
Power management

IRQ next event prediction - Where are we ?

Daniel Lezcano

OSPM III, Pisa - May 21th, 2019

Agenda
● Introduction
● Energy / Idle states / Break even
● Finding the sleep duration
● The sources of wake up
● The governor and the heuristics
● Energy consumption and governors
● Changing the approach
● Measuring the events
● Predict the next event
● A dedicated embedded governor
● Comparisons
● Conclusion

OSPM III, Pisa - May 21th, 2019

Consumption vs idle states

OSPM III, Pisa - May 21th, 2019

Consumption vs idle states

OSPM III, Pisa - May 21th, 2019

Consumption vs idle states

OSPM III, Pisa - May 21th, 2019

Consumption vs idle states

OSPM III, Pisa - May 21th, 2019

Computing the target residency

● Formula to compute the minimum residency time

● Demonstration available on the PMWG wiki page

● Alternatively, empiric approach presented at HKG18

https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/ComputingTargetResidency
https://connect.linaro.org/resources/hkg18/hkg18-111/

OSPM III, Pisa - May 21th, 2019

Idle states characteristics
● Idle states must be described accurately

○ Target residencies
■ Usually very approximate values

○ Exit latencies per OPP
■ Only worst case is provided

○ Power at the idle state per OPP
■ These are not available

OSPM III, Pisa - May 21th, 2019

Choosing the idle state

● Take decision on which idle state to choose

● Based on past events

● Try to predict the future

● Algorithm must be simple

OSPM III, Pisa - May 21th, 2019

Sleep durations

Sleep durations
Interruptions:
timer, devices,
rescheduling

● Origin of the wake up source
● Statistics on the sleep durations

OSPM III, Pisa - May 21th, 2019

Problematic
● As we read the sleep duration, the

source of wake up can be anything
○ How do we sort out this ?
○ We try to predict the scheduler

behavior
○ We try to predict the interruption with

the noise of the scheduling + timers

● That can work only if there are
periodic wakes up

○ Specific workload, especially IOs

OSPM III, Pisa - May 21th, 2019

Experiments with governors
Let’s create dummy governors and compare them to the reference: the menu
governor

● Random governor: Randomly choose an idle state

● Modulo governor: Always +1 on the selected state modulo number of states

● Deepest governor: Always choose the deepest idle state

● Shallowest governor: Always choose the shallowest idle state

OSPM III, Pisa - May 21th, 2019

Jankbench / image list vs governors

OSPM III, Pisa - May 21th, 2019

Jankbench / edit text vs governors

OSPM III, Pisa - May 21th, 2019

Exoplayer audio vs governors (no frame dropped)

OSPM III, Pisa - May 21th, 2019

Exoplayer video vs governors (no frame dropped)

OSPM III, Pisa - May 21th, 2019

Observations
● Going always for the deepest idle state kill performance and consume more

energy

● “Randomly” choosing idle state gives same or better results than the menu
governor

● Using the shallowest idle state saves up to 8% of energy with audio and video

● Using the shallowest idle state reduces the frame rendering duration up to 58%
with an energy drop of 8%

● What is going on ?

OSPM III, Pisa - May 21th, 2019

What is going on? (Jankbench test1)
menu

wfi

OSPM III, Pisa - May 21th, 2019

What is going on? (exoplayer ogg)
menu

wfi

OSPM III, Pisa - May 21th, 2019

What is going on ?

● EAS scheduler behaves differently
regarding the idle states:

○ Race to idle
○ Tasks are packed

● The menu governor is doing a lot of
mispredictions

OSPM III, Pisa - May 21th, 2019

Wake up sources

CPU0

CPU1

timer_listTimer

IPI reschedule

GIC

MMC
Network

Graphic

hrtimer

drivers

scheduler

OSPM III, Pisa - May 21th, 2019

Wake up sources

CPU0

CPU1

timer_listTimer

IPI reschedule

GIC

MMC
Network

Graphic

hrtimer

drivers

scheduler

prediction

prediction

OSPM III, Pisa - May 21th, 2019

How behave devices?

