
Linux Virtual Machines

Luca Abeni

luca.abeni@santannapisa.it

March 25, 2024



Linux and Virtual Machines

Advanced Kernel Programming Virtual Memory

• Different kinds of Virtual Machines on Linux

• KVM, Xen, VirtualBox, lxc, lxd, Docker, podman,
...

• But... What is a Virtual Machine (VM)?

• Traditional definition : a VM is an efficient,
isolated duplicate of a physical machine

• Why physical machine? Why not virtualizing the
OS kernel, or the OS, or the language runtime?



Hardware Virtualization

Advanced Kernel Programming Virtual Memory

• Can be full hardware virtualization or
paravirtualization

• Paravirtualization requires modifications to guest
OS (kernel)

• Can be based on trap and emulate
• Can use special CPU features (hardware assisted

virtualization)
• In any case, the hardware (whole machine) is

virtualized!

• Guests can provide their own OS kernel
• Guests can execute at various privilege levels



OS-Level Virtualization

Advanced Kernel Programming Virtual Memory

• The OS kernel (or the whole OS) is virtualized

• Guests can provide the user-space part of the
OS (system libraries + binaries, boot scripts, ...)
or just an application...

• ...But continue to use the host OS kernel!

• One single OS kernel (the host kernel) in the system

• The kernel virtualizes all (or part) of its services

• OS kernel virtualization: container-based
virtualization

• Example of OS virtualization: wine



Virtualization at Language Level

Advanced Kernel Programming Virtual Memory

• The language runtime is virtualized

• Often used to achieve independence from
hardware architecture

• Example: Java Virtual Machine
• Often implemented by using emulation techniques

• Interpreter or just-in-time compiler



Hardware Virtualization — How to Implement?

Advanced Kernel Programming Virtual Memory

• Various techniques, more or less efficient
• Modern CPUs provide some kind of support

• Hardware-assisted virtualization
• We need some software component taking

advantage of it!

• Hypervisor: KVM, Xen, ...

1. Hypervisor privilege level, more privileged than
system (kernel)

2. “Special” execution mode: no access to the real
state, but only to a shadow copy!



Shadow CPU State

Advanced Kernel Programming Virtual Memory

• Host execution mode: the “real CPU state” is
accessed

• Can be identical to a CPU without virtualization

• Guest execution mode: the “shadow copy” is
accessed (one copy per guest)

• Data structure in memory, containing a private
copy of the CPU state

• The guest can access it without compromising
security and performance

• The hypervisor can access / modify / control all of
the copies

• Advantage: performance
• Disadvantage: much more complex to use / program



Intel VT-x

Advanced Kernel Programming Virtual Memory

• Intel VT-x technology follows the second approach
for hw assisted virtualization (shadow guest state)

• Distinction between “root mode” and “non-root
mode”

• Both the two execution modes have the
traditional intel privilege levels

• In root mode, the CPU is almost identical to a
“traditional” intel CPU

• In non-root mode, the shadow guest state is stored
in a Virtual Machine Control Structure

• The VMCS actually also contains configuration
data and other things



Using Intel VT-x

Advanced Kernel Programming Virtual Memory

• First, check if the CPU supports it

• Use the cpuid instruction to check for VT-x
• Access a machine specific register to check if

VT-x is enabled

• If it is not, try to enable it - if the BIOS did not
lock it

• Then, initialize VT-x and enter root mode

• Set a bit in cr4

• Assign a VMCS region to root mode
• Execute vmxon

• Now, the difficult part begins...



Creating VT-x VMs

Advanced Kernel Programming Virtual Memory

• Once in root mode, it is possible to create VMs...

• Allocate a VMCS for the VM
• Assign it to the VM (vmptrld instruction)
• Configure the VMCS
• Start the VM (vmlaunch instruction)

• VMCS configuration: host / guest state and control
information)

• Guest state: initialization of the “shadow state”
for the guest

• Host state: CPU state after VM exit
• Control: configure which instructions cause VM

exit, the behaviour of some control registers, ...



