A Linux-based Support For Developing Real-Time Applications On
Heterogeneous Platforms with Dynamic FPGA Reconfiguration’

Marco Pagani*T, Alessio Balsini*, Alessandro Biondi*, Mauro Marinoni*, Giorgio Buttazzo*

Scuola Superiore Sant’Anna, Pisa, Italy*

Université Lille 1, Lille, France’

Email: {marco.pagani, alessio.balsini, alessandro.biondi, mauro.marinoni, giorgio.buttazzo} @santannapisa.it

Abstract—Heterogeneous computing platforms including both
processors and field programmable gate arrays (FPGAs) repre-
sent an attractive solution for balancing software flexibility with
high performance and energy efficiency of custom hardware mod-
ules. Furthermore, the dynamic partial reconfiguration (DPR)
capabilities of modern FPGAs allow virtualizing the available
area to support several hardware modules in time sharing, hence
making them even more attractive. Such a feature is exploited
by the FRED framework, recently proposed to support the
development of real-time applications upon such platforms.

This paper presents an implementation of the FRED frame-
work for the Linux operating system over the Zynq-7000 platform
produced by Xilinx. Design solutions for managing hardware
accelerators are first discussed. Then, a software architecture
for Linux is presented, which comprises (i) support for shared-
memory communication with hardware accelerators, (ii) an
improved driver to handle the FPGA reconfiguration and (iii) a
scheduler for requests of hardware acceleration. The proposed
solution allows exploiting the enormous number of software
systems available for Linux (such as drivers, libraries, commu-
nication stacks, etc.) and the typical programming flexibility of
software, while relying on predictable hardware acceleration of
heavy computations.

I. INTRODUCTION

Embedded computing platforms are evolving towards het-
erogeneous architectures that integrate multiple processing
elements of different nature, as classical central processing
units (CPUs), general-purpose computing on graphics pro-
cessing units (GPGPUs), and field programmable gate arrays
(FPGAs). Such platforms allow balancing the flexibility of
software systems with the advantages of a highly parallel
custom hardware acceleration, thus achieving a consistent
speed-up with a contained energy consumption. In addition,
modern FPGAs offer a dynamic partial reconfiguration (DPR)
capability, which allows the user to re-program a part of the
FPGA fabric while the remaining logic resources continue
to operate without interruption. By looking at the FPGAs
produced in the last 15 years, there is a clear evolution trend
where reconfiguration times have been progressively decreased,
approaching a reconfiguration throughput of 800 MB/s for
today’s platforms (e.g., Xilinx Ultrascale+). Such a faster DPR
capability enables the possibility of virtualizing the FPGA area
to support several hardware modules in time-sharing, hence
making these devices even more attractive.

Recently, Biondi et al. [1] proposed a programming frame-
work, named FRED, to support the development of real-time
applications upon such heterogeneous platforms, providing a
predictable infrastructure that can ensure bounded delays when
requesting a dynamically-reconfigured hardware accelerator.

iThe authors would like to thank Daniel Bristot de Oliveira, Luca Abeni
and Tommaso Cucinotta for their support in the development of this work.

However, only a simple proof-of-concept on top FreeRTOS is
presented.

The present paper proposes the implementation of the
FRED framework on the Linux operating system addressing
several challenges, such as the architectural support for the
accelerators, the reconfiguration and communication mecha-
nisms, the implementation of the FRED scheduler, and the
synchronization mechanisms between software and hardware
tasks. In particular, it presents a software architecture for Linux
composed of (i) a kernel module for implementing shared-
memory communication with hardware accelerators, (ii) a driver
to handle the FPGA reconfiguration, and (iii) a user-space server
process to schedule the requests for hardware acceleration.

The rest of the paper is organized as follows. Section II
reviews the related works. Section III outlines the main concepts
behind FRED. Section IV illustrates the proposed FPGA
support (hardware design). Section V describes the Linux
implementation of FRED. Section VI reports some experimental
results carried out on the Zynq platform. Section VII concludes
the paper and presents some future work.

