
Turbo-Sched

Parth Shah
<parth@linux.ibm.com>

IBM India Pvt Ltd

A scheduler for sustaining Turbo Frequencies for longer duration

mailto:parth@linux.ibm.com

2

Outline
● Turbo Frequencies

– Problem with Power budget

– How to sustain?

● CFS design

– Problem with task spreading

● TurboSched Algorithm

● Results

● Future plans

3

Turbo Frequencies
● Many SMP servers have support for P-states in the range of Turbo

Frequencies

● These P-states burn more power

● Power budget is fixed for a chip

● Systems may be throttled to a lower frequency if power
consumption exceeds this power budget

● This makes difficult to sustain Turbo Frequencies for longer
duration

4

How to sustain?
CPU-IDLE

● CPU-Idle allows system to goto Idle/C-states in absence of any
workload

● Deeper the C-states level, more the power savings

● Advantageous for sustaining Turbo frequencies

● Keeping fewer CPUs idle saves power which can be channeled to
busier CPUs

● TurboSched Policy: keep maximum possible CPUs idle

5

CFS: Why cannot sustain Turbo?
Task Spreading
● Base of CFS for SMP systems is to spread tasks as much as possible to

effectively utilize system resources
● Pros:

– Better task wake-up/turn around time
– Better cache resource utilization
– Better memory throughput

● Cons:
– Wake up task on idle CPU if any available

6

Adapting CFS for Turbo
Task Packing

● Keep fewer CPUs idle

● This allows us to over-clock few cores
thereby remaining within power budget

● Experimentation

– Hot-Plugging out few cores have
shown to sustain turbo frequencies

– Results shows Max frequency
available at the given time on a IBM
POWER9 system

F
re

qu
en

cy
 in

 H
z

7

Task classification

Task

CPU intensive Jitters

✔ Usually system daemons/house keeping
task

✔ Low utilization and/or bursty workload
✔ Sleeps before load balance gets

invoked
✔ Can be packed to Intensive CPUs
✔ CFS is not a good choice

✔ Usually CPU bound important tasks
✔ Memory/cache hungry tasks
✔ Performance oriented
✔ CFS is the best algorithm

8

Frequency domain (FD)
● Many SMP systems also support SMT or Hyper-threading modes

● A core can have multiple threads(called CPUs) depending on SMT mode

● Frequency controlling is per core in such systems

● Other way around, providing more frequency to a CPU in a core leads to
more frequency for all the threads in the core

● But, IDLE domain is per core

● So, Task packing needs to be done across cores

● TurboSched Policy: Keep maximum possible Cores Idle

9

Experimental Setup
● IBM Power 9 system:

– Arch: POWERPC

– Cores: 16

– SMT: 4 per core

– Rated frequencies: 2.1 – 3.2 GHz

– Turbo freq: 3.2 - 3.8 GHz (18%)

– FD: Set of 4 Cores

● Workload:

– Intensive: Integer ops, MIPS scales with freq

– Jitter: Timed Int ops, frequency invariant

– Sibling thread regression= ~4%

Core
0

Core
1

Core
2

Core
3

FD 0

Core
4

Core
5

Core
6

Core
7

FD 1

Core
8

Core
9

Core
10

FD 2 FD 3

Core
11

Core
12

Core
13

Core
12

Core
14

Core
15

Chip 0

10

Ways to pack tasks
● Isolate

➔ Create a dedicated core to pin
all jitters there

➔ Intensive tasks uses CFS
spreading policy

● Side by side packing

➔ Keep jitters on near by
threads where Intensive
tasks are running

➔ Use CFS when no such tasks
are found

Core 0 Core 1 Core 2 Core 3 Core 0 Core 1 Core 2 Core 3

Intensive task utilization

Jitter task utilization

11

Isolation vs Side by side packing
● Frequency advantage w.r.t. CFS

12

Task wake-up logic
● Given waking task utilization, where it

should be placed?

● Given scenario:

– CFS may pick CPU 5/6

● TurboSched:

– Optimize for Performance/Watts

– Policy: Find first-fit core and
least util CPU to wake a task

– Iterative scan on DIE/LLC domain

– Don’t select cores with util <12.5%

0

1

2 3

Core
0

Core
CPU
Utilization

4 5 6
7

Core
1

12%Waking
task

Capacity

Utilizatio
n

?

?

13

TurboSched Tipping Point
● What is core occupation capacity?

● On SMT systems, the capacity of core scales linearly w.r.t. the
online threads(SMT Mode).

● So,

Core capacity= (1 +SMT-mode/8) * capacity_of(any CPU)

● Such that for SMT-4,

Core cap = 1.5 * capacity_of(CPU 0)

14

Results
Results shows a benefit of upto
● 16% frequency benefit
● 12% in workload performance

15

Future
Use UCLAMP to classify tasks

● Challenge: Deals with CPUFREQ, while TurboSched deals with CPUIDLE

Adopt EAS model to control task placement for SMT systems as well.

● Challenge: Requested freq and obtained freq can be different in Turbo Range

● EM complexity is higher for >8 CPUs

● Frequency domain can be different making difficult to request frequency per
thread/core basis

Contribute at TurboSched RFC: https://lkml.org/lkml/2019/5/16/824

https://lkml.org/lkml/2019/5/16/824

16

Legal Statement
This work represents the view of the authors and does not
necessarily represent the view of the employers (IBM
Corporation).

IBM and IBM (Logo) are trademarks or registered trademarks of
International Business Machines in United States and/or other
countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks
or service marks of others.

17

Thank You
Questions/Ideas?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