VMCS Setup - I

Advanced Kernel Programming Virtual Memory

• Configuring the guest state, it is possible to execute
real-mode, 32bit or 64bit guests, controlling paging,
etc...

• It is possible to configure an inconsistent guest
state

• vmlaunch will fail

• Control information: VM exits (which instructions to
trap), some “shadow control registers”, ...

• Example: guest access to cr0

• Possible to decide if the guest “sees” the host
cr0, the guest cr0, or some “fake value”
configured by the hypervisor

• This is configurable bit-per-bit



VMCS Setup - II

Advanced Kernel Programming Virtual Memory

• VMCS configuration and setup is not easy

• Also, requires to know a lot of details about the
CPU architecture

• Starting a VM (even a “simple” one) requires some
work!

• I skipped the details about nested page tables...

• On the other hand, it is easier to build hosted
hypervisors



The Kernel Virtual Machine

Advanced Kernel Programming Virtual Memory

• Kernel Virtual Machine (kvm): Linux driver for VT-x

• Actually, it also supports AMD’s SVM

• Hides most of the dirty details in setting up a
hardware-assisted VM

• Also checks for consistency of the guest state,
etc...

• Started as an x86-only driver, now supports more
architectures

• With some “tricks”, for example for ARM

• Accessible through a /dev/kvm device file

• Allows to use the “standard” UNIX permission
management



Using kvm

Advanced Kernel Programming Virtual Memory

• First, check if the CPU is supported by kvm

• Open /dev/kvm

• This also checks for permissions

• Then, check the kvm version

• Use the KVM GET API VERSION ioctl
• Compare the result with KVM API VERSION

• Now, create a VM (KVM CREATE VM ioctl)

• Without memory and virtual CPUs
• Memory must be added later

• KVM SET USER MEMORY REGION ioctl

• Virtual CPUs must be created later
• KVM CREATE VCPU ioctl



kvm Virtual CPUs

Advanced Kernel Programming Virtual Memory

• Created after creating a VM, and associated to it

• Allow to create multi-(v)CPU VMs

• After creating a virtual CPU, its state must be
initialized

• Allow to start VMs in real-mode, protected mode,
long mode, etc...

• Done by setting registers and system registers
(KVM {GET,SET} REGS and
KVM {GET,SET} SREGS ioctls)

• Interaction through memory region shared between
kernel and application (mmap())



Virtual CPU Setup

Advanced Kernel Programming Virtual Memory

• Before starting a VM, the state of each virtual CPU
must be properly initialized

• RM, 32bit PM (with or without paging), 64bit “long
mode” (paging is mandatory), ...

• Properly initialize some control registers (cr0,
cr3 and cr4, ...)

• In PM, setup segments

• No need to setup a GDT, kvm can do it for
us!!!

• Page tables configuration

• kvm checks the consistency of this configuration

• Example: if we configures segments, PM must
be enabled in cr0



Running the VM

Advanced Kernel Programming Virtual Memory

• A thread for each virtual CPU
• Loop on the KVM RUN ioctl

• The ioctl can return because of error

• Check for EINTR or EAGAIN

• Or because of a VM exit (KVM EXIT)

• Check the exit reason (KVM EXIT xxx)...
• ...And properly serve it!

• Virtual CPU execution can be interrupted by signals
• Virtual devices implemented serving I/O exits or

accesses to unmapped memory



OS-Level Virtual Machines

Advanced Kernel Programming Virtual Memory

• Virtual Machine: efficient, isolated duplicate of an
operating system (or operating system kernel)

• Do not virtualise the whole hardware

• Only OS services are virtualised
• Host kernel: virtualise its services to provide

isolation among guests

• Container: isolated execution environment to
encapsulate one or more processes/tasks

• Sort of “chroot on steroids”

• Two aspects: resource control (scheduling) and
visibility



More on “Containers”

Advanced Kernel Programming Virtual Memory

• Container: resource control and visibility

• Control how many resources a VM is using
• Make sure that virtual resources of a VM are not

visible in other VMs

• “Resource Containers: A New Facility for Resource
Management in Server Systems” (Banga et al, 1999)

• Operating system abstraction containing all the
resources used by an application to achieve a
particular independent activity

