
Linux Virtual Memory

Luca Abeni

luca.abeni@santannapisa.it

December 11, 2023



Process Address Spaces

Kernel Programming 2 Virtual Memory

• Every user-space process has a private virtual
address space

• It contains only a subset of all the possible
addresses

• The other addresses are used for the kernel
address space — shared by all processes, but
non accessible from user-space

• The kernel address space uses a linear mapping

• No need to describe it in any data structure
• Exception: vmalloc address space

• The address space of a process is described by
struct mm struct (defined in
include/linux/mm types.h)



Virtual Memory Regions

Kernel Programming 2 Virtual Memory

• The virtual address space of a process is composed
by multiple memory regions

• A memory region for each segment (code, data,
bss, ...)

• The heap is also a memory region

• Memory regions are page-aligned
• Each memory region is described by a struct

vm area struct (defined in
include/linux/mm types.h)

• Organized in lists and rb trees
• Contains a link to its address space (struct

mm struct *vm mm)

• The mmap() system call can create a new region...



Example: the Heap

Kernel Programming 2 Virtual Memory

• malloc() is not a system call: it is a library call

• Implemented in the standard C library (example:
glibc)

• The standarc C library allocates memory from the
heap

• Remember? The heap is one of the memory
regions of the proces...

• What to do when the heap is empty?

• The standard C library cannot allocate memory
anymore...

• ...So, it must grow the heap
• Done by invoking a system call: brk()



Growing the Heap

Kernel Programming 2 Virtual Memory

• brk() system call (do brk(): changes the heap
size

• Technically, it changes the “program break” (end
of the data segment)

• Increasing the program break allows to grow the
heap by adding more virtual memory pages to
this virtual memory region...

• No physical pages are actually allocated!
• Physical pages are allocated only on page faults

• Lazy memory allocation
• So, do not search for alloc page() in the

do brk() call chain...



Page Fault Hanling

Kernel Programming 2 Virtual Memory

• An access to a virtual memory page which is not
mapped in physical memory generates a page fault

• This also happens on write accesses to read-only
pages...

• ...Or in case of violations to page permissions

• Page faults handling is architecture-dependent

• See, for example,
arch/x86/mm/fault.c:exc page fault()

• It accesses architecture-specific registers to get
the faulting address

• It looks at the current task to get the mm struct

structure

• Then, it invokes handle mm fault()



Architecture Independent Handler

Kernel Programming 2 Virtual Memory

• mm/memory.c::handle mm fault() receives the
virtual memory area containing the faulting address,
the address and some flags

• handle mm fault() ends up invoking
handle pte fault()

• For a “regular” memory page, ends up invoking
do anonymous page()

• do anonymous page() ends up in
alloc pages() (with order 0)

• Through alloc zeroed user highpage movable(),

calling alloc page vma()→ alloc pages vma()

with order 0 → alloc pages() (for no NUMA)

• Only when writing to the page for the first time



Generic Allocations from slabs

Kernel Programming 2 Virtual Memory

• Slab-based allocators are good for creating caches
of “memory objects”

• All the ojects of a cache have the same size
• Size declared when creating the cache

• So, how does a generic kmalloc() work?

• Isn’t it based on the slab allocator?

• It uses multiple caches, for objects of different sizes!



kmalloc Caches

Kernel Programming 2 Virtual Memory

• At boot time, multiple kmalloc-* caches are
created

• For objects of size 8 bytes, 16 bytes, 32 bytes, 64
bytes, 96 bytes, ...

• From 256 bytes to 8 kilobytes, only powers of 2

• When kmalloc() is used to allocate an amount s
of memory, find the kmalloc- object with size
immediately larger than s

• See kmalloc() in mm/slab.c or mm/slub.c

• For SLAB, do kmalloc()



kmalloc Details

Kernel Programming 2 Virtual Memory

• If the slab allocator must be used, kmalloc()
invokes kmalloc slab() to find the correct cache

• A kmalloc- cache containing objects that are
large enough

• See mm/slab common.c::kmalloc slab()

• For s ≤ 192, it uses a size index array
• After finding a cache, slab alloc() is invoked

• See details about SLAB and SLUB



Again on vmalloc

Kernel Programming 2 Virtual Memory

• As mentioned, vmalloc() can allocate virtual
memory

• Not contiguous in physical memory
• Notice: it is memory for kernel usage
• Not in a specific process virtual address space

• Can work for kernel threads too (see later)
• It allocates both a virtual memory fragment and the

corresponding physical memory pages

• Need to modify the default linear mapping

• Memory allocated in a specific range of virtual
addresses

• From VMALLOC START to VMALLOC END

• vmalloc address space



Basic vmalloc Idea

Kernel Programming 2 Virtual Memory

• In theory, the vmalloc() behaviour is not difficult to
understand/describe

• Search for a suitable virtual memory fragment (in
the reserved range)

• Compute how many pages of memory are
needed

• Allocate the physical pages one-by-one, storing
them in an array

• Map the physical pages in virtual memory

• As usual, the devil is in the details...
• Some data structures are needed to store

vmalloc() information

• Allocated from slab caches or with kmalloc



vmalloc Data Structures

Kernel Programming 2 Virtual Memory

• Defined in include/linux/vmalloc.h

• struct vmap area: describes the memory
fragment in virtual memory (va start and
va end)

• struct vm struct: describes how phisical
pages are mapped in the virtual memory area

• They are stored in lists and rb trees
• A vmap area contains a pointer to its vm struct

• A vm struct is actually a simplified version of the
mm struct describing the virtual address space of a
task



Example: Allocation

Kernel Programming 2 Virtual Memory

• Virtual memory allocation is performed by invoking
vmalloc()

• vmalloc() invokes vmalloc node flags(),
that invokes vmalloc node() ending up in
vmalloc node range()

• vmalloc node range() rounds up the memory
size to a multiple of a page, then invokes
get vm area node(), then inovkes
vmalloc area node()

• get vm area node() allocates and initializes
vmap area and vm struct

• vmalloc area node() takes care of actually
allocating and mapping the physical pages



Virtual Memory Area Computation

Kernel Programming 2 Virtual Memory

• get vm area node() allocates vm struct

(using kmalloc())
• Then, allocates and fills vmap area

(alloc vmap area())

• vmap area is allocated from a dedicated slab
cache

• Then, it is initialized with the correct va start

and va end values
• And it is inserted in a list of used memory areas

• Then, initializes vm struct with the data from
vmap area and sets the vm pointer in vmap area

(setup vmalloc vm())



Physical Pages Allocation

Kernel Programming 2 Virtual Memory

• vmalloc area node() allocates the physical
pages for the virtual memory area that has been
allocated

• First of all, it allocates an array of struct page *

• Funny recursive allocation (can invoke
vmalloc node()...

• Fills the pages and nr pages fields of
vm struct

• Then, allocates all the pages in a for loop

• Uses alloc page() or alloc pages node()

(with order 0!)

• Finally, maps the allocated physical pages in the
virtual memory area (map vm area())


	Process Address Spaces
	Virtual Memory Regions
	Example: the Heap
	Growing the Heap
	Page Fault Hanling
	Architecture Independent Handler
	Generic Allocations from slabs
	kmalloc Caches
	kmalloc Details
	Again on vmalloc
	Basic vmalloc Idea
	vmalloc Data Structures
	Example: Allocation
	Virtual Memory Area Computation
	Physical Pages Allocation

