
Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Scheduler Soft Affinity: Dynamic Workload
Partitioning

Subhra Mazumdar
Oracle Linux

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Outline

CPU Resource Management

Dynamic Partitioning

Implementation

Results

Future Work

1

2

3

4

2

5

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Outline

CPU Resource Management

Dynamic Partitioning

Implementation

Results

Future Work

1

2

3

4

3

5

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

CPU Resource Management

• Multiple instances of workload are consolidated in one system

– Multiple VMs or Containers

– Autonomous Database

• Oracle Multitenant

• Multiple Container Database/Pluggable Database instances

4

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

CPU Resource Management

• Instances can be hard partitioned

– sched_setaffinity(2) or cpusets to e.g. a NUMA node

– One instance can’t use the CPUs of another

• Instances can be free inside the system

– Can be scheduled on any CPU (no affinity)

– cpu.shares for fair share

– Cache interference and coherence

5

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

CPU Resource Management

Dynamic Partitioning

Implementation

Results

Future Work

1

2

3

4

6

Outline

5

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Dynamic Partitioning

• Goal: Best of both worlds

– Allow bursting out of partition

– Minimize cache interference and coherence when busy

– Have negligible overhead

7

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AutoNuma Balancer?

• Can work for NUMA partitions (LLC)

• High reaction time

– Periodic scanning

• Ineffective if memory is spread across NUMA nodes

8

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AutoNuma Balancer?

• Motivational experiment

– numactl used to bind memory (2 DB instances, 2 socket system)

– AutoNuma Balancer not migrating threads

– AutoNuma Balancer ON vs OFF did not make a difference

9

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Dynamic Partitioning

• ”Soft” partition of any set of CPUs

– LLC (NUMA) can be most effective on x86 Intel systems

– L2/L1 can be beneficial for other platforms

– APIs

10

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

CPU shares

• Soft Affinity is orthogonal to CPU shares

– CPU shares decides how many cycles to consume

– Soft affinity decides where to preferably consume those cycles

– Can be used together

11

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

CPU Resource Management

Dynamic Partitioning

Implementation

Results

Future Work

1

2

3

4

12

Outline

3

2

5

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Implementation

• Define a preferred set of CPUs

– cpu_preferred in addition to cpu_allowed

• Use cpu_preferred for want_affine

• LLC search:

13

if (cpu_preferred == cpu_allowed)

search cpu_allowed;

else

search cpu_preferred;

search (cpu_allowed – cpu_preferred);

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Implementation

• Only changes the push side of the scheduler

– Idle balancing unchanged

– Implicitly soft

• Only implemented for CFS class

– Child inheritance

14

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Implementation

• New system call to specify soft partition

– sched_setaffinity2

– Extra parameter for affinity type

– HARD_AFFINITY == sched_setaffinity

– SOFT_AFFINITY == ”soft” affinity

• Other option: extending cpuset

15

API

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Implementation

...

cpu_set_t set;

pid_t pid;

CPU_ZERO(&set);

for (i=0; i<=3; i++)

CPU_SET(i, &set);

pid = getpid();

rc = sched_setaffinity2(pid, sizeof(cpu_set_t), &set, SOFT_AFFINITY);

...

16

Example snippet

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

CPU Resource Management

Dynamic Partitioning

Implementation

Results

Future Work

1

2

3

17

Outline

4

2

5

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Hackbench: 2 instances, 2 socket NUMA system, 22 cores
per socket

18

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2*4 2*8 2*16 2*32

%
 im

p
ro

ve
m

en
t

No. of groups

Hackbench: Soft and Hard Affinity to a socket vs No Affinity

soft_affinity

hard_affinity

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Hackbench: 1 instance, 2 socket NUMA system, 22 cores
per socket

