OSPM 2019, Pisa

Juggling scheduling entities:
the android display pipeline use case

-Alessio Balsini

What you see, and what you don't

@VSYNC: Application

1. Reads input data
2. Prepares its rasterized frame
3. Commits the frame to the SurfaceFlinger

@VSYNC: SurfaceFlinger

1. Reads the buffers from App, Status Bar, Navigation Bar
2. Composites (merges) them
3. Commits the whole screen frame to the display

android

Prerequisites: inter-task communication

When not specified, tasks notification mechanism uses signalfd + epoll

Display Pipeline data is transferred among tasks via BufferQueues + gralloc

Producer Consumer

—
—

dequeueBuffer acquireBuffer

Fill buffer < < >C<>nsume buffer
~—_ | |
queueBuffer ~ releaseBuffer

GPU operations between userspace and kernel are synchronized with sync_fences

android

Almost fully detailed Android Display Pipeline

RenderThread

Dequeue
Queue

appEventThread
(Binder)
~ BufferQueue (App — SF)
N o) S
— = g
o 3 S
= . 5 3
L Ui Thread = r
: : :
S LLl
— =
-] el e
2 BufferQueue (SF — HWComposer) % E @'\
£ 8 N
O
DispSync > \

" MmN -
| =

© (IR

android

Simplified Display Pipeline

L o RenderThread Suuuus Time-critical path
7)) < :
q0) L :
© o | UiThreag —Uumuur Non-time-critical path
C <
@
S 3
O %
O
’ o RenderThread

> a = i
8 ~’ % Ui Threag

<
o
AP
M ' ' % Ui Thread

7))

Event =
* 16.6ms (60fps)

android

The two pipelines

RenderThread

o : :
Q. : :
. \ 5 5

u u
]
]]
]
]]
]
]]
]
]]
]
]]
]
]]
]
]]
]
]]
]
]]
]
]
]
]
]
]
]
]
]
[]
]
[
.
]
[
]
[
]
[
]
[
]
[
[
n
[
]
]
]
]
]
]
]
]
]
]
]
]
]
]]
]
]]
]
]]
]
]]
]
]]
]
]]
]
]]
]]
]]
]]
Search here
L) L) Rengstorff House @
: . Shoreline Golf Links @
]]
]]
Shoreline Amphitheatre @.
] [;
b b Parking Lot ¢ @
]]
]] A
Googleplex
i i .
Jn-N;Out Burger
harteston rd
]] i
Charleston Campu
Google Android @ areston Campds @ >
.] Lawn Statues
n n P s) 3 - T
Sierra Zareen's @
]] Vista Park
Pear ave
Computer
: i Old Middiefield Way History Museum @]
] [S, u
Crittenden Middle School o, @®
[] |
W
7
n n oy, ey, Elementum @
oy, Ry
Google 2
. . s LMy, &
.] < ®]
]]

—Pp
16.6ms (60fps)

android

Wishlist

Low latency No frame dropping

e Avoid long buffers e Soft real-time, stable 60fps

Low energy

e Mobile devices
e Limited TouchBoosting

android

Open issue: CES

The kernel thinks Ui Thread and RenderThread are independent, so are their utilizations

RenderThread

android

/// util=0.5
L

~

0.5 * maxFreg

looks fair

/

o

K E

Ui Thread

[

RenderThread

What if CES + UtilClamp?