II. RELATED WORK

A timing analysis of real-time applications on FPGA-
based platforms is still an open issue, since most of the
proposed approaches are based on simplistic assumptions
that do not match real platforms. The model proposed by
Danne and Platzner [2] requires HW-task preemptability and is
oversimplistic, considering negligible reconfiguration time and
no allocation constraints. The model proposed by Saha et al. [3]
also considers preemtable HW-tasks on homogeneous partitions
reallocating the FPGA at every HW-task termination. This
induces a waste on the FPGA area and increases the pessimism
in the analysis. Dittmann and Frank [4] addressed the problem
of scheduling reconfiguration requests using a single shared
non-preemptive reconfiguration interface, as the Xilinx ICAP
port. Biondi et al. [1] proposed the FRED framework, which
is a predictable infrastructure to support DPR of hardware
accelerators. Being based on a more detailed platform model,
it can be implemented on actual platforms.

To exploit DPR features of FPGA platforms from an
operating system perspective, few software solutions have been
proposed. Liibbers and Platzner [5] presented ReconOS, an
operating system that extends the traditional multi-threading
programming model to HW-tasks running on a reconfigurable
FPGA. The initial version addressed fully-reconfigurable FP-
GAs and was later extended to include support for partial
reconfiguration [6]. Interactions among threads are managed
by common POSIX-like abstractions (e.g., ssmaphores, shared
memory). R3TOS is an operating system proposed by Iturbe

et al. [7] supporting dynamic allocation of HW-tasks on an
FPGA without the need of a preconfigured partitioning and
static interconnections. The authors introduce a module, called
HWuK, responsible for scheduling HW-tasks, performing their
allocation, and managing the reconfiguration. A drawback of
R3TOS is its intrinsic dependency on the reconfiguration inter-
face (already a bottleneck for reconfiguration activities), which
is further loaded for data communications. Pagani et al. [8]
proposed a prototype implementation of the FRED framework
over the FreeRTOS [9] kernel to show the applicability of the
approach.

Also the Linux community has shown interest in the ex-
ploitation of the FPGAs features. However, the current mainline
kernel only provides a simple support for the reconfiguration
interface. So and Brodersen proposed BORPH [10], which
extends the Linux kernel to allow co-scheduling of SW-tasks
and HW-tasks. However, the project is discontinued and does
not consider modern platforms.

The present work overcomes some limitations of the cur-
rent state of the art providing: (i) the implementation of a
framework designed to increase predictability of application
exploiting FPGA acceleration; (ii) an implementation that
does not limit HW-tasks to specific paradigms (e.g., stream
processing, data flow); (iii) an efficient use of HW resources
(i.e., improved reconfiguration interface driver, zero-copy data
transfer mechanisms), (iv) a scalable implementation with
respect to the number of HW-tasks in the system; and (v)
a seamless integration in the Linux kernel.

III. ESSENTIAL BACKGROUND: THE FRED FRAMEWORK

This section briefly reviews the FRED framework proposed
in [1], on which this work is based. The FRED framework
considers a heterogeneous computing system consisting of
(at least) one processor and a DPR-enabled FPGA fabric,
both sharing a common memory. Two types of computational
activities are managed:

o software tasks (SW-tasks): they are computational activities
running on the processors; and

o hardware tasks (HW-tasks): they are hardware accelerators
that can be configured and executed on the FPGA.

SW-tasks can speedup parts of their computation by requesting
the execution of HW-tasks. To ensure predictability when
reconfiguring the FPGA while minimizing the overhead related
to HW-task allocation, FRED relies on a static partitioning of
the FPGA area. That is, the area is split into np partitions,
each composed of nf equal slots (k =1, ...,np). Logic blocks
are not shared among partitions nor among slots.

Hardware Tasks. Each HW-task has a static affinity to a single
partition and can execute only if it has been programmed into
one of its slots. HW-tasks execute in a non-preemptive manner.
Each slot can be reconfigured at run-time by means of an FPGA
reconfiguration interface (FRI) and can accommodate at most
one HW-task. As typical for most real-world platforms (e.g.,
[11], [12]), the FRI (i) can reconfigure a slot without affecting
the execution of the HW-tasks currently programmed in other
slots; (ii) is a peripheral device external to the processor (e.g.,
like a DMA [13]) and hence does not consume processor cycles

to reconfigure slots; and (iii) can program at most one slot at
a time.

