

Advanced Kernel Programming The Network Stack

• The structure contains different “data related” fields
• First, there are some lenghts, for example:

• len: current size of the data
• data len: size of data contained in additional

fragments
• truesize: size of this buffer + sk buff

structure

• Then, there are various pointers to the buffer:

• head: beginning of the buffer in memory
• data: beginning of the data (= head +

headroom)
• tail: end of the data (= end of buffer - tailroom)
• end: end of the buffer in memory

Adding/Removing Headers/Tailers

Advanced Kernel Programming The Network Stack

• When a sk buff is allocated, head = data = tail;
end = head + size

• No headroom, everything is tailroom

• len = 0

• No data in the buffer

• Then, the size of the buffer can be increased with
skb put() and skb push()

• Grow the buffer using tailroom and headroom
• Need enough space in *room... But the

headroom is initially empty! How can
skb push() work?

Making Space for Headers

Advanced Kernel Programming The Network Stack

• When a sk buff is allocated, head = data⇒ no
headroom

• But skb push() works by decreasing head...
• Before using skb push() some space has to be

created in the headroom!!!

• Space can be added to headroom with
skb reserve()

• Does not actually copy data: just moves head
(and tail)

• Must be called before putting data in the buffer

Summing Up

Advanced Kernel Programming The Network Stack

• alloc skb(): allocate empty (len = 0) buffer
• skb reserve(): grow the headroom of a buffer

(decreasing the tailroom)
• skb put(): grow the buffer size (data len) at the

end (getting memory from tailroom)
• skb push(): grow the buffer size (data len) at the

beginning (getting memory from headroom)

• This makes space for a new protocol header

• skb pull(): decrease the buffer size (data len) at
the beginning (this removes a protocol header)

Fragmented sk buffs

Advanced Kernel Programming The Network Stack

• Network packets can be split in various memory
fragments

• The first fragment is described by the sk buff

structure
• What about the other ones?

• At the end of the data buffer (end field), there is a
skb shared info structure

• A pointer to it can be obtained through the end

field

• This structure contains information about the number
of fragments, and a list to them

Cloning sk buffs...

Advanced Kernel Programming The Network Stack

• Cloning a sk buff is an unexpensive operation

• Only the sk buff structure is duplicated; the
data buffer is shared

• Specialized copy operation, to be more efficient!

• cloned flag set to 1

• There also is a usage counter (dataref)

• Obviously, it cannot be in the sk buff

structure...
• It is in the shared skb shared info structure!!!

• When a sk buff is freed, the data buffer is released
only if dataref is 0

...And Copying Them!

Advanced Kernel Programming The Network Stack

• The content of the data buffer of cloned sk buffs is
shared between all che clones

• Hence, it cannot be modified!
• Only (atomic) changes to some fields of

skb shared info are allowed

• What to do if a real copy of a packet is needed?
• There is a function (skb copy()) to duplicate both

sk buff and data buffer

• pskb copy() also duplicates fragments

Network Devices Structures

Advanced Kernel Programming The Network Stack

• A network device is handled by using a set of kernel
structures

• Traditionally, a struct net device contained
all the information

• Even a pointer to the poll() method used by
NAPI!

• Today, information are spread over multiple data
structures

• net device is still the central one
• But for receiving packets a napi struct is used

• Interrupts are associated to a NAPI structure,
and the net device structure is linked from it

The net device Structure

Advanced Kernel Programming The Network Stack

• “Traditional” descriptor for a physical or virtual
network device

• Structure containing all the information needed to
operate the device

• Various kinds of information

• Related to the (physical or virtual) hardware
• General information about the device (name,

state, list-related fields, ...)
• Information about the interface (MTU, header

size, queue len, ...)
• Some kinds of device methods (function pointers,

grouped in structures)
• Some statistics

Hardware-Related Information

Advanced Kernel Programming The Network Stack

• Memory ranges for memory-mapped devices
• I/O base
• Used interrupt number
• Everything else that can be useful...
• Also, there is some “private state” for the driver

• Appended at the end of the structure (no pointer)
• In modern drivers, obsoletes previous fields

• Today, most of the important hardware-related
information are stored in the private structure, not in
struct net device

• Example: struct net device has only one
irq field, but many modern NICs can raise
multiple interrupts...

