Safe Programming Concepts

Luca Abeni
luca.abeni@santannapisa.it

February 24, 2020



Enforcing Type/Memory Safety

e [Focus on static checks
e When possible...

Need for a “strong type system”
No NULL pointers/references

e Option types might help, here
e Some languages already provide them

e No “arbitrary assignments” to pointers / no pointer
arithmetic
e No free (), but no garbage collection!

e How to do this?

Safe System Programming Safe Programming Concepts



Strong Type Systems

So, what is a “strong type system”?
e And, what is a type system after all?
Many different definitions (once again...)

e Purpose of a type system: defining, detecting,
and preventing illegal program states

e Done by applying constraints on the usage of
variables, values, functions, ...

Pretty theoretical stuff, we need a more pragmatic
definition

Strong type system: imposes more constraints and
restrictions

Safe System Programming Safe Programming Concepts



Type Systems: Pragmatic Definition

e Less theoretical definition... A type system is
composed by:

A set of predefined types

A set of mechanisms for building new types
(based on existing ones)

e A set of rules for working with types

e Equivalence, compatibility (automatic
conversion), inference, ...

e Rules for type checking (static or dynamic)
e Let's see a pragmatic definition of “strong” too...

Safe System Programming Safe Programming Concepts



Things to Avoid — 1

e No Python-like dynamic typing

v = 10
print (v)

v = "Hi There!™
print (v)

v = None
print (v)

v = 3.14
print (v)

e Even if the language allows it, avoid this (ab)use of
dynamic typing

Safe System Programming Safe Programming Concepts



Things to Avoid — 2

e No C-style automatic promotion

#include <stdio.h>

int main ()

{
double v

int 1

; int %
/ 2.2; double d

6.06
6.6

printf ("V=%f v2=%d_I=%d_D=%f\n", v, v2, i, d);

—

return 0O;

e Even with well-defined rules, static checks are
weaker

e Difficult to understand if “int 1 = 6.6 / 2.27
IS a typo or a wanted conversion

Safe System Programming Safe Programming Concepts



Type Checking and Inference

Strong type system — more constraints/restrictions
e Strict rules for assignments/bindings

The compiler can algorithmically check if a variable
has the right type

e S0, why forcing the programmer/user to specify
types?

e Instead of checking the correctness of type
annotations, the compiler can directly infer the
type of each variable!

Few exceptions due to polymorfism or similar...

Safe System Programming Safe Programming Concepts



Examples of Type Inference

e (C++ with the “auto” keyword

auto 1 = 5;

e But “auto”is more useful for things like this:

auto £ = [] (int a , int b) {
return a + b;
¥

e Standard ML

> val a=5;

val a = 5: 1nt

>wval £f = fn x => x / 2.0;

val £ = £n: real —-> real

> fun fact n = n » fact (n - 1);

val fact = £n: int —> 1int

Safe System Programming Safe Programming Concepts



References, with No NULL

e Thingslike “int *p = 0x666;” must be forbidden
e Pointer/reference initialization/assignment only:

e From dynamic allocation (either automatic or
new, but not malloc ())
e From existing variables
e Pointers/references are always valid

e NULL/invalid pointers/references do not exist
e (Can be handled by using option types

Safe System Programming Safe Programming Concepts



Garbage Collectors

Traditional way to avoid explicit memory deallocation
Periodically check the heap

e Scan for unused (non-reachable) memory
e Re-compact referenced memory in the heap, and

free then one not recompacted
®

e In general, non-trivial actions at runtime

e Might need a non-negligible amount time
e Need a complex runtime

e C(Can this complexity/overhead be reduced?

e Is it possible for the compiler to automatically
insert the needed memory deallocations in the
generated code?

Safe System Programming Safe Programming Concepts



Some Ideas (from C++!)

e Resource Acquisition Is Initialization (RAII)

e Some kind of resource is allocated in the
constructor of a class — instantiating an object
allocates the resouce

e Resource de-allocated in the destructor — when
the object goes out of scope, the resource is
deallocated

o Useful, for example, for mutexes
(“std::lock_guard’)...

e ...But think about memory (dynamically allocated
from the heap) as a “resource”

e Memory allocated when a “pointer” is
instantiated, and freed when it goes out of scope!

Safe System Programming Safe Programming Concepts



Reference Counting

e How to implement the RAIl approach on dynamically
allocated memory?
e Firstidea: reference counting

e (Counter associated to each chunk of dynamically
allocated memory

e New reference to the memory — increase the
counter

e Reference destroyed (out of scope) — decrease
the counter; if counter == 0O, free the memory

e Low overhead, but something is still needed at
runtime

e [ails miserably with circular references (including
doubly-linked lists)

Safe System Programming Safe Programming Concepts



Special Case: Single Reference

e If we remove the possibility to have multiple
references to the same data structure, things
become simpler

e Dynamically allocated memory with only one
reference to it — when the reference is destroyed
(goes out of scope), deallocate the memory

e No need for complex runtime support
e The compiler can add what is needed in the
generated code

e Problem: how to enforce the “only one reference to
the allocated memory” property?

Safe System Programming Safe Programming Concepts



Smart Pointers

e Smart Pointer: data structure encapsulating a
pointer (and eventually a reference counter)
e Allows to control how the pointer is used

e Can implement reference counting
Can easily enforce the “only one reference”
property (and free the memory when the data
structure Is destroyed)

e Example: C++ “std: :shared_ptr’,
“std: :weak_ptr”and “std: :unique_ptr’

e Allow to implement RAIl with different constraints
(multiple references to single “resource”, some
forms of circular references, single reference to
“resource”)

Safe System Programming Safe Programming Concepts



Smart Pointers — 2

Shared pointers: implement reference counting
Weak pointers: to be used with shared pointers (get
a reference without increasing the counter)

e Allow to implement doubly-linked lists, but risk to
open another can of worms

e Unique pointers: only one valid reference to the
pointer memory

e (Copy between unique pointers (or direct
assignment) is not possible

e “std::move ()” must be used instead (see
“move semantic”)

e Destructor/reset — delete the pointed object

Safe System Programming Safe Programming Concepts



Programming Style and Programming Languages

All of this can be done with many different
programming languages...

...But most of the existing languages do not actually
enforce the usage of safe programming techniques

e Example: Some PLs have option types...
...But also provide “forced unwrapping” (or
similar) things!

Some languages even allow to break the safety
provided by some constructs!

e C++ provides smart pointers...

e ..But does not forbid “traditional” pointers, that
can easily compromise the usage of smart
pointers!

Safe System Programming Safe Programming Concepts



	Enforcing Type/Memory Safety
	Strong Type Systems
	Type Systems: Pragmatic Definition
	Things to Avoid — 1
	Things to Avoid — 2
	Type Checking and Inference
	Examples of Type Inference
	References, with No NULL
	Garbage Collectors
	Some Ideas (from C++!)
	Reference Counting
	Special Case: Single Reference
	Smart Pointers
	Smart Pointers — 2
	Programming Style and Programming Languages

