
TRACS: A Flexible Real-Time Environment for Traffic Control Systems1

P. Ancilotti, G . Buttazzo, M. Di Natale, M. Spuri2

Scuola Superiore S.Anna via Carducci, 40 - 56100 Pisa (Italy)

Abstract

In this paper we present a general architecture
for a real-time system dedicated to traffic control
applications. The proposed system is being
developed within the TRACS Esprit 111 project, and
applied to a vessel trafSic control application. In
this work, we focus our attention on the hard real-
time aspects of the system, by -addressing the design
issues of the operating system kernel for achieving
predictable and reliable behavior even in worst
case conditions.

1. Introduction

Modem VTS's (Vessel Traffic Systems) are being used
in many big harbours all over the world. They are
especially used to collect data for traffic management,
information service, navigational assistance service and
support for other activities. However, one of the main
goals of these systems is always to achieve safety,
efficiency and protection of the environment.

The goal of the TRACS project is to investigate how
advanced functionalities can be added to complex traffic
control systems, such as VTS's. This implies the
specification and the implementation of a prototype of a
VTS, having the characteristics and the features described
in the following.

Basically, the system must be able to collect data from
several sensors, and to globally control the navigation of
vessels in a harbour area and/or along narrow channels.
Due to their capacity of operating in all weather
conditions, the choice of radars as sensors is quite natural.
Furthermore, modern advances allow us to extract from

'Ttus work has been supported in pari by EEC ESPRIT I11
and by MURST 40% of Italy

This work has been supported i n part by the IRI of Italy

radar images several parameters like shape, area, position
of the ship, etc.

The environment is supposed to be known by the
system, which has geographical maps of the harbour area.
Some assumptions are made on the scenario too, that is,
the minimum and the maximum values for the ships size
are assumed as well as the maximum traffic density, which
specifies how many ships, buoys, wharves, etc. can be at
most in a given area. For safety reasons, the VTS must be
able to control the width of the ships paths, the ships
speed, the cross distance between two ships and the
distance of the ships from their anchorage points. All these
values must be kept in certain specified rangesh particular
the software must deal with and predict for each vessel: the
Estimated Time of Amval (ETA), the path through the
designated channel lanes, the Closest Point of Approach
(CPA) and the Time to Closest Point of Approach
(TCPA).

The control center must generate alarm signals when
dangerous situations are detected. The nature of these
situations and the main goal of avoiding accidents and
especially loss of human lives, give rise to stringent
deadlines for system alarms. To correctly manage these
deadlines the application is supposed to run on a suitable
hard real-time platform. Furthermore the control system
has to handle ship guidance, stranding avoidance, moored
ships monitoring, intrusion avoidance.

In order to obtain a more reliable and dependable
application, several radar sensors are used to scan the same
harbour area. The control of the maritime traffic is done
through a multiradar tracking which is achieved carefully
applying data fusion algorithms to the incoming data from
the sensors. That is, all the information coming from the
radar sensors and the a-priori knowledge of the scene have
to be used in order to perform a higher level scene
comprehension and a trajectory prediction, successively
used for dangers or anomalies detection.

Two other higher level functionalities are required for
the control center: the scene presentation and the data base
management. All the information collected by the

0-8186-4130493 $03.00 0 1993 IEEE
50

giorgio
Text Box
Proceedings of the IEEE Workshop on Real-Time Applications, New York, USA, pp. 50-53, May 13-14, 1993.

multiradar tracking has to be presented in a suitable
graphic way, allowing the operator to control the whole
harbour area through a clear image available even in
critical conditions. In addition, any information regarding
the traffic in the harbour, i.e., the ship information, has to
be collected in a data base. Another data base is also
necessary to collect all the a-priori knowledge of the
environment, i.e., the maps of the harbour area.

2. Overall system architecture

Some of the operative requirements and of the
functional specifications of the TRACS project have had a
strong influence in the choice of the overall system
architecture. In particular, the following characteristics
have been considered:

a) the introduction of image processing techniques to the
radar signals in order to extract significant features of
the objects under control,

b) the need of implementing hard real-time features in
order to control dangerous situations that can arise and
that may imply damage or loss of goods and injury to
people if not appropriately handled,

the usefulness of implementing a sophisticated man-
machine interface in order to visualize the traffic
scenario and to allow the operator to easily understand
the scene and to immediately detect dangerous
situations.

c)