Software Tasks. Each SW-task uses a set of HW-tasks by
alternating execution phases with suspension phases where
the SW-task is descheduled to wait for the completion of the
requested HW-task. The same HW-task cannot be used by more
than one SW-task. Each SW-task is cyclically released, thus
generating an infinite sequence of execution instances (jobs).
SW-tasks are also subject to timing constraints, meaning that
each of its jobs must complete within a deadline relative to
its activation. A sample schedule of a SW-task that uses two
HW-tasks is illustrated in Figure 1.

EXEC_HW_TASK EXEC_HW_TASK

cPU H suspend‘ed‘ £ sus‘per:ded :—l l

FRI o] l_]

= i

FPGA

Figure 1. Sample schedule of a SW-task using two HW-tasks. Up-arrows and
down-arrows denote the release and deadline of the SW-task, respectively.

A. Scheduling Infrastructure

The FRED framework comes with a scheduling mechanism
to handle the contention of the FRI and the FPGA slots. Such
a mechanism is based on a multi-level queueing structure as
illustrated in Figure 2, which includes (i) n, partition queues
(one for each partition), needed to schedule the requests for HW-
tasks with affinity to the same partition, and (ii) a FRI queue to
schedule the reconfiguration requests. The partition queues are
ordered according to the first-in-first-out (FIFO) policy. Each
time a SW-task issues an execution request R for a HW-task, R
is assigned a ticket marked with the current absolute time. Then,
‘R is inserted into its corresponding partition queue (depending
on the affinity of the HW-task). The partition queues enqueue a
request as long as there are no free slots into the corresponding
partition. The FRI queue is fed by the partition queues and is
ordered by increasing ticket time. This mechanism guarantees
predictable delays incurred by HW-task requests, which have
also been bounded via a response-time analysis [1]. Please
refer to [1] for a precise formalization of the scheduling rules
and additional details.

Affinity

PO Queue

FRI Queue Po

P1 Queue
P1

FPGA

Figure 2. Multi-level queuing structure for scheduling HW-tasks. The FPGA
area is divided into two partitions Py and Pj.

B. Communication between SW and HW tasks

The FRED framework employs a shared-memory communica-
tion paradigm between software and hardware tasks. In contrast
to other approaches that store the input/output data into private
memory areas within the FPGA slots, the solution adopted
in FRED allows decoupling the time a HW-task must hold a
slot from the scheduling delays of SW-tasks. This property
facilitates the derivation of bounds on the delay incurred by

the SW-tasks when requesting HW-tasks. Please refer to [1]
for further details.

IV. FPGA SUPPORT

This section proposes a design to support the FRED frame-
work on the Xilinx Zyng-7000 System-on-Chip (SoC) which
has been chosen as the reference platform for this work. The
Zyng-7000 is a popular heterogeneous platform that includes
a dual-core ARM Cortex-A9 processor and a Xilinx 7-Series
FPGA fabric. The internal structure of the Zyng-7000 is divided
into two main functional blocks: the processing system (PS) and
the programmable logic (PL) [13]. The PS includes the ARM
Cortex-A9 processors, interfaces for external memories, a small
amount of on-chip RAM memory, and the I/O peripherals. The
subsystems in the PS are interconnected among themselves and
to the custom logic configured on the PL through an AMBA
AXI system bus. The main interconnection between the PS
and PL consists of a set of memory-mapped AXI (AXI for
simplicity) interfaces exported by the PS side to the PL side.

