
Rework load_balance
Vincent Guittot

20 May 2019



Agenda
● Introduction
● UCs
● Statistics
● Policy



Introduction
● Some UCs not correctly handle yet
● Others seem to be randomly supported

● Simplify calculate_imbalance
○ Remove old/meaningless heuristics
○ Remove weird imbalance calculation

■ Don’t set a value that “should” be enough to fix the imbalance

● Replace UC’s specific classification of group by generic tag

● Metrics have evolved
○ Runnable_load_avg
○ Util_avg
○ Load_avg



Some UCs



1 task per CPU
● 1 task per CPU with asymmetries

○ big Little

○ RT/DL/IRQ stolen time
○ Thermal pressure ?



fix_small_imbalance
● Depends of the weight of the tasks

● Depends of the initial state
○ Tasks placement

● Asymmetries screw up the default load balance mechanism
○ Compare load_avg



Class preemption
● CFS task preempted by RT but idle/newidle doesn’t pull waiting task

○ Only takes into account cfs.h_nr_running

16ms period

4ms RT task

Idle load balance



Running tasks
● Take into account tasks from other classes

○ Minimize resources contention

● Take into account sched_idle task
○ Improve scheduling latency



Ensure fairness
● Unbalanced system

○ 9 tasks on 8 CPUs

● When/How do we periodically migrate tasks to ensure fairness ?



Ensure fairness
● When does a task migrate ?

○ At every load_balance
○ with fix_small_imbalance

● Result looks a bit random
○ Use a more stable mechanism



Some UCs
● And probably lot of others



Statistics



Statistics
● running tasks

○ only nr_h_running is tracked
○ What about nr_running ?
○ What about CPUs with only sched_idle ?

● Utilization:
○ Util_avg is used to estimate spare capacity
○ But take care of jump due to migration
○ Util_est not always mitigate this effect

● Load :
○ Runnable is currently used
○ Lot of variance
○ Track both load and runnable_load ? similarly to find_idlest_group

● Capacity
○ Average available capacity: Max - IRQ/DL/RT and may be thermal 



utilization
● Hackbench

○ CPUs are fully used
○ Lot of migration

● util_avg or util_est
○ Not always meaningful

● Take into runnable time ?
○ waiting time

1024



runnable load
● runnable load quite high

● Lot of waiting time

1024

10k



Runnable vs load
● Runnable_load vs load

○ Runnable_load gives current running state
○ can use nr_running and utilization instead ?

● Remove weight from runnable
○ Track waiting time of tasks



Statistics
● Don’t bias statistics like with prefer sibling

○ Tag the group instead

● load_per_task
○ Doesn’t mean anything
○ Used when we don’t know how much to move
○ Should replaced by an explicit force migration

● sum_weighted_cpuload
○ Is the same as group_load since 4.19 and the disable of LB_BIAS
○ And remove cpu_load ...



Statistics
● nr_h_running
● nr_running
● sched_idle state
● Utilization : max(util_ag, util_est)
● Runnable_load_avg
● Load_avg
● capacity



Policy



Load balance sequence
● Load_balance

○ should_we_balance: select 1st idle or 1st CPU of the group
○ find_busiest_group(&env);
○ find_busiest_queue(&env, group);
○ Move waiting tasks or running task
○ Update balance interval

● Most of the work is done in
○ find_busiest_group
○ And find_busiest_queue to a lesser extend



Find busiest group
● find_busiest_group

○ Update statistics and classify groups
○ A list of conditions to decide if we are balanced
○ Calculate imbalance



Classify group
● Default state for the group

○ other
○ overloaded

● Plus some special cases
○ Imbalance
○ Misfit task

● Plus some short cut for asym packing

● Simplify the algorithm
○ Remove UC dedicated state



Group state
● Set a state for the group

○ Has capacity
○ Fully Busy
○ Overloaded

● Plus special cases
○ Fill an empty cpu
○ Move any task but at least one
○ Move a minimum load/util
○ Move a dedicated task



Policy
● Normal case: “overloaded”

○ we compute the load to move

● Other specific UCs where we want to move task
○ Fill an empty cpu
○ Unblocked a pinned related imbalance by moving any task
○ Move big task on big CPU
○ A dedicated task

● Imbalance can be a load or an utilization or a dedicated task



Thank you
Join Linaro to accelerate deployment of your 
Arm-based solutions through collaboration

contact@linaro.org 

mailto:contact@linaro.org





