Linux Virtual Memory

Luca Abeni
luca.abeni@santannapisa.it

December 11, 2023



Process Address Spaces

e Every user-space process has a private virtual
address space

e |t contains only a subset of all the possible
addresses

e The other addresses are used for the kernel
address space — shared by all processes, but
non accessible from user-space

e The kernel address space uses a linear mapping

e No need to describe it in any data structure
e Exception: vmalloc address space

e The address space of a process is described by
struct mm_struct (defined in
include/linux/mm_types.h)

Kernel Programming 2 Virtual Memory



Virtual Memory Regions

e The virtual address space of a process is composed
by multiple memory regions

e A memory region for each segment (code, data,
bss, ...)

e The heap is also a memory region

Memory regions are page-aligned

Each memory region is described by a st ruct
vm_area_struct (defined in
include/linux/mm_types.h)

e Organized in lists and rb trees

Contains a link to its address space (struct
mm_struct +vm_mm)

e The mmap () system call can create a new region...

Kernel Programming 2 Virtual Memory



Example: the Heap

e malloc () Isnotasystem call: itis a library call

e Implemented in the standard C library (example:
glibc)
e The standarc C library allocates memory from the
heap

e Remember? The heap is one of the memory
regions of the proces...

e What to do when the heap is empty?

e The standard C library cannot allocate memory
anymore...
...90, It must grow the heap

e Done by invoking a system call: brk ()

Kernel Programming 2 Virtual Memory



Growing the Heap

e Dbrk () system call (do_brk (): changes the heap
size
e Technically, it changes the “program break” (end
of the data segment)
e Increasing the program break allows to grow the

heap by adding more virtual memory pages to
this virtual memory region...

No physical pages are actually allocated!
Physical pages are allocated only on page faults

e Lazy memory allocation
e SO0, do not search for alloc_page () in the
do_brk () call chain...

Kernel Programming 2 Virtual Memory



Page Fault Hanling

e An access to a virtual memory page which is not
mapped in physical memory generates a page fault

e This also happens on write accesses to read-only
pages...
e ...Orin case of violations to page permissions

e Page faults handling is architecture-dependent

o See, for example,
arch/x86/mm/fault.c:exc_page_fault ()

e |t accesses architecture-specific registers to get
the faulting address

e |t looks at the current task to get the mm_struct
structure

e Then, it invokes handle mm fault ()

Kernel Programming 2 Virtual Memory



Architecture Independent Handler

¢ mm/memory.c::handle_mm_fault () receives the
virtual memory area containing the faulting address,
the address and some flags

¢ handle_mm_fault () ends up invoking
handle pte fault ()

e For a “regular” memory page, ends up invoking
do_anonymous_page ()

e do_anonymous_page () ends up in
_alloc_pages () (with order 0)

e Through alloc_zeroed_user_highpage_movable (),
calling alloc_page_vma () — __alloc_pages_vma ()
with order 0 — alloc_pages () (for no NUMA)

e Only when writing to the page for the first time

Kernel Programming 2 Virtual Memory



Generic Allocations from slabs

e Slab-based allocators are good for creating caches
of “memory objects”

e All the ojects of a cache have the same size
e Size declared when creating the cache

e 35S0, how does a generic kmalloc () work?
e Isn’tit based on the slab allocator?
e It uses multiple caches, for objects of different sizes!