A. System support design

The proposed design is illustrated in Figure 3. In order to
support the deployment of dynamically-reconfigured hardware
accelerators on the PL, the FPGA area is divided into two main
regions: a static region and a reconfigurable region (denoted
by the striped boxes in Figure 3). The static region contains
part of the logic that is needed to realize the communication
infrastructure, namely a set of AXI Interconnects (discussed
in Section IV-A4) and other support modules. Following the
specifications of the FRED framework introduced in Section III,
the reconfigurable region is organized by following a slotted
scheme to host the hardware accelerators.

l—» 4-.‘ DDR Controller

i PL to Memory
Central interconnect interconnect

APU
(ARM Cores)

PS

PS AXI GP master ports

X Concat oo
Interconnect Interconnects

. = +
i 7 i
. PR decoupler axis | | i
' i i
| [axis [t Jaam i
1 Regs

i

1
! Hardware !
Accelerator 0 !

PS AXI HP slave ports PL

AXI'S
Regs

Hardware
Accelerator N

INT | AXIM

Figure 3. Support design for the Zynq SoC.

To implement the shared-memory communication paradigm
reviewed in Section III-B, each hardware accelerator must be
able to read and write a memory area that is also accessible
from the processors. The Zyng-7000 provides three alternatives
for implementing such memory areas: (i) using the internal on-
chip memory; (ii) reserving part of the FPGA area to implement
a custom memory (using BRAM logic blocks); or (iii) using
the main (off-chip) DRAM memory.

Alternative (i) is not viable since the on-chip memory is too
small (256 Kb) and hence may not be suitable for supporting
the shared-memory communication with multiple HW-tasks.
Alternative (ii) determines a waste of the FPGA area, as the

synthesis of efficient hardware accelerators generally requires
BRAM logic blocks. Conversely, alternative (iii) allows using
high-performance AXI interfaces that are directly connected
to the DRAM controller. The availability of such interfaces
suggests that the Zyng-7000 is prone to support this approach.
As a consequence, the main DRAM memory has been selected
for implementing the shared-memory paradigm.

Hardware accelerators must be capable of receiving control
commands and arguments from the processor and sending
synchronization signals to notify their completion. Since each
slot of a partition P must be able to host any of the hardware
accelerators that implement the HW-tasks with affinity to P, it
necessary to define a common interface.

1) Common interface: The proposed interface consists of (i)
an AXI master interface, (ii) an AXI slave interface exporting
a set of control registers and eight 32-bit data registers, and
(iii) an interrupt signal. The AXI master interface (denoted as
AXI M in Figure 3) has been provided to allow the hardware
accelerators to access the DRAM memory through the PS DDR
controller. The control registers allow controlling the execution
and the state of each hardware accelerator. Data registers can be
used for manifold purposes depending on the specific function
implemented by the hardware accelerator.

The most common usage consists in storing pointers to
memory area in the DRAM (to implement shared-memory
communication) or storing control parameters of the HW-tasks.
The AXI slave interface (denoted as AXI S in Figure 3) is
then used to map the control and data registers into the system
memory space, hence making them available from the PS.
Finally, the interrupt signal (denoted as INT in Figure 3) is
used to notify the completion of the HW-task to the PS.

2) Dynamic partial reconfiguration: In the Zyng-7000 SoC,
the FPGA fabric can be fully or partially (re)configured under
the control of the software running in the PS using the
device configuration (DevC) subsystem. Internally, the DevC
includes an interface to the processor configuration access
port (PCAP) and a DMA engine that can be programmed to
transfer a bitstream from the main DRAM memory to the PL
configuration memory.

Each hardware accelerator corresponds to a bitstream.
However, Xilinx tools do not support the relocation of bit-
streams [12], i.e., the same bitstream cannot be used to program
the same hardware accelerators in different slots. Since FRED
requires that a hardware accelerator can be programmed onto
different slots (depending on their availability at run-time), it is
necessary to synthesize a bitstream for each slot of the partition
to which the corresponding HW-task has affinity. Note that
this is not relevant for memory consumption, as bitstreams are
typically in the order of a few megabytes.

3) Slot decouplers: The reconfiguration process may gen-
erate transient glitches that can cause troublesome spurious
transactions [12]. To solve this issue each slot is protected by
a partial reconfiguration decoupler (denoted as PR decoupler
in Figure 3), which is used to tie the interface signals to safe
logic values. Each decoupler is controlled by the PS by means
of a single control register, which is mapped into the memory
space using an AXI slave interface.

