
Virtual Network Functions as Real-Time Containers
in Private Clouds∗

T. Cucinotta, L. Abeni, M. Marinoni, A. Balsini
Scuola Superiore Sant’Anna

Pisa, Italy
Email: firstname.lastname@santannapisa.it

C. Vitucci
Ericsson AB

Stockholm, Sweden
Email: carlo.vitucci@ericsson.com

Abstract—This paper presents preliminary results from our
on-going research for ensuring stable performance of co-located
distributed cloud services in a resource-efficient way. It is based
on using a real-time CPU scheduling policy to achieve a fine-grain
control of the temporal interferences among real-time services
running in co-located containers. We present results obtained
applying the method to a synthetic application running within
LXC containers on Linux, where a modified kernel has been used
that includes our real-time scheduling policy.

Index Terms—cloud computing, real-time scheduling, temporal
isolation, performance modeling, network function virtualization

I. INTRODUCTION

Information and communication technologies have under-
gone a relentless evolution in recent years, with a tremendous
push towards distributed computing. The uprise of cloud com-
puting, coupled with the widespread diffusion of broadband
Internet connections, caused a paradigm shift towards more
and more services provisioned through Cloud Computing
infrastructures, in an on-demand, elastic, fashion, with needs
of consumers evolving fast towards high-reliability, high-
availability, and high-performance.

On the side of infrastructure providers, be it public cloud
providers or private ones, there is an increasing interest in
the efficient management of the hosted services. This brought
to a number of innovations over the last years, ranging from
features made available by hardware and CPU manufacturers
in form of hardware-assisted virtualization mechanisms to
reduce overheads due to machine virtualization, to software
solutions based on tweaking internals of hosted operating sys-
tems and software stacks, pushing towards para-virtualization
or very different solutions based on library operating systems
or unikernels [1], [2].

Among others, network operators are looking with a grow-
ing interest in adopting (and adapting) the flexibility of (pri-
vate) cloud computing to the provisioning of network functions
as needed throughout their infrastructure. This is witnessed by
the growing interest by, e.g., access network operators, in Net-
work Function Virtualization (NFV) [3], a paradigm shift from
traditional physical network appliances to network functions
deployed as software components throughout a set of data cen-
ters. Thanks to the convergence towards IP-based networking,

∗This work has been partially funded by Ericsson.

these functions can be managed with the flexibility and dynam-
icity of a private cloud, becoming effectively Virtual Network
Functions (VNFs). These have a strong demand for locality, as
these functions stay in the critical per-packet processing path
and possess critical latency requirements, calling for solutions
that have great efficiency in processing, among others. This
is bringing an increasing interest in operating system (OS)-
level virtualization techniques [4], i.e. Linux containers, as
provided for example by LXC1, LXD2 or Docker3, which
exhibit basically no performance loss when compared to bare-
metal deployments, still retaining the advantages in isolation,
software stack organization and dependencies management
typical of deployments using machine virtualization.

Deploying virtual machines (VMs) or containers in a shared
infrastructure raises well-known problems of temporal interfer-
ence among co-located components, particularly in presence
of over-subscription of the CPUs, i.e., multiple virtual CPUs
(vCPUs) mapped to the same physical CPU (pCPU) of a host,
but also in presence of bottlenecks due to other resources, such
as disks or networks, for data-intensive workloads. Focusing
on the processing performance, controlling the interferences
among co-located containers is typically done in nowadays
clouds via a 1-to-1 vCPU-to-pCPU allocation, a.k.a., no CPU
over-subscription, or dedicating entire physical machines to
individual services.

However, this implies a minimum granularity in service
allocation equal to the one of a single CPU computing power,
with the consequence of a potentially high under-utilization of
the infrastructure, in presence of deployed services with rel-
atively small workloads. Therefore, an infrastructure provider
is left with the choice between: a) deployments with some
degree of over-subscription with potentially highly unstable
performance of the individual service as due to the time-
varying workload of others sharing the same pCPU(s), because
there is little to no control of the interferences among them;
b) deployments with no over-subscription, leading to stable
performance of individual services at the cost of high under-
utilization of the underlying physical infrastructure. Both op-
tions have additional drawbacks for a variety of application

1More information at: https://linuxcontainers.org/lxc/introduction/.
2More information at: https://linuxcontainers.org/lxd/introduction/.
3More information at: https://docs.docker.com/.

scenarios, including the considered NFV one (i.e., for the
nodes at the edge of the network): a) over-subscription impacts
on the QoS during traffic peak hours; b) 1-to-1 allocation
unacceptably increases power consumption, which is already
playing a dominant role in the overall energy budget of access
networks.

This work, after a short review of related work in the
research literature in Section II, presents in Section III our
vision for tackling the problem mentioned above, based on a
fine-grain allocation of pCPU(s): a real-time CPU scheduler
in the OS kernel guarantees allocation of precise shares of a
pCPU time to individual containers with a per-container time
granularity, resulting in a stable and predictable performance
of the hosted services.