UtilClamp allows to constraint min and/or max utilization of single (or a groups of) threads

7 util=e.5 _ TN

AppUi RenderThread @ AppUi RenderThread
. group . group

5 - ~ / AppU1::ut11M1n=@.6 g

. Ui Thread . . Ui Thread

0.6 * maxFreq

\\71//i88ks fair

S

ClndrOid [PATCH v9 00/16] Add utilization clamping support — Patrick Bellasi
https://lore.kernel.org/lkmi/20190515094459.1031/-1-patrick.bellasi@arm.com

https://lore.kernel.org/lkml/20190515094459.10317-1-patrick.bellasi@arm.com/

Open issue: CES

Pros: Ccons:
e Utilization-driven OPP selection e App threads are fundamental for the user
e Fair load distribution experience

o They should not fight against other
low-priority services for the CPU

o They should be scheduled ASAP
e No notion of deadline

oyt i

Low energy

android

Open Issue: RT

Pros: Cons:
e We start talking about real-time e Ui Thread and RenderThread are App threads, so
e Better latency: not preempted by CFS tasks we cannot trust their execution times

m [hey should not starve system processes
o Fundamental for the user experience
m [hey cannot be rt-throttled, maybe demoted
e They are not time-critical all the time
e No notion of deadline

Low latency

SCHED_RT in Android not implies max OPP, but is
modulated on utilization heuristics with schedutil

android

Open issue: DL

Pros: Cons:

e Better latency: highest priority sched class e Deadline throttling is still very aggressive

e Tasks have a deadline e Does not work well with task suspensions

e Bandwidth constraints e Does not work well with inheritance

e OPP selection based on runtime and period e Conservative: a lot of bandwidth is required for
both the tasks
(the sum of the acceptably worst cases), but

-
not all the sections of our tasks are
ﬁ time-critical

android

What if DL + Proxy Execution?

Our tasks have a time-critical path that is sequential
What if we provide a mechanism to transfer a “token” (dl-entity properties) among tasks?

Like a single dl-entity that is sequentially used by multiple tasks

" Ui Thread Donate dl-entity

> Py

: . :

cP : i)

E RenderThread . O RenderThread
f i

o . -

o : Q

A : Q

- Ui Thread |—

Adjust dl parameters

Set initial deadline

Sched
Manager

Sched

, , , Manager :
Runtime notification 5 Swwuwwrs Time-critical path

S Non-time-critical path

android

Open issue: DL + Proxy Execution

Parameters of the “shared” dl-entity updated with a feedback loop

Pros: Cons:

e Same as DL: e Deadline throttling is still very aggressive
o Better latency: highest priority sched class e Does not work well with task suspensions
o Tasks have a deadline e Does not work well with inheritance

o Bandwidth constraints
o OPP selection based on runtime and period

o Less conservative:
(the acceptably worst case of the sum) *

android

Open issue: Hierarchical DL/RT Scheduling

Special DL entities represent groups of RT tasks

Pros: Ccons:

e Theoretically simpler schedulability analysis e Drawbacks of DL are inherited,

e RT bandwidth constraints + deadlines e.qg., affinities, bandwidth pessimism, ...

e A group of tasks shares the same DL e Overhead due to another scheduling layer
e GRUB-PA also for RT groups e Lots of migrations

e Clean RT and CFS bandwidth enforcement
code duplications

Low energy

[RFC PATCH 0/3] RT bandwidth constraints enforced by hierarchical DL scheduling

ClndrOId Alessio Balsini -—- https://lkml.org/lkml/2017/3/31/658

https://lkml.org/lkml/2017/3/31/658

Recap, Discussion, Action ltems

a

CES + UtilClamp
.

Y

a

RT + UtilClamp
\

p
DL + Proxy Execution

S
w

N B

- ~
DL/RT Hierarchical &

- B

android

Does it make sense to implement a
Proxy Execution mechanism?

e How? Yet another sched _setattr?

What to do when tasks are throttled?

e Low OPP is hard to recover, but throttling is a

harsh punishment

How to measure frequency/capacity invariant

CPU time from userspace?

e CLOCK_PROCESS_CPUTIME_INV_ID
e CLOCK_THREAD_CPUTIME_INV |L

OSPM 2019, Pisa

Juggling scheduling entities:
the android display pipeline use case

Alessio Balsini <balsini@google.com> <balsini@android.com>

mailto:balsini@google.com
mailto:balsini@android.com

