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What you see, and what you don’t

Status Bar

App UI

Navigation Bar

@VSYNC: Application

1. Reads input data
2. Prepares its rasterized frame
3. Commits the frame to the SurfaceFlinger

@VSYNC: SurfaceFlinger

1. Reads the buffers from App, Status Bar, Navigation Bar
2. Composites (merges) them
3. Commits the whole screen frame to the display
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When not specified, tasks notification mechanism uses signalfd + epoll

Display Pipeline data is transferred among tasks via BufferQueues + gralloc

GPU operations between userspace and kernel are synchronized with sync_fences

Prerequisites: inter-task communication

ConsumerProducer

Fill buffer Consume buffer

dequeueBuffer

queueBuffer

acquireBuffer

releaseBuffer
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Almost fully detailed Android Display Pipeline
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Simplified Display Pipeline
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Ui Thread
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No frame dropping

● Soft real-time, stable 60fps

Low latency

● Avoid long buffers

Low energy

● Mobile devices
● Limited TouchBoosting

Wishlist
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util=0.5

0.5 * maxFreq
looks fair

Open issue: CFS

The kernel thinks Ui Thread and RenderThread are independent, so are their utilizations

Ui Thread

RenderThread

Urq2: ~0.2

Urq1: ~0.5 Ui Thread

RenderThread

1 2 3
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AppUi
group

util=0.5

AppUi::utilMin=0.6

0.6 * maxFreq
looks fair

What if CFS + UtilClamp?

UtilClamp allows to constraint min and/or max utilization of single (or a groups of) threads

1 2 3

Ui Thread

RenderThread

Urq2: ~0.2

Urq1: ~0.5

AppUi
group

Ui Thread

RenderThread

[PATCH v9 00/16] Add utilization clamping support --- Patrick Bellasi
https://lore.kernel.org/lkml/20190515094459.10317-1-patrick.bellasi@arm.com/

https://lore.kernel.org/lkml/20190515094459.10317-1-patrick.bellasi@arm.com/
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Open issue: CFS
Cons:

● App threads are fundamental for the user 
experience

○ They should not fight against other 
low-priority services for the CPU

○ They should be scheduled ASAP
● No notion of deadline

Pros:

● Utilization-driven OPP selection
● Fair load distribution

No janksLow latency

Low energy
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Open issue: RT

SCHED_RT in Android not implies max OPP, but is
modulated on utilization heuristics with schedutil

Cons:

● Ui Thread and RenderThread are App threads, so 
we cannot trust their execution times
■ They should not starve system processes

○ Fundamental for the user experience
■ They cannot be rt-throttled, maybe demoted

● They are not time-critical all the time
● No notion of deadline

Pros:

● We start talking about real-time
● Better latency: not preempted by CFS tasks

No janksLow latency

Low energy

Low energy
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Open issue: DL
Cons:

● Deadline throttling is still very aggressive
● Does not work well with task suspensions
● Does not work well with inheritance
● Conservative: a lot of bandwidth is required for 

both the tasks
(the sum of the acceptably worst cases), but 
not all the sections of our tasks are 
time-critical

Pros:

● Better latency: highest priority sched class
● Tasks have a deadline
● Bandwidth constraints
● OPP selection based on runtime and period

No janksLow latency

Low energy
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RenderThread

What if DL + Proxy Execution?

Our tasks have a time-critical path that is sequential

What if we provide a mechanism to transfer a “token” (dl-entity properties) among tasks?

Like a single dl-entity that is sequentially used by multiple tasks

Ui Thread

RenderThread
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Open issue: DL + Proxy Execution

Cons:

● Deadline throttling is still very aggressive
● Does not work well with task suspensions
● Does not work well with inheritance

Pros:

● Same as DL:
○ Better latency: highest priority sched class
○ Tasks have a deadline
○ Bandwidth constraints
○ OPP selection based on runtime and period

● Less conservative:
(the acceptably worst case of the sum)

No janksLow latency

Low energy

Parameters of the “shared” dl-entity updated with a feedback loop
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Open issue: Hierarchical DL/RT Scheduling

Cons:

● Drawbacks of DL are inherited,
e.g., affinities, bandwidth pessimism, …

● Overhead due to another scheduling layer
● Lots of migrations

Pros:

● Theoretically simpler schedulability analysis
● RT bandwidth constraints + deadlines
● A group of tasks shares the same DL
● GRUB-PA also for RT groups
● Clean RT and CFS bandwidth enforcement 

code duplications No janksLow latency

Low energy

Special DL entities represent groups of RT tasks

[RFC PATCH 0/3] RT bandwidth constraints enforced by hierarchical DL scheduling
Alessio Balsini --- https://lkml.org/lkml/2017/3/31/658

https://lkml.org/lkml/2017/3/31/658
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Recap, Discussion, Action Items
Does it make sense to implement a
Proxy Execution mechanism?

● How? Yet another sched_setattr?

What to do when tasks are throttled?

● Low OPP is hard to recover, but throttling is a 
harsh punishment  

How to measure frequency/capacity invariant 
CPU time from userspace?

● CLOCK_PROCESS_CPUTIME_INV_ID
● CLOCK_THREAD_CPUTIME_INV_ID

CFS + UtilClamp

RT + UtilClamp

DL + Proxy Execution

DL/RT Hierarchical
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