● SSD

● Network

OSPM III, Pisa - May 21th, 2019

How behave devices?

● Graphics

● Console

OSPM III, Pisa - May 21th, 2019

How behaves the idle task rescheduling

OSPM III, Pisa - May 21th, 2019

How behave the timers?

That’s a good question, the answer is “as expected”

We always know the next event for the timer

OSPM III, Pisa - May 21th, 2019

Observations
● Devices can have periodic interrupt

○ Periodicity in the intervals
○ Periodicity of a group of intervals

● Idle task rescheduling is almost random
○ Based on scheduled work
○ Tasks taking locks
○ Tasks blocked on IO

● Timers give an accurate information for the next wakeup

● Side note: On mobile, interrupts are usually pinned on CPU0

OSPM III, Pisa - May 21th, 2019

Hypothesis

● Why not predict for each wake up
source ?

○ Per interrupt
○ Per need_resched duration
○ Make scheduler idle wise
○ Timers are predictable

OSPM III, Pisa - May 21th, 2019

Wake up sources

CPU0

CPU1

timer_listTimer

IPI reschedule

GIC

MMC
Network

Graphic

hrtimer

drivers

scheduler

prediction

OSPM III, Pisa - May 21th, 2019

Predicting the interrupts from devices

● Store the interrupts <irq,timestamp> when they happen

● At idle time, look at the interrupt history and compute intervals

● Store the interrupt intervals in a log2 array

● Use a fast algorithm based on array suffix

● Use the exponential moving average for similar past events

OSPM III, Pisa - May 21th, 2019

At runtime

OSPM III, Pisa - May 21th, 2019

Store the interrupts and timestamp
 __handle_irq_event_percpu(desc)
 ⇒ record_irq_time(desc)
 ⇒ irq_timings_encode(irq, timestamp)
 ⇒ irq_timings_store()

timestampirq

0...15 16...63

U64

Per cpu circular
buffer

OSPM III, Pisa - May 21th, 2019

At idle time

OSPM III, Pisa - May 21th, 2019

Discretization of intervals
● High number of different values

● Time events: the higher the interval, the lower the precision

● Group the intervals per range
○ [0 , 2[[2 , 4[[4 , 8[[8 , 16[[16 , 32[... [2³¹, ∞ [
○ An array of 32 values

● Log2 is fast and has dedicated ASM function

OSPM III, Pisa - May 21th, 2019

Compute intervals on log2 basis

31 / 12345

31 / 12455

31 / 12650

67 / 12870

31 / 23380

32 / 23390

31 / 24502

67 / 25326

100 us

195 us

1122 us

log2

log2

log2

6

irq31

7

10

OSPM III, Pisa - May 21th, 2019

Tracking signals with EMA
● Each intervals is separately

tracked with exponential
moving average

● Exponential moving average:
○ Stock value tracking
○ Very fast
○ Tweakable via alphas

OSPM III, Pisa - May 21th, 2019

Store in EMA array

31 / 12345

31 / 12455

31 / 12650

67 / 12870

31 / 23380

32 / 23390

31 / 24502

67 / 25326

100 us

195 us

1122 us

log2

log2

log2

6

irq31

7

10

ema irq31

index=6

ema

OSPM III, Pisa - May 21th, 2019

Array suffix

● Data structure for full text indices search, data compression algorithm,
bibliometrics, combinatorics on words, bioinformatics

● Build an array of suffix of the terms:
○ Eg. banana has the suffixes : banana, anana, nana, ana, na, a

● Per irq tables have suite of numbers between <1, 32> resulting from log2

OSPM III, Pisa - May 21th, 2019

Store in EMA array

31 / 12345

31 / 12455

31 / 12650

67 / 12870

31 / 23380

32 / 23390

31 / 24502

67 / 25326

100 us

195 us

1122 us

log2

log2

log2

6

irq31

7

10

ema irq31

index=6

ema

History of the past events

OSPM III, Pisa - May 21th, 2019

Array suffix
● An interrupt is predictable if there is a repetition

○ We need to find the period of this repetition
● Experiment showed a max period of 5 for repeating patterns

