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Introduction

e Some UCs not correctly handle yet
e Others seem to be randomly supported

e Simplify calculate_imbalance
o Remove old/meaningless heuristics
o Remove weird imbalance calculation
m Don't set a value that “should” be enough to fix the imbalance

e Replace UC’s specific classification of group by generic tag

e Metrics have evolved
o Runnable_load_avg
o Util_avg
o Load_avg
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Some UCs



1 task per CPU

e 1 task per CPU with asymmetries
o big Little
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fix_small_imbalance

e Depends of the weight of the tasks

e Depends of the initial state
o Tasks placement

e Asymmetries screw up the default load balance mechanism
o Compare load_avg
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Class preemption

e CFS task preempted by RT but idle/newidle doesn’t pull waiting task
o  Only takes into account cfs.h_nr_running
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Running tasks

e Take into account tasks from other classes
o Minimize resources contention

e Take into account sched_idle task
o Improve scheduling latency



Ensure fairness

e Unbalanced system
o 9tasks on 8 CPUs

e When/How do we periodically migrate tasks to ensure fairness ?
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Ensure fairness

e When does a task migrate ?
o Ateveryload_balance
o with fix_small_imbalance

e Resultlooks a bit random
o Use a more stable mechanism



Some UCs

e And probably lot of others



Statistics
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Statistics

e running tasks
o only nr_h_running is tracked
o  What about nr_running ?
o  What about CPUs with only sched_idle ?
e Utilization:
o Util_avg is used to estimate spare capacity
o But take care of jump due to migration
o Util_est not always mitigate this effect
e Load:
o Runnable is currently used
o Lot of variance
o Track both load and runnable_load ? similarly to find_idlest_group
e Capacity
o Average available capacity: Max - IRQ/DL/RT and may be thermal
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utilization
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runnable load
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Runnable vs load

e Runnable_load vs load
o Runnable_load gives current running state
o can use nr_running and utilization instead ?

e Remove weight from runnable
o Track waiting time of tasks
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Statistics

e Don't bias statistics like with prefer sibling
o Tagthe group instead

e |oad_per_task
o Doesn’'t mean anything
o Used when we don’t know how much to move
o  Should replaced by an explicit force migration

e sum_weighted_cpuload

o Isthe same as group_load since 4.19 and the disable of LB_BIAS
o And remove cpu_load ...
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Statistics

nr_h_running

nr_running

sched_idle state

Utilization : max(util_ag, util_est)
Runnable_load_avg

Load_avg

capacity
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Load balance sequence

e Load_balance

O

O O O O

should_we_balance: select 1st idle or 1st CPU of the group
find_busiest_group(&env);

find_busiest_queue(&env, group);

Move waiting tasks or running task

Update balance interval

e Most of the work is done in
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find_busiest_group
And find_busiest_queue to a lesser extend
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Find busiest group

e find_busiest_group
o Update statistics and classify groups
o Alist of conditions to decide if we are balanced
o Calculate imbalance



Classify group

e Default state for the group
o other
o overloaded

e Plus some special cases
o Imbalance
o  Misfit task

e Plus some short cut for asym packing

e Simplify the algorithm
o Remove UC dedicated state

Linaro



Group state

e Set a state for the group
o Has capacity
o  Fully Busy
o Overloaded

e Plus special cases
o Fillan empty cpu
o Move any task but at least one
o Move a minimum load/util
o Move a dedicated task
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Policy

e Normal case: “overloaded”
o we compute the load to move

e Other specific UCs where we want to move task
o Fillan empty cpu
o Unblocked a pinned related imbalance by moving any task
o Move big task on big CPU
o A dedicated task

e Imbalance can be a load or an utilization or a dedicated task
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