4) Interconnections: In the proposed design, the AXI master
interfaces exported by each slot are connected to a set of

AXI interconnects [14] modules. The proposed connection
scheme is based on the rationale of equally distributing the
memory bandwidth across the slots using fair arbitration [14].
More articulated connection schemes may be enabled by a fine-
grained analysis of the interference incurred by the memory
transactions, which is out of the scope of this paper and is left
as a future work. The AXI slave interfaces of the hardware
accelerators and the decouplers are connected to a single AXI
interconnect, which is turn connected to one of the Zynq general
purpose master ports (denoted as PS AXI GP in Figure 3). Note
that this does not constitute a bottleneck, since the PS is the only
master. Finally, the interrupt signals exported by the slots are
gathered together in a vector signal and routed to the IRQ_F2P
port of the PS.

V. LINUX SUPPORT

This section describes the implementation of the FRED
framework for the GNU/Linux operating system. The FRED
software support has been designed in a modular fashion relying,
as much as possible, on user-space implementation to improve
maintainability, safety, and extendability.

The internal architecture of the system is shown in Figure 4.
The central component is a user space daemon, named FRED
server, which is in charge of managing acceleration requests
from SW-tasks. The server relies upon two custom kernel
modules, and the UIO framework, in order to perform the
low-level operations required to control the hardware platform.

FRED Server (fred_d)

HW-tasks scheduler

i [[

| devcfgctrl | Buffersctrl | Slots ctrl | Decs ctrl

SW-tasks

] /dev/uioN

User s

kernel .

DEVCFG driver
module
(xdevefg_mod)

HW accelerators

Buffers allocator module
and decouplers control
uIO)

(fred_buffctl)

Figure 4. FRED software support architecture.

A. Kernel space

The two aforementioned kernel modules are used to (i)
allocate the memory buffers employed to share data between
SW and HW-tasks, as described in Section III, and (ii) manage
the device reconfiguration. The UIO framework is used for
managing hardware accelerators (control and data registers, and
interrupt signals) from userspace.

1) Memory Allocator Module: To enforce memory coher-
ence between SW-tasks and HW-tasks, the shared-memory
infrastructure described in Section III-B, has been implemented
using a set of uncached memory buffers allocated by a custom
kernel module.

The custom kernel module uses the Linux DMA layer to
allocate physically contiguous (uncached) memory buffers used
to exchange data between HW and SW-tasks. When loaded
by the system, the module creates a new character device
named fred_buffctl, used by the FRED server during the
initialization phase to request the allocation of memory buffers.

Each allocation request is performed by an ioct1 operation
and includes, as an argument, the size of the required buffer. On
the kernel side, when the driver receives an allocation request,
it creates a new character device named fred_buffN (where
N refers to the buffer identifier that is assigned by the module)
and allocates a new contiguous memory buffer, associated with
the device, using the dma_alloc_coherent () function of
the Linux DMA layer. The character device is the means by
which the buffer is accessible from userspace.

Once the buffer device has been created, it can be accessed
by a SW-task using the Linux standard mmap () syscall. When
a SW-task calls (from userspace) the mmap () on a buffer
character device, the corresponding buffer is mapped into its
virtual address space. Inside the driver (on the kernel side)
the mapping is performed using the dma_common_mmap ()
function of the Linux DMA layer.

Once the buffer is mapped into the SW-task’s virtual space,
it can be accessed by the task to read and write data without
any system overhead. Since the buffer is uncached, no flush
and invalidate operations are required on the cache (note that
there are no common cache levels to both the processor and
the hardware accelerators, which are directly connected to the
DRAM controller). On the other side, a HW-task can access
the same buffer through a physical memory address. Such an
address is written into the control registers of the HW-task by
the FRED server (discussed in details in Section V-B).

In this way, data can be transferred between HW and SW
tasks without any copy operation or operating system overhead.
It is worth observing that under this design the SW-tasks never
deal with memory management operations. Each SW-task sees a
buffer only as a character device that can be mapped, during its
initialization phase, into its virtual memory space. The process
of requesting the mapping of such buffers is assisted by a client
support library.

