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Juggling scheduling entities:
the android display pipeline use case
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What you see, and what you don't

@VSYNC: Application

1. Reads input data
2. Prepares its rasterized frame
3. Commits the frame to the SurfaceFlinger

@VSYNC: SurfaceFlinger

1. Reads the buffers from App, Status Bar, Navigation Bar
2. Composites (merges) them
3. Commits the whole screen frame to the display
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Prerequisites: inter-task communication

When not specified, tasks notification mechanism uses signalfd + epoll

Display Pipeline data is transferred among tasks via BufferQueues + gralloc

Producer Consumer
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GPU operations between userspace and kernel are synchronized with sync_fences

android



Almost fully detailed Android Display Pipeline
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Simplified Display Pipeline
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The two pipelines
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Wishlist

Low latency No frame dropping

e Avoid long buffers e Soft real-time, stable 60fps

Low energy

e Mobile devices
e Limited TouchBoosting

android



Open issue: CES

The kernel thinks Ui Thread and RenderThread are independent, so are their utilizations

RenderThread
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What if CES + UtilClamp?

UtilClamp allows to constraint min and/or max utilization of single (or a groups of) threads
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ClndrOid [PATCH v9 00/16] Add utilization clamping support — Patrick Bellasi
https://lore.kernel.org/lkmi/20190515094459.1031/-1-patrick.bellasi@arm.com


https://lore.kernel.org/lkml/20190515094459.10317-1-patrick.bellasi@arm.com/

Open issue: CES

Pros: Ccons:
e Utilization-driven OPP selection e App threads are fundamental for the user
e Fair load distribution experience

o They should not fight against other
low-priority services for the CPU

o They should be scheduled ASAP
e No notion of deadline

oyt i

Low energy

android



Open Issue: RT

Pros: Cons:
e We start talking about real-time e Ui Thread and RenderThread are App threads, so
e Better latency: not preempted by CFS tasks we cannot trust their execution times

m [hey should not starve system processes
o Fundamental for the user experience
m [hey cannot be rt-throttled, maybe demoted
e They are not time-critical all the time
e No notion of deadline

Low latency

SCHED_RT in Android not implies max OPP, but is
modulated on utilization heuristics with schedutil
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Open issue: DL

Pros: Cons:

e Better latency: highest priority sched class e Deadline throttling is still very aggressive

e Tasks have a deadline e Does not work well with task suspensions

e Bandwidth constraints e Does not work well with inheritance

e OPP selection based on runtime and period e Conservative: a lot of bandwidth is required for
both the tasks
(the sum of the acceptably worst cases), but

-
not all the sections of our tasks are
ﬁ time-critical
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What if DL + Proxy Execution?

Our tasks have a time-critical path that is sequential
What if we provide a mechanism to transfer a “token” (dl-entity properties) among tasks?

Like a single dl-entity that is sequentially used by multiple tasks
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Open issue: DL + Proxy Execution

Parameters of the “shared” dl-entity updated with a feedback loop

Pros: Cons:

e Same as DL: e Deadline throttling is still very aggressive
o Better latency: highest priority sched class e Does not work well with task suspensions
o Tasks have a deadline e Does not work well with inheritance

o Bandwidth constraints
o OPP selection based on runtime and period

o Less conservative:
(the acceptably worst case of the sum) *
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Open issue: Hierarchical DL/RT Scheduling

Special DL entities represent groups of RT tasks

Pros: Ccons:

e Theoretically simpler schedulability analysis e Drawbacks of DL are inherited,

e RT bandwidth constraints + deadlines e.qg., affinities, bandwidth pessimism, ...

e A group of tasks shares the same DL e Overhead due to another scheduling layer
e GRUB-PA also for RT groups e Lots of migrations

e Clean RT and CFS bandwidth enforcement
code duplications

Low energy

[RFC PATCH 0/3] RT bandwidth constraints enforced by hierarchical DL scheduling

ClndrOId Alessio Balsini -—- https://lkml.org/lkml/2017/3/31/658


https://lkml.org/lkml/2017/3/31/658

Recap, Discussion, Action ltems
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Does it make sense to implement a
Proxy Execution mechanism?

e How? Yet another sched _setattr?

What to do when tasks are throttled?

e Low OPP is hard to recover, but throttling is a

harsh punishment

How to measure frequency/capacity invariant

CPU time from userspace?

e CLOCK_PROCESS_CPUTIME_INV_ID
e CLOCK_THREAD_CPUTIME_INV |L
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