• Today, “container” == execution environment

• Used to run a whole OS → VM (with OS-level
virtualization)

• Used to run a single application / micro-service



Linux Containers

Advanced Kernel Programming Virtual Memory

• The Linux kernel does not directly provide the
“container” abstraction

• Containers can be built based on lower-level
mechanisms: control groups (cgroups) and
namespaces

• namespaces: isolate and virtualise system
resources

• cgroups: limit, control, or monitor resources used
by groups of tasks

• Namespaces are concerned with resources’ visibility,
cgroups are concerned with scheduling



Linux Namespaces

Advanced Kernel Programming Virtual Memory

• Used to isolate and virtualise system resources

• Processes executing in a namespace have the
illusion to use a dedicated copy of the
namespace resources

• Processes in a namespace cannot use (or even
see) resources outside of the namespace

• Processes in a network namespace only see
network interfaces that are assigned to the
namespace

• Same for routing table, etc...

• Processes in a PID namespace only see processes
from the same namespace

• PIDs can be“private to the namespace”



Linux Control Groups

Advanced Kernel Programming Virtual Memory

• Used to restrict (limit, control) or monitor the amount
of resources used by “groups of processes”

• Processes can be organized in groups, to control
their accesses to resources

• Example: CPU control groups for scheduling

• Limit the amount of CPU time that processes can
use, etc...

• Similar cgroups for other resources

• memory, IO, pids, network, ...



Building a Container

Advanced Kernel Programming Virtual Memory

• Namespaces and control group give fine-grained
control on processes and resources

• Per-resource control groups and/or namespaces
• Lower level abstractions respect to other OSs (for

example, FreeBSD jails)

• More powerful than other mechanisms, but more
difficult to use

• To build a container, it is necessary to:

• Setup all the needed namespaces and control
groups

• Create a “disk image” for the container (directory
containing the container’s fs)



Running in a Container

Advanced Kernel Programming Virtual Memory

• Chroot to the container fs

• Must contain the whole OS, or the libraries/files
needed to execute the program to containerize

• Start init, or the program to containerize

• Thanks to the PID namespace, it will have PID 1
in the container!

• Note: init can mount procfs or other
pseudo-filesystems

• Namespaces allow to control the information
exported in those pseudofilesystems!



Example: Networking in Containers

Advanced Kernel Programming Virtual Memory

• Thanks to the network namespace, processes
running in a container do not see the host’s network
interfaces

• How to do networking, then?

• Create a virtual ethernet pair

• Two virtual ethernet interfaces, connected
point-to-point

• Packets sent on one interface are received on the
other, and vice-versa

• Associate one of the two virtual ethernet interfaces
to the network namespace of the container

• Bind the other one to a software bridge



OS-Level Virtualization

Advanced Kernel Programming Virtual Memory

• The OS kernel (or the whole OS) is virtualized

• Focus on kernel virtualization → container-based
virtualization

• Guests can provide the user-space part of the
OS (system libraries + binaries, boot scripts, ...)
or just an application...

• ...But continue to use the host OS kernel!

• One single OS kernel (the host kernel) in the system

• The kernel virtualizes all (or part) of its services

• In this case, a Virtual Machine is based on an
efficient, isolated duplicate of an OS kernel!

• How to provide isolation?



What is a Container, Anyway?

Advanced Kernel Programming Virtual Memory

• We consider container-based virtualization, but...
• ...What is a container?
• Guess? Once again, multiple possible definitions...
• Common properties of a container:

• It contains a group of processes...

• Organized as a tree, with a root process

• ...All running on the same host...
• And provides isolation between this group of

processes and the rest of the host!

• Isolation (whatever it means) is the key point, here!
• Again, how to provide this isolation?



Historical Filesystem Isolation: chroot

Advanced Kernel Programming Virtual Memory

• chroot() system call: changes the root directory
(/) of a process

• Yes, there are per-process root directories!

• Absolute pathnames start from the root directory and
by definition the parent of the root directory does not
exist (and /.. == /)

• So, in theory after chroot(path) it is not possible to
create pathnames referring files outside of path

• Form of filesystem isolation?