The approach is validated in Section IV by using a patched
Linux kernel extending the mainline SCHED DEADLINE
CPU scheduler [5] with hierarchical scheduling capabilities,
applied to scheduling containers hosting our synthetic appli-
cation. Finally, conclusions are drawn in Section V, along with
a sketch of directions for future extensions of the work.

II. RELATED WORK

Recent years have seen the growing success of the cloud
paradigm outside of its original employment scenarios due
to all its well-known advantages. However, those new appli-
cation fields are characterized by additional constraints that
cannot be handled without improving the modeling and the
management of the underlying infrastructure, to exploit it more
significantly [6].

Several works exist on controlling performance of dis-
tributed cloud services via elasticity and auto-scaling mech-
anisms [7], [8], intelligent placement strategies [9], [10],
possibly including network-awareness [11] and SDN-based ap-
proaches [12]. To mitigate interferences of co-located services,
real-time scheduling applied to hypervisors has been proposed,
e.g., for the KVM [13] and Xen [14] hypervisors. In these
works the hypervisor is extended to apply hierarchical real-
time scheduling theory [15] and to allocate precise slices of
the physical CPU execution time to each VM running on the
platform. Some extensions to OpenStack [16] have also been
proposed to deal with the experimental features introduced at
the hypervisor level. The same Xen extensions have also been
used for realizing a real-time NFV solution [17].

Some works addressed the problem of accelerating cloud
infrastructures with support for heterogeneous hardware plat-
forms, including GP-GPUs [18] and FPGAs [19]. This is
orthogonal to the problem of limiting temporal interferences
among co-located services, dealt with herein. To this end,
a wide range of performance-related features is nowadays
available in operating systems and hypervisors, that need to
be exposed to higher cloud orchestration layers, something we
are also actively working on [6].

III. PROPOSED APPROACH

Our general reference system, illustrated in Figure 1, is
composed of a number of clients submitting requests to a

Fig. 1. Reference service topologies.

service topology including a number of servers either in charge
of picking up a fraction of the incoming service traffic as due
to the action of a load-balancer (shown in the top half of the
figure), or being part of a group of replicated services, or to be
traversed sequentially after one another (service chain, shown
in the bottom half of the figure) or a combination of these
elements.

In these cases, traditional performance control approaches in
cloud computing prescribe the use of elastic scaling (typically
horizontal, or, less frequently, vertical) coupled with load-
balancing within cloud orchestration layers for controlling the
overall service QoS. This has two major drawbacks: 1) the
approach is viable only with services spanning across multiple
instances; 2) if services are co-located on the same physical
servers and physical CPUs, to make an efficient use of the
infrastructure, then CPU contention causes the performance
of each individual server to be highly unstable as due to
changes in the workload of co-located services. Furthermore,
elastic control loops tend to recover possible performance
shortcomings a-posteriori, once the problem becomes evident
through monitoring at the orchestrator sensing level, likely
once clients have already been impacted by the performance
degradation.

In our proposed approach, it is thus of paramount impor-
tance to have low-level mechanisms to keep the performance
of individually hosted servers as stable as possible, even in
cases of co-located functions on the same CPUs/cores. As
it will become clear later, this is possible by recurring to
special real-time scheduling of the CPU at the OS/kernel (or
hypervisor) layer, allowing for temporal isolation among co-
located containers. This mechanism can be nicely integrated
with standard QoS control mechanisms for cloud services,
making it easier to perform said control actions, thanks to the
better stability of the performance of individual elements de-
ployed within an elastically provisioned service. Furthermore,
in the proposed approach it is possible to dynamically change
the scheduling parameters, introducing an additional knob that
can be used by an orchestration layer to fine-tune the CPU
allocation to individual containers (vertical scalability), while
achieving its control goals.

Therefore, in the following, the focus of this paper narrows
down to the problem of isolating the performance of individual

Fig. 2. Proposed approach: n services are deployed as containers over a host
with multiple physical CPUs. Container i has runtime Qi and period Pi.

co-located containers within a cloud platform, with particular
reference to CPU scheduling, thus CPU-intensive services4,
as illustrated in Figure 2. The meaning of the per-container
scheduling parameters (Qi, Pi) will be clarified just below.

In the general context just highlighted, our on-going re-
search is looking, among others, at the specifics of the NFV
use-case, where a set of Virtual Network Functions (VNFs)
are deployed as containers hosting packet processing servers
(characterized by heterogeneous timing requirements, as due to
different classes of handled traffic) across a number of possibly
heterogeneous computing nodes.

