
Google Proprietary

OSPM 2019, Pisa

Juggling scheduling entities:
the display pipeline use case

-Alessio Balsini

Google Proprietary

What you see, and what you don’t

Status Bar

App UI

Navigation Bar

@VSYNC: Application

1. Reads input data
2. Prepares its rasterized frame
3. Commits the frame to the SurfaceFlinger

@VSYNC: SurfaceFlinger

1. Reads the buffers from App, Status Bar, Navigation Bar
2. Composites (merges) them
3. Commits the whole screen frame to the display

Google Proprietary

When not specified, tasks notification mechanism uses signalfd + epoll

Display Pipeline data is transferred among tasks via BufferQueues + gralloc

GPU operations between userspace and kernel are synchronized with sync_fences

Prerequisites: inter-task communication

ConsumerProducer

Fill buffer Consume buffer

dequeueBuffer

queueBuffer

acquireBuffer

releaseBuffer

Google Proprietary

MDSS

GPU

DRM

Ap
p

(F
AI

R) RenderThread
Su

rf
ac

eF
lin

ge
r (

RT
)

appEventThread
(Binder)

Almost fully detailed Android Display Pipeline

16.6ms (60fps)

H
W

C
(R

T)

VSYNC

Ui Thread

Ui Thread

BufferQueue (App → SF)

BufferQueue (SF → HWComposer)

Ac
qu

ire

Re
le

as
e

De
qu

eu
e

Q
ue

ue

DispSync

VSYNC

Co
m

po
se

 a
nd

co

m
m

it

16.6ms

EG
L

re
nd

er
in

g

DR
M

at

om
ic

co

m
m

it

De
qu

eu
e

Q
ue

ue

Q
ue

ue

De
qu

eu
e

EG
L

re
nd

er
in

g

Google Proprietary

SF
 (R

T)
Ap

p
(F

AI
R) RenderThread

Ui Thread

Simplified Display Pipeline

Event

Ui Thread

zzz

zzz zzz zzz

Be
st

 c
as

e
Co

m
m

on
 c

as
e

SF
 (R

T)
Ap

p
(F

AI
R) RenderThread

Ui Thread

Event Event

Ui Thread

zzz

zzz zzz zzz

16.6ms (60fps)

N N+1 N+2

N+1 N+2

N+2

N+2

N+1 N+2

Time-critical path

Non-time-critical path

N N+1

N+1

N+1

N+1

Google Proprietary

Ap
p

RenderThread

SF

The two pipelines

Ui Thread

Ui Thread

16.6ms (60fps)

H
W

C

CFS

FIFO
P98

P97

Google Proprietary

No frame dropping

● Soft real-time, stable 60fps

Low latency

● Avoid long buffers

Low energy

● Mobile devices
● Limited TouchBoosting

Wishlist

Google Proprietary

util=0.5

0.5 * maxFreq
looks fair

Open issue: CFS

The kernel thinks Ui Thread and RenderThread are independent, so are their utilizations

Ui Thread

RenderThread

Urq2: ~0.2

Urq1: ~0.5 Ui Thread

RenderThread

1 2 3

Google Proprietary

AppUi
group

util=0.5

AppUi::utilMin=0.6

0.6 * maxFreq
looks fair

What if CFS + UtilClamp?

UtilClamp allows to constraint min and/or max utilization of single (or a groups of) threads

1 2 3

Ui Thread

RenderThread

Urq2: ~0.2

Urq1: ~0.5

AppUi
group

Ui Thread

RenderThread

[PATCH v9 00/16] Add utilization clamping support --- Patrick Bellasi
https://lore.kernel.org/lkml/20190515094459.10317-1-patrick.bellasi@arm.com/

https://lore.kernel.org/lkml/20190515094459.10317-1-patrick.bellasi@arm.com/

Google Proprietary

Open issue: CFS
Cons:

● App threads are fundamental for the user
experience

○ They should not fight against other
low-priority services for the CPU

○ They should be scheduled ASAP
● No notion of deadline

Pros:

● Utilization-driven OPP selection
● Fair load distribution

No janksLow latency

Low energy

Google Proprietary

Open issue: RT

SCHED_RT in Android not implies max OPP, but is
modulated on utilization heuristics with schedutil

Cons:

● Ui Thread and RenderThread are App threads, so
we cannot trust their execution times
■ They should not starve system processes

○ Fundamental for the user experience
■ They cannot be rt-throttled, maybe demoted

● They are not time-critical all the time
● No notion of deadline

Pros:

● We start talking about real-time
● Better latency: not preempted by CFS tasks

No janksLow latency

Low energy

Low energy

Google Proprietary

Open issue: DL
Cons:

● Deadline throttling is still very aggressive
● Does not work well with task suspensions
● Does not work well with inheritance
● Conservative: a lot of bandwidth is required for

both the tasks
(the sum of the acceptably worst cases), but
not all the sections of our tasks are
time-critical

Pros:

● Better latency: highest priority sched class
● Tasks have a deadline
● Bandwidth constraints
● OPP selection based on runtime and period

No janksLow latency

Low energy

Google Proprietary

RenderThread

What if DL + Proxy Execution?

Our tasks have a time-critical path that is sequential

What if we provide a mechanism to transfer a “token” (dl-entity properties) among tasks?

Like a single dl-entity that is sequentially used by multiple tasks

Ui Thread

RenderThread

Ui Thread

Se
t i

ni
tia

l d
ea

dl
in

e

Do
na

te
 d

l-e
nt

ity

Donate dl-entity

Sched
Manager

Adjust dl parameters
Sched
Manager

Do
na

te
 d

l-e
nt

ity

Runtime notification Time-critical path

Non-time-critical path

Google Proprietary

Open issue: DL + Proxy Execution

Cons:

● Deadline throttling is still very aggressive
● Does not work well with task suspensions
● Does not work well with inheritance

Pros:

● Same as DL:
○ Better latency: highest priority sched class
○ Tasks have a deadline
○ Bandwidth constraints
○ OPP selection based on runtime and period

● Less conservative:
(the acceptably worst case of the sum)

No janksLow latency

Low energy

Parameters of the “shared” dl-entity updated with a feedback loop

Google Proprietary

Open issue: Hierarchical DL/RT Scheduling

Cons:

● Drawbacks of DL are inherited,
e.g., affinities, bandwidth pessimism, …

● Overhead due to another scheduling layer
● Lots of migrations

Pros:

● Theoretically simpler schedulability analysis
● RT bandwidth constraints + deadlines
● A group of tasks shares the same DL
● GRUB-PA also for RT groups
● Clean RT and CFS bandwidth enforcement

code duplications No janksLow latency

Low energy

Special DL entities represent groups of RT tasks

[RFC PATCH 0/3] RT bandwidth constraints enforced by hierarchical DL scheduling
Alessio Balsini --- https://lkml.org/lkml/2017/3/31/658

https://lkml.org/lkml/2017/3/31/658

Google Proprietary

Recap, Discussion, Action Items
Does it make sense to implement a
Proxy Execution mechanism?

● How? Yet another sched_setattr?

What to do when tasks are throttled?

● Low OPP is hard to recover, but throttling is a
harsh punishment

How to measure frequency/capacity invariant
CPU time from userspace?

● CLOCK_PROCESS_CPUTIME_INV_ID
● CLOCK_THREAD_CPUTIME_INV_ID

CFS + UtilClamp

RT + UtilClamp

DL + Proxy Execution

DL/RT Hierarchical

Google Proprietary

OSPM 2019, Pisa

Juggling scheduling entities:
the display pipeline use case

Alessio Balsini <balsini@google.com> <balsini@android.com>

Thank You!

mailto:balsini@google.com
mailto:balsini@android.com