When the FRED server is shutdown the buffer devices created
during the initialization phase are released calling an ioctl
operation on the fred_buffctl device.

2) Reconfiguration Driver: The Zynq FPGA fabric can
be reconfigured by the DevC subsystem, as described in
Section IV-A2. Under Linux, the DevC is controlled by a kernel
driver module designed by Xilinx. Such a driver allocates
a character device named xdevcfg that can be used to
reconfigure the FPGA fabric from the user space, taking a
bitstream (introduced in Section IV-A2) as input.

The reconfiguration process is initiated by a write ()
operation on the xdevcfg device allocated by the driver. The
argument of the write operation is the bitstream file containing
the hardware configuration.

The Xilinx’s driver has been likely designed with simplicity
as a primary design principle. Internally, for each request, the
driver allocates a contiguous uncached memory buffer using
the dma_alloc_coherent () function of the Linux DMA
layer. Once the buffer has been allocated and mapped, the
driver copies the entire bitstream from the user space to the
buffer, using the copy_from_user () function of the Linux
kernel. Once the bitstream has been copied into the buffer, the
driver starts the DevC internal DMA engine for transferring the
bitstream from the system memory to the FPGA configuration

memory. After the DMA has been started, the driver performs
a busy-wait, polling on a DMA status flag until the transfer
has been completed.

This mode of operation is intended to minimize the user
efforts to use the driver, but it is clearly unsuitable for the
FRED framework because the copy overheads and the busy
waits are not compatible with the intensive usage of partial
reconfiguration required by the FRED framework. To overcome
these issues, the original driver has been modified to take
advantage of the allocator module described in the previous
section. The rationale is to pre-load all the HW-tasks’ bistreams
into a set of contiguous memory buffers allocated using the
allocator module. Since those operations are performed only
once, during the FRED server initialization, they do not produce
any overhead at run time.

Once the bitstreams are loaded in physically contiguous
memory buffers, they can be reached by the DevC internal DMA
engine. For this reason, the driver has been modified to include
an ioctl () method that allows to start the reconfiguration
by passing to the driver a memory reference to a pre-allocated
bitstream.

To avoid the busy-wait, the driver has been enhanced with
the Linux standard pol1l () method. Once the reconfiguration
has been completed, such a method sets the file descriptor of
the xdevcfg device ready for a read operation. In this way,
the reconfiguration process can be easily monitored through
POSIX standard I/O multiplexing methods such as select ()
and poll (), or the Linux-specific epoll ().

With the approach described above, the reconfiguration
process is started by an ioctl () call on the xdevcfg device.
The call returns immediately and a user-space application can
wait for the end of the reconfiguration without busy-waiting.

B. User space

The FRED server is the main userspace component of the
FRED software support. Form an architectural perspective it
is organized as an event-driven system. Internally, the server
includes a core component, named “HW-Tasks scheduler”,
supported by a layer of software libraries used to perform
low-level operations, as shown in Figure 4. Conceptually, the
FRED server interacts with the rest of the system by means
of two main software interfaces, one dedicated to interprocess
communications with SW-tasks and the other used to interact
with the low-level support.

During the initialization phase the FRED server reads two
configuration files containing the description of the hardware
design. The first file specifies the layout of the FPGA in terms
of partitions and slots. The second file defines the available
HW-tasks. According to such files, the FRED server initializes
its own data structures and requests the allocator module to
allocate the memory buffers used for both bitstreams and data
sharing.

1) Communication mechanism: The communications chan-
nels between the FRED server and SW-tasks rely upon Unix
domain sockets. After the initialization phase, the server
instantiates a listening socket, named fred_sock, used by
SW-tasks to establish a new connection. Once the connection
is established, the SW-task can send requests to the server.

To make the system more usable from a client programmer
perspective, communication functions between SW-tasks and
the FRED server are encapsulated into the client support
library. The communication pattern between FRED server and
a SW-task is presented in Figure 5. Once the server setup
is completed, a SW-task can initiate a new connection by
calling the fred_init_hwt () function (see Figure 5). The
FRED server replies back with a message containing the buffers
description in terms of device files and sizes. Using this data the
SW-task can map the buffers into its own address space. Again,
such a mapping operation is assisted by the client support
library.