A. Hierarchical real-time scheduling of Linux containers

In what follows, the proposed modifications to the Linux
real-time scheduler are described, with reference to how the
technique has been applied to isolate execution of Linux
containers. This way, it is possible to choose the configuration
parameters for the server (Q, P) as a function of the desired
QoS. That allows a resources controller to figure out the
feasibility of a requested throughput based on the underlying
resources and the already allocated services.

Linux containers, as created via the lxc tool, are associated
with a control group (cgroup) allowing for the specifica-
tion of limits on the amount of resources each container
can use, including memory, physical CPUs, as well as limit
to the amount of time real-time tasks (SCHED_FIFO and
SCHED_RR) within a container can be scheduled for. We
modified the Linux scheduler to allow building theoretically-
sound scheduling hierarchies through cgroups5.

The mainline Linux kernel has been recently added the
SCHED_DEADLINE CPU scheduling class [5], a variant
of the well-known EDF-based Constant Bandwidth Server

4For data-intensive services, the technique can be enriched by integrating
additional QoS control mechanisms at the networking, disk or I/O layers.

5The Linux kernel already provides hierarchical scheduling for real-time
tasks, but its design aims only at acting as a limitation, not as a guarantee.

(CBS) [20], allowing for attaching each task with a CPU
reservation, expressed in terms of a runtime Q and a
period P , with the meaning that Q time units are granted
to the task on the CPU(s) every P time units.

Our “Hierarchical CBS” (HCBS) scheduler6 extends this
mechanism with hierarchical scheduling concepts [15], real-
izing a mechanism where a CPU real-time reservation can
be assigned to a control group as a whole, controlling the
amount of time real-time tasks in each group are allowed to
run on each CPU/core. This results in a 2-levels hierarchy
of schedulers, where SCHED_DEADLINE selects the control
group to be scheduled on each CPU, and the fixed priority
real-time scheduler in the Linux kernel selects one of the tasks
from the scheduled control group.

The resulting mechanism, conceptually similar to [21],
supports partitioned scheduling in the host (each
SCHED_DEADLINE entity used to schedule a control
group is bound to a CPU/core) and generic affinities in
the guest (fixed priority tasks in the control group can
have generic affinities; hence both partitioned and global
scheduling of real-time tasks are supported).

IV. EXPERIMENTAL RESULTS

This section presents some experiments with the approach
presented in Section III, using a Linux kernel v4.16.0-rc1,
modified with our HCBS patch, and Linux containers through
lxc, where we have set per-container HCBS parameters
(Q,P) as needed for each experiment.

Although the presented HCBS scheduler can support the
stochastic analysis based on queueing theory (extending, for
example, the analysis already performed for single tasks served
by SCHED_DEADLINE [22]), it can also support hard real-
time scheduling with guarantees provided through the Com-
positional Scheduling Framework (CSF) [14], [15].

To show this, the task set Γ = {(4879, 30000),
(561, 36000), (10427, 104000), (4408, 109000),
(20271, 250000)} (where (C, T) indicates a periodic
real-time task with Worst Case Execution Time C and period
T ; times are expressed in µs - microseconds) has been
scheduled by SCHED_FIFO and priorities assigned according
to Rate Monotonic in an lxc container. The container has
been assigned various combinations (Q,P) of runtime and
period (according to CSF analysis, the task set is schedulable
with Q = 8ms and P = 18ms), and the resulting normalized
lateness of the real-time tasks have been measured. The
normalized lateness l = r−T

T is defined as the difference
between the response time r of a task and the task period T ,
divided by the task period (positive values indicate a missed
deadline).

Figure 3 presents the Cumulative Distribution Function
(CDF) of the normalized lateness measured for 3 combinations
of scheduling parameters:

• (Q = 8ms,P = 18ms): schedulable task set (no missed
deadlines) according to CSF analysis. The CDF reaches

6The patch is available at: https://github.com/lucabe72/LinuxPatches/tree/
Hierarchical CBS-patches.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
l
<

 t

t

(8,18)
(16,36)
(32,72)

Fig. 3. CDF for the normalized lateness of a task set scheduled in an lxc
container with various values of runtime and period.

1 for values of the normalized lateness smaller than 0, so
the theoretical results are confirmed

• (Q = 16ms,P = 36ms): CSF analysis does not
guarantee the schedulability of the task set, however the
CDF reaches 1 for values of the normalized lateness
smaller than 0 (no missed deadlines). This result does not
contradict CSF analysis, that only provides a sufficient
schedulability condition, and is quite pessimistic

• (Q = 32ms,P = 72ms): the scheduling system is stable
according to queueing theory (the utilization of the task
set U =

∑
C
T = 0.4 is smaller than 32/72 = 0.44444),

but CSF analysis does not guarantee the schedulability
of the task set. This is confirmed by the fact that the
CDF reaches 1 for a normalized lateness equal to 0.46,
so some deadlines are missed.