19

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1*4 1*8 1*16 1*32

%
 im

p
ro

ve
m

en
t

No. of groups

Hackbench: Soft and Hard Affinity to a socket vs No Affinity

soft_affinity

hard_affinity

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Results

• Small improvement for Hackbench 2 instances

– some benefit of islolating LLC

– Little room for improvement

• Big regressions for Hackbench 1 instance

– Not using all CPUs efficiently

– Soft Affinity better than Hard Affinity

20

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

TPC-C: 2 instances, 2 socket NUMA system, 22 cores per
socket

21

0

1

2

3

4

5

6

7

8

2*16 2*24 2*32

%
 im

p
ro

ve
m

en
t

No. of users

TPC-C: Soft and Hard Affinity to a socket vs No Affinity

soft_affinity

hard_affinity

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

TPC-C: 1 instance, 2 socket NUMA system, 22 cores per
socket

22

-30

-25

-20

-15

-10

-5

0

5

1*16 1*24 1*32

%
 im

p
ro

ve
m

en
t

No. of users

TPC-C: Soft and Hard Affinity to a socket vs No Affinity

soft_affinity

hard_affinity

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Load Based Soft Affinity

• Conditionally use cpu_preferred for want_affine

– Compare two CPUs from cpu_preferred and (cpu_allowed – cpu_preferred) in O(1)

– Scheduler tunables: sched_preferred and sched_allowed

23

cpu_x = cpumask_any(cpu_preferred);

cpu_y = cpumask_any(cpu_allowed – cpu_preferred);

If (sched_preferred * cpu_x utilization > sched_allowed * cpu_y utilization)

want_affine = 0;

else

want_affine = 1;

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Hackbench: 2 instances, 2 socket NUMA system, 22 cores
per socket

24

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2*4 2*8 2*16 2*32

%
 im

p
ro

ve
m

en
t

No. of groups

Hackbench: Soft and Hard Affinity to a socket vs No Affinity

soft_affinity(4,4)

soft_affinity(4,5)

soft_affinity(4,1000)

soft_affinity

hard_affinity

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Hackbench: 1 instance, 2 socket NUMA system, 22 cores
per socket

25

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

1*4 1*8 1*16 1*32

%
 im

p
ro

ve
m

en
t

No. of groups

Hackbench: Soft and Hard Affinity to a socket vs No Affinity

soft_affinity(4,4)

soft_affinity(4,5)

soft_affinity(4,1000)

soft_affinity

hard_affinity

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

TPC-C: 2 instances, 2 socket NUMA system, 22 cores per
socket

26

-4

-2

0

2

4

6

8

2*16 2*24 2*32

%
 im

p
ro

ve
m

en
t

No. of users

TPC-C: Soft and Hard Affinity to a socket vs No Affinity

soft_affinity(4,4)

soft_affinity(4,5)

soft_affinity(4,1000)

soft_affinity

hard_affinity

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

TPC-C: 1 instance, 2 socket NUMA system, 22 cores per
socket

27

-30

-25

-20

-15

-10

-5

0

5

1*16 1*24 1*32

%
 im

p
ro

ve
m

en
t

No. of users

TPC-C: Soft and Hard Affinity to a socket vs No Affinity

soft_affinity(4,4)

soft_affinity(4,5)

soft_affinity(4,1000)

soft_affinity

hard_affinity

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

No overhead when Soft Affinity not used

28

Hackbench No_Affinity % change Hard_Affinity % change

2x4
0.10590459 0.30898275

2x8
0.128548 0.55474365

2x16
0.61016786 0.90104716

2x32
0.86854058 1.01481597

1x4
0.47585608 0.43398421

1x8
0.45468479 0.33351682

1x16
0.61327776 0.64039494

1x32
0.11759902 0.62852034

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Results
• numactl used for each DB instance

• For TPC-C load based Soft Affinity (4,1000) works best

– harder Soft Affinity similar to basic implementation

– Improvements are more (~4% for 2 DB instance) than regressions (~-0.5% 1 DB
instance)

• Other experiments

– Spreading memory across NUMA nodes has similar results

– Sub-NUMA partitions (soft or hard) had no benefit

29

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

CPU Resource Management

Dynamic Partitioning

Implementation

Results

Future Work

1

2

3

30

Outline

5

2

4

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Future Work

• Testing on bigger (4 and 8 socket) systems, more DB instances

– Find right tunable values

• Get rid of tunables?

– Heterogeneous workload consolidation: per process tunables

– Kernel does not have enough information of workload

• cache sharing between threads

• working set size

• producer-consumer pattern

31

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Questions?

32