Kernel Programming 2 Virtual Memory



kmalloc Caches

At boot time, multiple kmalloc—« caches are
created

e For objects of size 8 bytes, 16 bytes, 32 bytes, 64
bytes, 96 bytes, ...
e From 256 bytes to 8 kilobytes, only powers of 2

When kmalloc () Is used to allocate an amount s
of memory, find the kmalloc— object with size
immediately larger than s

See kmalloc () iInmm/slab.c Oormm/slub.c

e For SLAB, do kmalloc ()

Kernel Programming 2 Virtual Memory



kmalloc Details

e If the slab allocator must be used, kmalloc ()
Invokes kmalloc_slab () to find the correct cache

e A kmalloc- cache containing objects that are

large enough
e Seemm/slab_common.c:kmalloc_slab ()

e Fors<192,itusesa size index array
After finding a cache, slab_alloc () is invoked

e See details about SLAB and SLUB

Kernel Programming 2 Virtual Memory



Again on vmalloc

As mentioned, vmalloc () can allocate virtual
memory

e Not contiguous in physical memory
e Notice: it is memory for kernel usage
e Not in a specific process virtual address space

Can work for kernel threads too (see later)
It allocates both a virtual memory fragment and the
corresponding physical memory pages

e Need to modify the default linear mapping

Memory allocated in a specific range of virtual
addresses

e From VMALLOC_START to VMALLOC_END
e vmalloc address space

Kernel Programming 2 Virtual Memory



Basic vmalloc Idea

e Intheory, the vmalloc () behaviour is not difficult to
understand/describe

e Search for a suitable virtual memory fragment (in
the reserved range)

e Compute how many pages of memory are
needed

e Allocate the physical pages one-by-one, storing
them in an array

e Map the physical pages in virtual memory

As usual, the devil is in the details...
Some data structures are needed to store
vmalloc () Information

e Allocated from slab caches or with kmalloc

Kernel Programming 2 Virtual Memory



vmalloc Data Structures

e Definedin include/linux/vmalloc.h

e struct vmap_area: describes the memory
fragment in virtual memory (va_start and
va_end)

e struct vm_struct: describes how phisical
pages are mapped in the virtual memory area

They are stored in lists and rb trees

A vmap_area contains a pointer to its vm_struct

A vm_struct IS actually a simplified version of the
mm_struct describing the virtual address space of a

task

Kernel Programming 2 Virtual Memory



Example: Allocation

e Virtual memory allocation is performed by invoking
vmalloc ()

e vmalloc () Invokes __vmalloc_node_flags (),
that invokes __vmalloc_node () ending up in
__vmalloc_node_range ()

e __vmalloc_node_range () rounds up the memory
size to a multiple of a page, then invokes
__get_vm_area_node (), then inovkes
__vmalloc_area_node ()

e __get_vm_area_node () allocates and initializes
vmap_area and vm_struct

e _vmalloc_area_node () takes care of actually
allocating and mapping the physical pages

Kernel Programming 2 Virtual Memory



Virtual Memory Area Computation

e __get_vm_area_node () allocates vim_struct
(using kmalloc ())

e Then, allocates and fills vmap_area
(alloc_vmap_area())

e vmap_area Is allocated from a dedicated slab
cache

e Then, itis initialized with the correct va_start
and va_end values

e Anditisinserted in a list of used memory areas

e Then, initializes vim_struct with the data from
vmap_area and sets the vm pointer in vmap_area
(setup_vmalloc_vm())

Kernel Programming 2 Virtual Memory



Physical Pages Allocation

__vmalloc_area_node () allocates the physical
pages for the virtual memory area that has been
allocated

First of all, it allocates an array of struct page =

e Funny recursive allocation (can invoke
__vmalloc_node () ...

e Fills the pages and nr_pages fields of
vim_struct

Then, allocates all the pages in a for loop

e Usesalloc.page() oralloc_pages_node ()
(with order 0!)

Finally, maps the allocated physical pages in the
virtual memory area (map_vm_area () )

Kernel Programming 2 Virtual Memory



	Process Address Spaces
	Virtual Memory Regions
	Example: the Heap
	Growing the Heap
	Page Fault Hanling
	Architecture Independent Handler
	Generic Allocations from slabs
	kmalloc Caches
	kmalloc Details
	Again on vmalloc
	Basic vmalloc Idea
	vmalloc Data Structures
	Example: Allocation
	Virtual Memory Area Computation
	Physical Pages Allocation