Device Information

Advanced Kernel Programming The Network Stack

• Device name
• Numeric identifier for the device (interface index

ifindex)
• Information about the interface address

• For example, permanent MAC address of the
board, list of assigned MAC addresses, ...

• Some lists the network device can be into

• Global list of network devices
• Some additional lists for specific things (NAPI,

devices being closed/unregistered, ...)

Device Operations

Advanced Kernel Programming The Network Stack

• Function pointers grouped in various structures (eth
methods, device methods, header-related methods,
...)

• Struct net device ops (ndo methods)

• ndo init()/ndo uninit()

• ndo open()/ndo stop()

• ndo start xmit()

• ...

• Struct header ops

• create()

• parse()

• ...

Sending/Receiving Packets through Devices

Advanced Kernel Programming The Network Stack

• A packet is sent by invoking the ndo start xmit()

“method” of net device

• Generally not invoked directly, but through
netdev start xmit()

• dev queue xmit() also passes through the
network scheduling framework

• How is a packet received?

• The device driver installs an interrupt handler that
somehow manages to push the packet up to the
network device structure...

Interrupt Handlers and NAPI

Advanced Kernel Programming The Network Stack

• The device driver installs ISRs with request irq()

• request irq() allows to specify a data
structure that will be passed to the ISR

• Can be a device-private structure (see
igb/igb main.c), a per-irq structure (see
ixgbe/ixgbe main.c) or the net device

structure (see e1000e/netdev.c)
• This structure contains a pointer to a

napi struct

• The ISR invokes napi schedule prep() to check
if NAPI is already polling or is disabled

• If napi schedule prep() returns true,
napi schedule() is invoked

NAPI Processing

Advanced Kernel Programming The Network Stack

• napi schedule() disables interrupts, gets the
per-cpu softirq context, and triggers the softirq
(napi schedule())

• Notice: interrupt (and migration!) disabling is
needed to use per-cpu data

• napi schedule() adds the NAPI structure to
the per-cpu softnet data structure (it has a poll list)

• Then, it raises the NET RX SOFTIRQ

• net rx action() is the handler for
NET RX SOFTIRQ

• It gets the per-cpu softnet data and iterates
on its poll list, invoking napi poll() on the
enqueued napi structures

The Polling Method

Advanced Kernel Programming The Network Stack

• napi poll() invokes the poll() method of the
napi struct

• Function pointer named “poll”, member of
napi struct

• Then, it calls napi complete(),
napi gro flush() and finally
gro normal list()

• napi complete() invokes
napi complete done()→ disable NAPI
polling (can re-enable it if needed!)

• The driver’s poll() function (poll method in
napi struct) ends up calling
napi gro receive()

GRO: Theory of Operation

Advanced Kernel Programming The Network Stack

• When a packet is received, the NIC computes a
hash on it

• The driver stores this “RSS hash” in the skbuff

• A NAPI structure has GRO HASH BUCKET (equal to
2
i) GRO lists (gro hash[])

• A packet can go in the GRO list indicated by the i

rightmost bits of its hash
• If it is in the same flow of the other packets in the

list, the it is inserted there

• If a packet is not inserted in any GRO list (GRO
normal packet), it is inserted in rx list

• This allows to process packets in batches

GRO and Packet Queuing

Advanced Kernel Programming The Network Stack

• When the driver passes a packet to the network
stack (napi gro receive(), it is inserted in
grow hash[j] or in rx list

• napi gro flush() sends up the packets merged
by GRO and pending on this napi struct (stored
in grow hash[])

• Done by invoking napi gro complete()→

invoke gro complete() callbacks for higher
level protocols

• gro normal list() invokes
netif receive skb list internal() on the
packets that have been received and enqueued on
the napi struct rx list (sends them up)

Receiving Packets (with GRO Complications)

Advanced Kernel Programming The Network Stack

• In theory, napi gro receive() should just pass
the packet up to higher-level protocols...

• ...But GRO complicates things a little bit!

• dev gro receive() checks if the packet can
be “merged” with other packets...

• ...To do this, it needs to invoke higher-level
callbacks (to check TCP/UDP flows, etc...)

• Then, napi skb finish() passes up the
packet (only if it has not been GROed!)

• Invokes gro normal one(), that enqueues
a packet to rx list of the NAPI structure

• When enough packets have been enqueued,
gro normal list() to send them!