At this point, the SW-task can fill the input buffers of its
associated HW-task by simply writing into the corresponding
memory locations without any additional overhead. Once input
data have been prepared, the SW-Task can request the execution
of its HW-task by calling the fred_exec_hwt () function.
This function call causes the SW-task to be suspended until
the completion of the HW-task. When the HW-Task completes,
the SW-Task resumes its execution and can retrieve the data
from the output buffers.

It is worth noticing that SW-tasks never interact directly
with the hardware, nor they are required to perform privileged
operations. Any interaction between client SW-tasks and the
platform hardware are mediated by the FRED server.

HW-accelerator
SW-task (fred_d) uIo)

‘ FRED Server

‘ ‘ Memory ‘ ‘

fred_init_hwt()
buffers

prepare data

fred_exec_hwt() start compute

memory access |

done done

use data

Figure 5. Communication between SW-Tasks, FRED server, and HW.

2) Event loop: The main component of the HW-tasks
scheduler is a state machine driven by an event loop. The event
loop monitors the file descriptors exported by the low-level and
communication interfaces and drives the state machine to handle
incoming client requests and hardware events. Internally, the
event loop is built around the epoll system call. The classes
of events handled by the event loop are: (i) Completion of
the device configuration; (ii) Completion of a HW-Task; (iii)
Connection request from a SW-Task; (iv) Message from a
SW-Task.

VI. EXPERIMENTAL RESULTS

This section describes a set of experiments aimed at eval-
uating the performance of the FRED software support. The
experiments have been carried out on the Digilent’s Zybo board
featuring the Zyng-7010 SoC and running Xilinx’s PetaLinux.

A. Performance Evaluation of the Reconfiguration Driver

The first experiment evaluated the improvements achieved
using the customized device reconfiguration driver with respect
to the Xilinx driver.

Measurements were done by running a single dummy task
triggering 10° reconfiguration requests to the driver, each of
them configuring a 338 KB bitstream into an FPGA slot. During
the experiment the system was not loaded, hence the DevC

107 T T T
[Xilinx driver (a)

= [Custom driver (b)
=)
2 10% B
L
[=9
g
5]
10! T

o -
-3

|
4 5

(=

Reconfiguration Time (ms)

Figure 6. Distributions of the reconfiguration times.

DMA did not suffer from any interference on the system bus
while reading the bitstream from memory.

Figure 6 shows the reconfiguration times measured when
using the original Xilinx driver, and those obtained with the
custom driver developed in this work. While the average
reconfiguration time using the Xilinx driver is 4.340 ms,
the custom one reduces the average reconfiguration time to
2.755 ms, with an approximate speedup of 1.574. Moreover,
the worst-case reconfiguration time measured for the original
driver is 6.876 ms, improved with a speedup of 2.340 by the
custom driver, for which the longest measured reconfiguration
time was 2.940 ms.

These results shows that our approach improves the recon-
figuration time while decreasing the variance from 4.48 - 10~3
(for the Xilinx driver) to 1.62 - 10~2 (for the custom driver).

B. Overhead of the Linux Support

The second experiment was aimed at measuring the overhead
introduced by the FRED software support while serving the
requests generated by the SW-tasks.

To evaluate the net overhead introduced by the infrastructure
(namely inter-process communication and the management of
hardware events), the experiment was performed with a basic
system configuration consisting of a single SW-task running
in the system, requesting for hardware accelerations to the
FRED server. More specifically, the experiment measured the
overheads introduced by the FRED software support when
calling fred_exec_hwt (), that includes:

o The time elapsed from the acceleration request to the
instant at which the FRED server triggers the driver to
perform the hardware reconfiguration;

o The interval from the time at which the driver notifies the
FRED server with the end of reconfiguration to the time
at which the FRED server starts the HW-task;

o The interval between the time at which the HW-Task
notifies the FRED server its completion and the time at
which the SW-Task is awakened.