○ We assume pattern repeating 3 times has a strong period
○ We take the last 3 x 5 = 15 events

● Example with MMC:

Interval 1385 212240 1240 1386 1386 1386 214415 1236 1384 1386 1387 214276 1234 1384 1388

log2 10 15 10 10 10 10 15 10 10 10 10 15 10 10 10

Max period = 5

Last 3x5 =15 events

OSPM III, Pisa - May 21th, 2019

Search with array suffix
● Other example with console

Interval 4 5 112 4 6 4 110 4 4 5 112 4 7 4 110

log2 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

Period

5 2 2 7 2 2

4 2 2 7 2

3 2 2 7

2 2 2

OSPM III, Pisa - May 21th, 2019

Search with array suffix

Interval 4 5 112 4 6 4 110 4 4 5 112 4 7 4 110

log2 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

p=5 2 2 7 2 2 2 2

p=4 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

p=3 2 2 7 2 2 7

p=2 2 2 2

OSPM III, Pisa - May 21th, 2019

Search with array suffix

Interval 4 5 112 4 6 4 110 4 4 5 112 4 7 4 110

log2 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

p=4 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

Next event index = last pattern length % period
Next event index = 3 % 4 = 3

period
last pattern length

OSPM III, Pisa - May 21th, 2019

Search with array suffix
● Other example with console

Interval 4 5 112 4 6 4 110 4 4 5 112 4 7 4 110

log2 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

p=4 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

Next event index = last pattern length % period
Next event index = 3 % 4 = 3

period
last pattern length

2 2 7 2suffix p=4

OSPM III, Pisa - May 21th, 2019

Search with array suffix
● Other example with console

Interval 4 5 112 4 6 4 110 4 4 5 112 4 7 4 110

log2 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

p=4 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

Next event index = last pattern length % period
Next event index = 3 % 4 = 3

period
last pattern length

2 2 7 2suffix p=4

ema table

ema[2] = 4

OSPM III, Pisa - May 21th, 2019

Embedded cpuidle governor

● Makes use of the interrupt prediction

● Clearly identifies the source of wake up in the prediction path

● Designed to work with the embedded systems, especially mobile
○ Tweaked for mobile workload (video, audio, benchmarks)
○ Iteratively improved with non-regression testing for existing and defined workloads
○ Avoids to use biased heuristics

● How does it compare with the existing ?

OSPM III, Pisa - May 21th, 2019

Selection latency

OSPM III, Pisa - May 21th, 2019

Selection latency
● Higher latency on the CPU with the interrupts

○ Usually CPU0

● Other CPUs have a negligible latency

● The higher the interrupts number, the higher the load, the lower the idle duration
○ Do we really care about these latencies?

● Some part of the prediction can be still optimized
○ Suffixes on the fly, unpredictable interrupts discarded from the prediction, etc ...

OSPM III, Pisa - May 21th, 2019

Measurements - Jankbench test1

OSPM III, Pisa - May 21th, 2019

Measurements - Jankbench test2

OSPM III, Pisa - May 21th, 2019

Measurements - exoplayer (ogg)

OSPM III, Pisa - May 21th, 2019

Measurements - exoplayer (mov)

OSPM III, Pisa - May 21th, 2019

Conclusion

● Splitting different wake sources signals to predict works
○ Despite the simplicity of the actual governor we do better predictions
○ Better performances for better energy

● There is still room for more improvements on the mbed governor
○ Identified workload (expecting more than 8% energy improvement for ogg/video)
○ Identified weaknesses in the prediction (need_resched)
○ Scheduler interactions (idle wise)

● Next steps
○ Put noisy wakeup sources apart
○ Offer an API to drivers to register their next interrupt event

Thank you