Taking into account the different computational needs
derived from these operative requirements, the proposed
computer architecture has been decomposed into two
different logical subsystems: the first one (see point a)
dedicated to the processing of the radar signals and to the
implementation of the image processing techniques (Data
Processing Subsystem); the other (see points b and c)
responsible for processing data coming from the Data
Processing Subsystem, for controlling dangerous
situations, and for presenting the scene on the operator
console (Console Subsystem). This logical modularization
of the system corresponds also to a physical
decomposition. In fact, keeping in mind both the physical
locations of the sensors and of the console, and the
functions of the two subsystems, a distributed architecture
seems to be suitable.
The activities of the Console Subsystem can be carried out

by two processing units:

a User Subsystem (US).

a Real-Time Control Subsystem (RTCS).

The overall system architecture is shown in figure 1.
The RTCS is in charge of traffic monitoring and control,
and includes typical functionalities of a hard real-time
system. The functionalities of the US are those typically
found in a time-sharing system. In this paper we focus our
attention on the Real-Time Control Subsystem. The
architectural specification of the RTCS directly comes
from the tasks assigned to this subsystem.

RTCS us
subsystem

Cons ol e
Subsystem

Figure 1: The TRACS architecture.

The main goal of RTCS is to keep the harbour area
under control in order to avoid dangerous conditions.
Synthetic data of the objects detected by the radar sensors
are extracted the Data Processing Subsystem and sent to
the RTCS. Using these data, RTCS performs multiradar
tracking and data fusion in order to detect dangerous
conditions and generate warning and alarm signals.

The RTCS must be equipped with a hard real-time
operating system able to support the execution of
application processes with explicit time constraints
specified in terms of both hard and soft deadlines. This
subsystem must be able to run hard real-time processes
whose goal is to control the environment and generate
alarm signals when dangerous situations are detected.
Concurrently, the RTCS is supposed to run also sofi real-
time processes, which are activities causing no
catastrophic consequence in case of missed deadlines.

3. Real-Time Control Subsystem

When dealing with time critical applications, real-time
computing is not equivalent to fast computing. In fact,
whereas the objective of fast computing is to minimize the
average response time of a given set of tasks, the objective
of real-time computing is to meet the individual timing
requirement of each task [Sta88]. Therefore, rather than
being fast, a real-time system should be predictable.

Within TRACS project, we want the timing properties
of tasks to be easily predictable and testable, not only for
the prototype, but also for more complex applications,
when the number of tasks is expected to grow together
with the number of the sensors.

51

From the analysis of the system specifications, the
underlying operating system developed for this project has
been designed to:

deal with periodic tasks for data acquisition and control
activities;

satisfy and guarantee stringent timing constraints for
critical activities, such as alarms and safety condition
monitor in g ;

allow to directly express timing constraints in
absolute time units, rather than process priorities;

deal with tasks of different nature, to integrate real-
time and non real-time activities.

Such characteristics are being developed, as a hard real-
time layer, on the CHORUS operating system [Cho89].
Within our project, the system interface allows the
programmer to express deadlines or periods explicitly, and
provides support for a predictable scheduling of time
constrained tasks. Moreover, to obtain a predictable
behavior, a guarantee routine analyzes the feasibility of the
scheduling every time a critical process is activated, so that
a possible time-ovefflow can be seen in advance, and hence
avoided.

Based on the environment characteristics considered in
TRACS, the scheduling policy has been designed
according to the Rate-Monotonic algorithm [Liu73]. The
Rate-Monotonic algorithm can be easily implemented in a
priority-based kernel, such as the CHORUS kernel,
without imposing high overheads.

In order to deal with different classes of activities that
may be created in a real-time control application, such as a
traffic control system, the modified kernel has been
designed to deal with different scheduling algorithms for
handling four types of tasks:

periodic processes, with critical deadlines; for instance,
periodic tasks checking for the existence of life-critical
conditions and alarm generation:

sporadic processes, with irregular arrival times and
critical deadlines; an example is given by triggered
alarms that need to be activated only once;

soft tasks, with non critical time constraints, as tasks
devoted to periodic warning signals or task performing
non-critical periodic data-fusion algorithms;

non real-time tasks, both periodic and aperiodic, with
no time constraints at all; like monitoring tasks, or
tasks for data-base inquiring.

Each task is characterized by a number of additional
parameters to those required by the commercial CHORUS
kernel, in order to specify its type, its periodic or aperiodic
nature, its timing constraints, or its priority if non real-
time, and its estimated maximum execution time. These
parameters feed a guarantee mechanism, used to achieve a
predictable scheduling of time critical tasks.