Network Interface Receive

Advanced Kernel Programming The Network Stack

• netif receive skb list internal()

processes lists of packets
• Another complication: RPS!

• Up to now, processing happened on the core that
received the interrupt

• Can “migrate” the processing to another (less
busy) core

• This allows to automatically spread packet
processing on all the cores!

• Finally, netif receive skb list() is invoked
• At the end of the story,

netif receive skb core() will deliver the
packet to the handlers of higher-level protocols
(deliver skb())

Using Network Devices

Advanced Kernel Programming The Network Stack

• struct net device and friends are used to
manage hardware (or virtual devices)...

• ...Kernel code can use them directly, but user-space
does not see these structures

• User-space code generally uses a higher-level
programming interface exposing the whole
networking stack through sockets

• This includes higher-level (network and transport)
protocols

• The networking stack transforms user buffers in
sk buffs

The Network Stack: Programmaer API

Advanced Kernel Programming The Network Stack

• Networking is accessed from user-space through
sockets

• Remember? Each socket has a “type”, a
“domain”, and a “protocol”

• The domain identifies a family of protocols
• Example: AF INET: internet protocols (IPv4)

• The domain (or protocol family) is mainly used when
creating a socket, to select the appropriate protocol

• The kernel uses different data structures to
represent the user-space interface of a socket and
its internal representation

Socket Data Structures

Advanced Kernel Programming The Network Stack

• Data structure describing the “user-space vision” of
a socket: struct socket (see
include/linux/net.h)

• Contains a (type and protocol dependent) set of
operations, the type (stream, datagram, ...) and a
link to an internal representation

• Data structure describing the socket’s internal
representation: struct sock (see
include/net/sock.h)

Higher Level Protocols

Advanced Kernel Programming The Network Stack

• Higher level protocols (for example IP, UDP, TCP,
etc...) are registered at boot time

• Example:
net/ipv4/af inet.c::inet init()

• Registers to socket the UDP and TCP protocols,
plus some other protocols

• Registers AF INET sockets (INET family of
protocols)

• Registers TCP, UDP, ICMP and maybe IGMP to
the IP network protocol← mainly used for
receiving packets

• The INET family provides a create() method
(inet create()), while the protocols provide the
other methods to send packets, etc...

Creating a Socket and Sending a Packet

Advanced Kernel Programming The Network Stack

• When an INET socket is created, inet create()

ends up being called

• sys socket() searches for the protocol family
registered as AF INET

• It looks at type and protocol, searches for the
appropriate inet protocol, and sets its operations in
the socket structure

• Example: for a datagram protocol (such as UDP),
inet dgram ops is used

• It also points to the UDP protocol operations:
udp prot (see net/ipv4/udp.c)

Sending a Packet

Advanced Kernel Programming The Network Stack

• “operations structure” ops of struct socket:
pointers to the user-invocable operations

• Methods for operating on the socket (example:
sending or receiving packets), used by syscalls

• Packets are sent with sock sendmsg() (invoked,
for example, by sendto())

• sock sendmsg() invokes
sock sendmsg nosec(), which invokes
sock->ops->sendmsg()

• This points to inet msg(), which invokes
sk->sk prot->sendmsg() (notice: these are
protocol-dependent operations)

Sending a Packet — Down the Protocol Stack

Advanced Kernel Programming The Network Stack

• The protocol-specific send() function is invoked
(example: udp sendmsg() in net/ipv4/udp.c

• First of all, cope with “corked sockets” or similar
things

• Then, get the destination address (from the
message, or from the socket)

• Handle timestamps and “control messages” that do
not need to be sent, IP options, and multicast

• Finally, route the packet!

• Should be an IP protocol thing, but there is a
fastpath in UDP as an optimization...

• Call ip route output flow() and buffer the
result in struct sock

Sending a Packet — Identify the Destination

Advanced Kernel Programming The Network Stack

• ip route output flow() returns a structure
indicating how to send the data

• Technically, it is a routing table entry!
• First part: dst entry structure

• It indicates the device to be used for sending the
data

• It also indicates the next hop to which data has to be
sent

• Parts of it are filled using the ARP protocol

• It also contains function pointers for sending and
receiving data!

