Scheduler Soft Affinity: Dynamic Workload Partitioning

Subhra Mazumdar Oracle Linux

Outline

- 1 CPU Resource Management
- Dynamic Partitioning
- 3 Implementation
- 4 Results
- 5 Future Work

Outline

- 1 CPU Resource Management
- 2 Dynamic Partitioning
- 3 Implementation
- 4 Results
- 5 Future Work

CPU Resource Management

- Multiple instances of workload are consolidated in one system
 - Multiple VMs or Containers
 - Autonomous Database
 - Oracle Multitenant
 - Multiple Container Database/Pluggable Database instances

CPU Resource Management

- Instances can be hard partitioned
 - sched_setaffinity(2) or cpusets to e.g. a NUMA node
 - One instance can't use the CPUs of another
- Instances can be free inside the system
 - Can be scheduled on any CPU (no affinity)
 - cpu.shares for fair share
 - Cache interference and coherence

Outline

- 1 CPU Resource Management
- Dynamic Partitioning
- 3 Implementation
- 4 Results
- 5 Future Work

Dynamic Partitioning

- Goal: Best of both worlds
 - Allow bursting out of partition
 - Minimize cache interference and coherence when busy
 - Have negligible overhead

AutoNuma Balancer?

- Can work for NUMA partitions (LLC)
- High reaction time
 - Periodic scanning
- Ineffective if memory is spread across NUMA nodes

AutoNuma Balancer?

- Motivational experiment
 - numactl used to bind memory (2 DB instances, 2 socket system)
 - AutoNuma Balancer not migrating threads
 - AutoNuma Balancer ON vs OFF did not make a difference

Dynamic Partitioning

- "Soft" partition of any set of CPUs
 - LLC (NUMA) can be most effective on x86 Intel systems
 - L2/L1 can be beneficial for other platforms
 - -APIs

CPU shares

- Soft Affinity is orthogonal to CPU shares
 - CPU shares decides how many cycles to consume
 - Soft affinity decides where to preferably consume those cycles
 - Can be used together

Outline

- 1 CPU Resource Management
- Dynamic Partitioning
- 3 Implementation
- 4 Results
- 5 Future Work

Implementation

- Define a preferred set of CPUs
 - cpu_preferred in addition to cpu_allowed
- Use cpu_preferred for want_affine
- LLC search:

Implementation

- Only changes the push side of the scheduler
 - Idle balancing unchanged
 - Implicitly soft
- Only implemented for CFS class
 - Child inheritance

Implementation API

- New system call to specify soft partition
 - sched_setaffinity2
 - Extra parameter for affinity type
 - HARD_AFFINITY == sched_setaffinity
 - SOFT_AFFINITY == "soft" affinity
- Other option: extending cpuset

Implementation

Example snippet

. . .

. . .

Outline

- 1 CPU Resource Management
- Dynamic Partitioning
- 3 Implementation
- 4 Results
- 5 Future Work

Hackbench: 2 instances, 2 socket NUMA system, 22 cores per socket

Hackbench: 1 instance, 2 socket NUMA system, 22 cores per socket

Results

- Small improvement for Hackbench 2 instances
 - some benefit of islolating LLC
 - Little room for improvement
- Big regressions for Hackbench 1 instance
 - Not using all CPUs efficiently
 - Soft Affinity better than Hard Affinity

TPC-C: 2 instances, 2 socket NUMA system, 22 cores per socket

TPC-C: 1 instance, 2 socket NUMA system, 22 cores per socket

Load Based Soft Affinity

- Conditionally use cpu_preferred for want_affine
 - Compare two CPUs from cpu_preferred and (cpu_allowed cpu_preferred) in O(1)
 - Scheduler tunables: sched_preferred and sched_allowed

Hackbench: 2 instances, 2 socket NUMA system, 22 cores per socket

Hackbench: 1 instance, 2 socket NUMA system, 22 cores per socket

TPC-C: 2 instances, 2 socket NUMA system, 22 cores per socket

TPC-C: 1 instance, 2 socket NUMA system, 22 cores per socket

No overhead when Soft Affinity not used

Hackbench	No_Affinity % change	Hard_Affinity % change
2x4	0.10590459	0.30898275
2x8	0.128548	0.55474365
2x16	0.61016786	0.90104716
2x32	0.86854058	1.01481597
1x4	0.47585608	0.43398421
1x8	0.45468479	0.33351682
1x16	0.61327776	0.64039494
1x32	0.11759902	0.62852034

Results

- numactl used for each DB instance
- For TPC-C load based Soft Affinity (4,1000) works best
 - harder Soft Affinity similar to basic implementation
 - Improvements are more (~4% for 2 DB instance) than regressions (~-0.5% 1 DB instance)
- Other experiments
 - Spreading memory across NUMA nodes has similar results
 - Sub-NUMA partitions (soft or hard) had no benefit

Outline

- 1 CPU Resource Management
- Dynamic Partitioning
- 3 Implementation
- 4 Results
- 5 Future Work

Future Work

- Testing on bigger (4 and 8 socket) systems, more DB instances
 - Find right tunable values
- Get rid of tunables?
 - Heterogeneous workload consolidation: per process tunables
 - Kernel does not have enough information of workload
 - cache sharing between threads
 - working set size
 - producer-consumer pattern

Questions?

ORACLE®