• In the past, used by daemons to limit filesystem
access



chroot Isolation: Not So Strong...

Advanced Kernel Programming Virtual Memory

• The chroot() system call just changes the root
directory

• It does not prevent accessing the rest of the
filesystem; it just prevents creating pathnames
pointing to it...

• Moreover, it does not prevent mounting the
filesystem again...

• ...It does not affect network connections or
devices...

• ...And it does not isolate processes!

• Very weak form of isolation: easy to break it!

• Can you show some kind of lack of isolation?
• Can you escape a chroot?



Real Isolation: Namespaces

Advanced Kernel Programming Virtual Memory

• Namespace abstraction: introduced to fix the chroot
issues

• Allow to create isolation for specific
functionalities/resources by controlling what a
group of processes can see...

• Namespaces allow different groups of processes to
have different views of the system

• Main namespaces: mnt, pid, net, ipc, uts, user, ...

• mnt namespace: filesystems mounted inside the
namespace are not visible outside

• pid namespace: pids are mapped to different
values inside the namespaces



Namespaces — Again

Advanced Kernel Programming Virtual Memory

• net namespace: network interfaces (and routing
tables, etc...) inside the namespace are not visible
outside (and vice-versa)

• ipc namespace: isolation on system V IPCs
• uts namespace: allows to have different hostnames

inside and outside the namespace
• user namespace: provide virtualization of user IDs

(a user who is not root outside the namespace can
be root inside, etc...)

• In general, namespaces have to be implemented for
every resource that affects isolation

• A first level of isolation is given by namespaces

• This is for resources visibility; what about
resource consumption?



Filesystem Isolation, Revisited

Advanced Kernel Programming Virtual Memory

• Why there is no “filesystem namespace”?

• Should we use chroot, again?

• The mount namespace can provide a solution!

• If the container rootfs is on a different device, it is
possible to unmount the rest of the filesystem!

• Of course, we need to play some games to move the
container rootfs to “/”

• pivot root()

• mount() with MS MOVE

• Possible to use tmpfs or a loop device



Control Groups

Advanced Kernel Programming Virtual Memory

• Ok, so we have “visibility isolation” with
namespaces...

• Now, let’s assume a bad task inside the “VM” starts
forking processes as crazy

• This will starve the host tasks (or, at least, it will
interfere with their execution)!

• So, we do not have full isolation yet...

• Solution: control groups

• Allow to control the resource usage of a group of
processes

• Control groups for memory, CPUs (cpusets),
scheduling, block devices, other devices, PIDs, ...



User-Space Tools

Advanced Kernel Programming Virtual Memory

• Building and running a container can be difficult...

• But users do not have to do it “by hand”!!!

• User-space tools for building containers and
deploying OSs/applications in them

• Simplest tool: lxc
(http://linuxcontainers.org)

• Server-based version of lxc: lxd
• Docker: more advanced features
• Kubernetes
• ...

• Recent proliferation of tools, all with different
interfaces/features

http://linuxcontainers.org


lxc / lxd

Advanced Kernel Programming Virtual Memory

• lxc: set of tools and libraries that allow to easily use
containers, namespaces and friends

• Focus on installing and running Linux
distributions in containers

• Need root privileges, at least partly
• lxd: daemon running with root privileges and using

the lxc library

• Clients can connect to it through a socket to
request operations on containers

• More secure, because user tools do not need to
be privileged (the only privileged component is
the daemon)



More Advanced Tools

Advanced Kernel Programming Virtual Memory

• Docker, Kubernetes and similar allow to also
containerize single applications

• Container with application binary, libraries,
needed files, etc...

• Useful for distributing consistent execution
environments

• More advanced tools respect to lxc/lxd
• Also provide “container images” distributed with

custom image formats
• Lot of different solutions with different features,

interfaces, etc...

• Let’s try to organize them



Modular Design

Advanced Kernel Programming Virtual Memory

• Modern advanced tools such as Kubernetes or
similar have a modular design

• The high-level tool can rely on different
components, with well-defined interfaces

• The component responsible for managing the
containers execution is the container runtime

• Lot of different tools (even with different features)
with this name

• Example: Kubernetes invokes a runtime manager
implementing the CRI (Container Runtime
Interface)...