Figure 7 reports the distribution of the sums of the afore-
mentioned latencies measured for each acceleration request
performed by the SW-Task. The longest measured overhead
resulted 227.125 us, while the average delay was 77.978 us.
Please note that the overhead introduced by the FRED software
support does not depend upon the amount of data shared
between SW and HW.

VII. CONCLUSIONS

This paper presented the design and implementation of the
FRED framework on the Linux operating system to ease the

106 T T T
g 0t .
8
=
g 102 8
wn

100 l

100 150 200

Linux Software Support Overhead (us)
Figure 7. Distribution of the overhead introduced by FRED.

exploitation of FPGA accelerators in real-time applications
running on the Zyng-7000 platform. The software includes
a kernel module for implementing shared-memory commu-
nication with hardware accelerators, an improved driver to
handle the FPGA reconfigurations, and a user-space daemon
to schedule the requests of hardware acceleration.

Experimental results showed that the proposed approach
allows halving the reconfiguration times with respect to the
official driver released by Xilinx, with a speedup of 2.340. It
has also been shown that the features offered by the FRED
software support introduce an overhead that can be tolerated by
several applications, with a maximum measured overhead less
than 228 ps. Future work includes the analysis of the delays
incurred by the hardware accelerators when accessing the AXI
bus and the memory controller.

REFERENCES

[1] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo,

“A framework for supporting real-time applications on dynamic reconfig-

urable fpgas,” in Proc. of the IEEE Real-Time Systems Symposium (RTSS

2016), December 2016, pp. 1-12.

K. Danne and M. Platzner, “Periodic real-time scheduling for fpga

computers,” in Proc. of the 3rd Int. Workshop on Intelligent Solutions in

Embedded System, May 2005.

S. Saha, A. Sarkar, and A. Chakrabarti, “Scheduling dynamic hard real-

time task sets on fully and partially reconfigurable platforms,” IEEE

Embedded Systems Letters, vol. 7, no. 1, pp. 23-26, March 2015.

F. Dittmann and S. Frank, “Hard real-time reconfiguration port scheduling,

in Proc. of the Conference on Design, Automation and Test in Europe

(DATE), April 2007.

[5] E. Liibbers and M. Platzner, “Reconos: Multithreaded programming for
reconfigurable computers,” ACM Transactions on Embedded Computing
Systems, vol. 9, no. 1, pp. 8:1-8:33, October 2009.

, “Cooperative multithreading in dynamically reconfigurable systems.”

in Proc. of the Int. Conference on Field Programmable Logic and

Applications (FPL), August 2009.

X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, and T. Arslan,

“Microkernel architecture and hardware abstraction layer of a reliable

reconfigurable real-time operating system (R3TOS),” ACM Transactions

on Reconfigurable Technology and Systems, vol. 8, no. 1, pp. 5:1-5:35,

March 2015.

M. Pagani, M. Marinoni, A. Biondi, A. Balsini, and G. Buttazzo, “Towards

real-time operating systems for heterogeneous reconfigurable platforms,”

in Proc. of the 12th Workshop on Operating Systems Platforms for

Embedded Real-Time Applications (OSPERT 2016), July 2016.

R. T. E. Ltd. Freertos real-time operating system. [Online]. Available:

http://www.freertos.org/

H. K.-H. So and R. Brodersen, “A unified hardware/software runtime

environment for fpga-based reconfigurable computers using borph,” ACM

Transactions on Embedded Computing Systems, vol. 7, no. 2, pp. 14:1-

14:28, January 2008.

D. Koch, Partial Reconfiguration on FPGAs: Architectures, Tools and

Applications. Springer-Verlag New York, February 2012.

Vivado Design Suite User Guide: Partial Reconfiguration, Xilinx,

November 2015, v2015.4.

Zyngq-7000 AP SoC Technical Reference Manual, Xilinx, 2015.

AXI Interconnect, LogiCORE IP Product Guide, Xilinx, 2016.

[2

—

3

—_

)

[4

=

(6]

[7

—

[8

=

[9

—

[10]

[11]
[12]

[13]
[14]