V. CONCLUSIONS

This paper introduced our vision for deploying distributed
cloud services with stable performance (with focus on NFV),
based on containers and lightweight OS virtualization func-
tionalities. Thanks to the used hierarchical real-time scheduler
(which leverages existing theory in real-time literature), the
proposed approach provides predictable QoS and can be used,
for example, for QoS control in components in the context
of 5G network function split. The mechanism ensures stable
performance of deployed services, enabling the possibility
to apply sound performance modeling, analysis and control
techniques.

As future work, we plan to apply our architecture to real
software components. For example, we plan to prototype
the mechanism within the OpenStack cloud management and
orchestration framework, and use the OpenAirInterface7 soft-
ware as a case-study related to access network.

REFERENCES

[1] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
operating systems for the cloud,” SIGARCH Comput. Archit. News,
vol. 41, no. 1, pp. 461–472, Mar. 2013.

[2] A. Kantee, “The rise and fall of the operating system,” USENIX login,
vol. 40, no. 5, October 2015.

7http://www.openairinterface.org/

[3] NFV Industry Specif. Group, “Network Functions Virtualisation,” Intro-
ductory White Paper, 2012.

[4] G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: A new
facility for resource management in server systems,” in OSDI, vol. 99,
1999, pp. 45–58.

[5] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling
in the Linux kernel,” Software: Practice and Experience, vol. 46, no. 6,
pp. 821–839, 2016, spe.2335.

[6] T. Cucinotta, L. A. M. Marinoni, and C. Vitucci, “The Importance
of Being OS-aware - In Performance Aspects of Cloud Computing
Research,” in Proceedings of the 8th International Conference on Cloud
Computing and Services Science, 2018.

[7] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity
controller for cloud infrastructures,” in 2012 IEEE Network Operations
and Management Symposium, April 2012, pp. 204–212.

[8] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in 2011 IEEE 4th
International Conference on Cloud Computing, July 2011, pp. 500–507.

[9] K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou, “Admission
Control for Elastic Cloud Services,” in 2012 IEEE Fifth International
Conference on Cloud Computing, June 2012, pp. 41–48.

[10] K. Konstanteli, T. Cucinotta, K. Psychas, and T. A. Varvarigou, “Elastic
admission control for federated cloud services,” IEEE Transactions on
Cloud Computing, vol. 2, no. 3, pp. 348–361, July 2014.

[11] M. Alicherry and T. V. Lakshman, “Network aware resource allocation
in distributed clouds,” in 2012 Proceedings IEEE INFOCOM, March
2012, pp. 963–971.

[12] T. Cucinotta, D. Lugones, D. Cherubini, and E. Jul, “Data Centre
Optimisation Enhanced by Software Defined Networking,” in 2014 IEEE
7th International Conference on Cloud Computing, June 2014, pp. 136–
143.

[13] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting temporal con-
straints in virtualised services,” in 2009 33rd Annual IEEE International
Computer Software and Applications Conference, vol. 2, July 2009.

[14] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu, and
O. Sokolsky, “Realizing compositional scheduling through virtualiza-
tion,” in 2012 IEEE 18th Real Time and Embedded Technology and
Applications Symposium, April 2012, pp. 13–22.

[15] I. Shin and I. Lee, “Compositional real-time scheduling framework,” in
25th IEEE International Real-Time Systems Symposium, Dec 2004, pp.
57–67.

[16] S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. X. Phan, I. Lee, and
O. Sokolsky, “RT-Open Stack: CPU Resource Management for Real-
Time Cloud Computing,” in 2015 IEEE 8th International Conference
on Cloud Computing, June 2015, pp. 179–186.

[17] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications,
April 2016, pp. 1–9.

[18] X. Yi, J. Duan, and C. Wu, “GPUNFV: A GPU-Accelerated NFV Sys-
tem,” in Proceedings of the First Asia-Pacific Workshop on Networking,
ser. APNet’17. New York, NY, USA: ACM, 2017, pp. 85–91.

[19] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and
X. Hu, “OpenANFV: Accelerating Network Function Virtualization with
a Consolidated Framework in Openstack,” in Proceedings of the 2014
ACM Conference on SIGCOMM, ser. SIGCOMM ’14. New York, NY,
USA: ACM, 2014, pp. 353–354.

[20] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in Proceedings of the IEEE Real-Time Systems
Symposium, Madrid, Spain, December 1998.

[21] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari, “Hierarchical
Multiprocessor CPU Reservations for the Linux Kernel,” in Proceedings
of the 5th International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT 2009), June 2009.

[22] T. Cucinotta, M. Marinoni, A. Melani, A. Parri, and C. Vitucci,
“Temporal Isolation Among LTE/5G Network Functions by Real-time
Scheduling,” in Proceedings of the 7th International Conference on
Cloud Computing and Services Science, Funchal, Madeira, Portugal,
March 2017, pp. 368–375.