• For IPv4, they are set to ip output() and
ip local deliver()

Sending a Packet — Down the Protocol Stack

Advanced Kernel Programming The Network Stack

• After having a routing table entry and handling some
other special situation (multicast, broadcast, ARP
confirm, ...), the packet is passed down to the IP
layer

• ip make skb(), then udp send skb()

• ip make skb() (see net/ipv4/ip output.c)
generates an sk buff() for the message

• Complex code, because generic (supports
corked sockets); for the non-corked case, creates
some “fake” corking structures

Sending a Packet — Allocating and Initializing the
skbuff

Advanced Kernel Programming The Network Stack

• ip append data() allocates the sk buff

• Then reserves space for the headers and
allocates the network header

• Also notice “skb->transport header = ...”

• Finally, it copies the data...

• ip make skb() fills the IP header and finishes the
sk buff initialization

• Notice “skb dst set(skb, &rt->dst)” (and
remember that dst.output = ip output()!)

Sending a Packet — Down to Network Protocol

Advanced Kernel Programming The Network Stack

• udp send skb() fills the UDP header and finally
passes the packet down: ip send skb()

• ip send skb() invokes ip local out(), that
calls ip local out() to set packet len and
checksum, and then passes the packet to netfilter

• If netfilter agrees, then ip local out() calls
dst output() to send the packet

• dst output() does something like
skb dst(skb)→output(skb)

• Looks at the skb refdst field of sk buff...
Set by ip make skb() using info coming from
the routing table entry

Sending a Packet — From Network to MAC Layer

Advanced Kernel Programming The Network Stack

• dst output() ends up calling ip output()

• ip output() sets skb->dev, then calls
ip finish output()→ ip finish output2()

• ip output2() searches for a “neighbour” to send
the data, and invokes neigh output() to it

• We are finally out of the IP stack!!!
• neigh output checks if we know the MAC

address of the neighbour, and if yes it invokes
neigh hh output()

• If not, some ARP stuff is needed!

• neigh hh output() fills some headers and finally
calls dev queue xmit()

• It will call ndo start xmit() when needed

Receiving a Packet

Advanced Kernel Programming The Network Stack

• How are packets received?

• There is a recvmsg method in the socket
operations...

• ...But where does it get messages from?

• Remember deliver skb()?

• It searches for a network protocol handler
• See for example

net/ipv4/af inet.c::ip packet type

• For IP, ip rcv() ends up being called!

• It searches for a dst (using early demultiplexing if
needed)

• This sets the dst.input pointer to
ip local deliver()

Receiving a Packet — 2

Advanced Kernel Programming The Network Stack

• After checking some headers,
ip local deliver() invokes
ip local deliver finish()

• The skbuff is then delivered to the appropriate
transport protocol

• Notice skb pull() to remove the network
header

• ip protocol deliver rcu() will invoke
tcp v4 rcv() or udp rcv

• Then, the skbuff will be enqueued to a sock

structure
• The rcvmsg method will get it from there...

	The Networking Stack
	Linux and Networking
	Evolution of the Linux Stack — 1
	Evolution of the Linux Stack — 2
	Evolution of the Linux Stack — 3
	The sk_buff Structure
	sk_buff Lists
	Manipulating the Lists
	sk_buff Data
	Adding/Removing Headers/Tailers
	Making Space for Headers
	Summing Up
	Fragmented sk_buffs
	Cloning sk_buffs...
	...And Copying Them!
	Network Devices Structures
	The net_device Structure
	Hardware-Related Information
	Device Information
	Device Operations
	Sending/Receiving Packets through Devices
	Interrupt Handlers and NAPI
	NAPI Processing
	The Polling Method
	GRO: Theory of Operation
	GRO and Packet Queuing
	Receiving Packets (with GRO Complications)
	Network Interface Receive
	Using Network Devices
	The Network Stack: Programmaer API
	Socket Data Structures
	Higher Level Protocols
	Creating a Socket and Sending a Packet
	Sending a Packet
	Sending a Packet — Down the Protocol Stack
	Sending a Packet — Identify the Destination
	Sending a Packet — Down the Protocol Stack
	Sending a Packet — Allocating and Initializing the skbuff
	Sending a Packet — Down to Network Protocol
	Sending a Packet — From Network to MAC Layer
	Receiving a Packet
	Receiving a Packet — 2

