£411001

Rework IOCId_b(]lqnce*
Vincent Guittot 1100100 001000

20 May 2019 =

"_’—"

e —

Agenda

Introduction
UCs
Statistics
Policy

Introduction

e Some UCs not correctly handle yet
e Others seem to be randomly supported

e Simplify calculate_imbalance
o Remove old/meaningless heuristics
o Remove weird imbalance calculation
m Don't set a value that “should” be enough to fix the imbalance

e Replace UC’s specific classification of group by generic tag

e Metrics have evolved
o Runnable_load_avg
o Util_avg
o Load_avg

Linaro
A

Some UCs

1 task per CPU

e 1 task per CPU with asymmetries
o big Little

Pointer: 55512.263955 Cursor: 55512.283645 Markel‘. 55512.283709 Marker. 55512.411817 A,B Delta: 0.128108
Time

Line

T
55512.136718

< V13 I I

T
55512.397873

CPU1 =
sched_Ib
CPU2
CPU3
CPU4 =2
sched_Ib
CPUS

CPUG6

CcPU7

@)
©)

RT/DL/IRQ stolen time
Thermal pressure ?

fix_small_imbalance

e Depends of the weight of the tasks

e Depends of the initial state
o Tasks placement

e Asymmetries screw up the default load balance mechanism
o Compare load_avg

Linaro

Class preemption

e CFS task preempted by RT but idle/newidle doesn’t pull waiting task
o Only takes into account cfs.h_nr_running

CPUO

T
23905.721660

CPU1

(m) idieloadbalance ————m

T
23905.732496

CPU2

CPU3

CcPU4

CPUS

4ms RT task

CPUG6 mull

CPU7

| | L

——

16ms period

Running tasks

e Take into account tasks from other classes
o Minimize resources contention

e Take into account sched_idle task
o Improve scheduling latency

Ensure fairness

e Unbalanced system
o 9tasks on 8 CPUs

e When/How do we periodically migrate tasks to ensure fairness ?

Time Line

T T
2381.328783 2381.833698

CPUO
cPU1
cPU2
cPU3
CPU4
CPUS
CPU6

CPU7

Ensure fairness

e When does a task migrate ?
o Ateveryload_balance
o with fix_small_imbalance

e Resultlooks a bit random
o Use a more stable mechanism

Some UCs

e And probably lot of others

Statistics

llllll

Statistics

e running tasks
o only nr_h_running is tracked
o What about nr_running ?
o What about CPUs with only sched_idle ?
e Utilization:
o Util_avg is used to estimate spare capacity
o But take care of jump due to migration
o Util_est not always mitigate this effect
e Load:
o Runnable is currently used
o Lot of variance
o Track both load and runnable_load ? similarly to find_idlest_group
e Capacity
o Average available capacity: Max - IRQ/DL/RT and may be thermal

Linaro

utilization

[] H ac kb enc h Pointer: 8296.625094 Cursor: 8294.921101 Markerfll 8296.571037 Markerlll 8296.671210 A8 Delta: 0.100172

‘ Time Line

@) CPUS are fUIIy used w9592916 296 642965
. . P2 NN I 1 Il |
o Lot of migration

1150

1100

e util_avg or util_est =1024 e
o Not always meaningful

. . 850 L ——"
e Take into runnable time ? e —
o waiting time Nﬂjﬁ]ﬁ"

8296575 820658 8296585 829659 8296595 82966 B296.605 B29661 8296615 829662 B296.625 829663 8296635 B29664 8296645 B29665 8296655 629666 B296.665 B296.67
Time

runnable load

[] runnd ble |OG d q u |te h ig h Pointer: 8296.625094 Cursor: 8294.921101 Markerl 8296571037 Markerl] 8296.671210 A8 Delta: 0.100172
TimeLine

8296.592916 8296.642965

e Lot of waiting time

“13.
110k N l M LLU-—ﬂ [M‘i‘ H ’ ’r‘ rflv-pﬁ” "‘J
W My

g™ T | L~ iﬂﬂ =M
. WMJ o] } MIM \ u%%w

ﬂ.,f

8296595 B296.6 6296605 820661 8206615 829662 5296625 829663 8296635 529664 8296645 B296.65 B296.655 8296.66
Time -

Runnable vs load

e Runnable_load vs load
o Runnable_load gives current running state
o can use nr_running and utilization instead ?

e Remove weight from runnable
o Track waiting time of tasks

Linaro

Statistics

e Don't bias statistics like with prefer sibling
o Tagthe group instead

e |oad_per_task
o Doesn’'t mean anything
o Used when we don’t know how much to move
o Should replaced by an explicit force migration

e sum_weighted_cpuload

o Isthe same as group_load since 4.19 and the disable of LB_BIAS
o And remove cpu_load ...

Linaro

Statistics

nr_h_running

nr_running

sched_idle state

Utilization : max(util_ag, util_est)
Runnable_load_avg

Load_avg

capacity

Policy

Load balance sequence

e Load_balance

O

O O O O

should_we_balance: select 1st idle or 1st CPU of the group
find_busiest_group(&env);

find_busiest_queue(&env, group);

Move waiting tasks or running task

Update balance interval

e Most of the work is done in

©)
@)

find_busiest_group
And find_busiest_queue to a lesser extend

Linaro
W

Find busiest group

e find_busiest_group
o Update statistics and classify groups
o Alist of conditions to decide if we are balanced
o Calculate imbalance

Classify group

e Default state for the group
o other
o overloaded

e Plus some special cases
o Imbalance
o Misfit task

e Plus some short cut for asym packing

e Simplify the algorithm
o Remove UC dedicated state

Linaro

Group state

e Set a state for the group
o Has capacity
o Fully Busy
o Overloaded

e Plus special cases
o Fillan empty cpu
o Move any task but at least one
o Move a minimum load/util
o Move a dedicated task

Linaro

Policy

e Normal case: “overloaded”
o we compute the load to move

e Other specific UCs where we want to move task
o Fillan empty cpu
o Unblocked a pinned related imbalance by moving any task
o Move big task on big CPU
o A dedicated task

e Imbalance can be a load or an utilization or a dedicated task

Linaro
W

LALIVU]

Thank you

Join Linaro to accelerate deployment of your

Arm-based solutions through collaboration
J0011

contact@linaro.org 1110011

<1100 01111001
' NILllw\}l)H

> "—" o111
101114
"‘

mailto:contact@linaro.org