• ...Which invokes yet another container runtime!



Container Runtimes

Advanced Kernel Programming Virtual Memory

• Container runtime: software component used to
create, run, and control/manage containers

• Two different kinds: low-level container runtimes,
and high-level ones

• Low-level runtimes just creates, run and control
the execution of containers

• Based on kernel virtualization → must be
provided with an image format

• High-level runtimes use a low-level container runtime
implementing features over it

• For example, image management
• Allow to containerize single applications



Container Runtimes — Examples

Advanced Kernel Programming Virtual Memory

• runc: standard low-level container runtime (see OCI
standard)

• crun: C re-implementation of runc
• lxc: simple low-level container runtime, lxc

commands are more or less reference
implementations

• cri-o: higher level container runtime, uses runc as
a low level, and interfaces with Kunernetes

• podman: higher level container runtime, can use
runc or other standard container runtimes; same
functionalities as Docker

• containerd: higher level container runtime,
implemented as a daemon, used by Docker



Standardizing the Container Tools

Advanced Kernel Programming Virtual Memory

• Open Container Initiative (OCI):
https://www.opencontainers.org/

• Tries to define standards for the user-space tools
• Currently, two standards: runtime specification

and image specification

• Runtime specification: standardizes the
configuration, execution environment, and lifecycle of
a container

• A “filesystem bundle” described according to this
specification can be started in a container by any
compliant runtime

• Image specification: standardizes how the content of
a container is represented in binary form

https://www.opencontainers.org/


OCI’s Goals

Advanced Kernel Programming Virtual Memory

• Define containers in a “technology neutral” way
• Container: encapsulates a software component and

all its dependencies

• Using a format that is self-describing and
portable

• Any compliant “runtime” must be able to run it
without extra dependencies

• This must work regardless of the implementation
details

• Underlying machine, containerization technology,
contents of the container, ...



OCI Runtime Specification

Advanced Kernel Programming Virtual Memory

• Standardizes important aspects of containers

• Configuration: specified through a standardized
config.json, describing all the details of the
container

• Execution environment: standardized so that
applications running in containers see a
consistent environment between runtimes

• Standard operations possible during the
containers’ lifecycles

• If a “runtime” is compliant with these specifications,
the implementation details do not matter



More than Containers

Advanced Kernel Programming Virtual Memory

• Looking at the OCI definitions, there is not mention
to OS-level virtualization anymore...

• The terms “container” and “containerized
application” are evolving...

• “container” is just a synonim for “lightweight virtual
machine”, independently from the used technology

• Kata containers: use kvm-based VMs
(qemu/nemu) instead of namespaces and
cgrouops

• Compliant with the OCI runtime specification

• Thanks to OCI, it is possible to almost transparently
replace the runtime/containerization mechanism
without changing userspace tools!


	Linux and Virtual Machines
	Hardware Virtualization
	OS-Level Virtualization
	Virtualization at Language Level
	Hardware Virtualization — How to Implement?
	Shadow CPU State
	Intel VT-x
	Using Intel VT-x
	Creating VT-x VMs
	VMCS Setup - I
	VMCS Setup - II
	The Kernel Virtual Machine
	Using kvm
	kvm Virtual CPUs
	Virtual CPU Setup
	Running the VM
	OS-Level Virtual Machines
	More on ``Containers''
	Linux Containers
	Linux Namespaces
	Linux Control Groups
	Building a Container
	Running in a Container
	Example: Networking in Containers
	OS-Level Virtualization
	What is a Container, Anyway?
	Historical Filesystem Isolation: chroot
	chroot Isolation: Not So Strong...
	Real Isolation: Namespaces
	Namespaces — Again
	Filesystem Isolation, Revisited
	Control Groups
	User-Space Tools
	lxc / lxd
	More Advanced Tools
	Modular Design
	Container Runtimes
	Container Runtimes — Examples
	Standardizing the Container Tools
	OCI's Goals
	OCI Runtime Specification
	More than Containers