To guarantee execution time for sporadic activities, a
server mechanism has been used, which periodically
reserves some processor time for sporadic activities
according to process requests and their minimum
interarrival time, The chosen mechanism is based on the
Sporadic Server, proposed by Sprunt, Sha and Lehoczky
[Spr89], that, under the Rate-Monotonic scheduling
policy, improves the response times for soft aperiodic
tasks and can guarantee hard deadlines for both periodic and
aperiodic processes.

The minimum interarrival time of each sporadic
process can be computed considering the physical
restrictions of the objects under control. For example, the
minimum interarrival time of a process handling alarms
related to a restricted area can be computed considering the
minimum time required by any ship to exit and enter the
restricted area.

Soft and non real-time processes can be handled by
assigning them a priority lower than the lowest priority of
time critical processes. This guarantees that soft and non
real-time processes have no disturbing effect on the
scheduling of time critical processes.

An important feature that our predictable real-time
system provides for supporting a critical application is the
capability of guaranteeing the execution of all time critical
activities. The guarantee for critical task executions is
based on the knowledge of their worst case computation
time. Schedulability analysis in presence of shared
resources is also performed by evaluating the worst case
blocking time of each task. Blocking time in critical
sections is bounded using monitors together with the
Priority Inheritance Protocol [Sha90]. Within TRACS
project a tool for the static analysis of the timing
properties of the application code is under development.

Since TRACS application requires both real-time and
non real-time processes, the kernel should provide
synchronous and asynchronous time bounded
communication primitives to adapt to different task
requirements. However, synchronous interactions should
be avoided among critical tasks, unless they are time
bounded, since waiting for a message to arrive may
introduce an unpredictable delay that may cause a task to
miss its deadline. Non blocking primitives with overwrite
capability have to be used in the communication among
critical tasks whenever the most recent data is of primary
importance, as in the case of sensory data collection.

52

Asynchronous primitives allow the sender to deliver
messages without waiting for delivery confirmation. The
message is read when present, otherwise a specific code is
retumed to indicate message absence. To preserve the last
arrived message for every receiver request, at any time,
messages are not consumed by the receivers but remain
"stuck" to the port until they are overwritten. The
implementation of this semantics is realized providing new
primitives that allow all the features described so far. Non
real-time tasks can use remote procedure calls to require
services to other tasks, for example to inquire local data-
base servers, or to request services to remote nodes.

Allowing each device to interrupt the CPU at any time,
may introduce unpredictable delays at run-time, which may
cause a critical task to miss its deadline. The drivers
associated to the I/O devices of the Real Time Console, are
written and scheduled using the mechanism that CHORUS
provides to activate user tasks when interrupts are detected
by the system. To guarantee deadlines for time critical I/O
operations, U 0 handling processes must be scheduled as
ordinary threads with the assigned deadlines or priorities, as
for sporadic tasks, according to the application
requirements.

To avoid unpredictable delays on memory accesses, a
fixed memory management scheme is used within hard
type tasks. Such policy requires that the maximum
amount of memory used by tasks is bounded and defined
off-line. A pre-paging allocation policy can be used to
guarantee memory requirements for all time critical tasks
locking in main memory their pages, while soft and non
real-time tasks share the remaining memory space in a
conventional way.

4. Conclusions

In this paper, the application requirements of a vessel
mffic control system have been described. An architectural
solution is then discussed. In particular, we have focused
our attention on the real-time aspects of the system,
especially those concerning the scheduling algorithms of
time critical tasks and inter process communications.
Some modifications of an existing priority based kemel
(the Chorus OS) are proposed to achieve a predictable and
reliable system.

In our description all real-time activities run on a
single real-time console. The implementation of a full
real-time distributed system would need the development of
ad hoc scheduling algorithms and network protocols
because of the lack of standardized commercial systems.
However, the adopted solution seems to be reasonable in
order to investigate the proposals of the TRACS project.

[Cho89]

[Lit1733

[ShaW]

[Sta88]

ISpr893

M. Rozier, e t al: "CHORUS Distributed
Operating Systems", Technical Report CS/TR-
88-7.8, Chorus Systemes, Saint Quentin en
Yvelines Cedex, France.

C . L. Liu, and J . W. Layland: "Scheduling
Algoritms for Multiprogramming in a Hard-Real-
Time Environment", Journal of ACM, Vol. 20,
No. 1, pp. 46-61, January 1973.

L. Sha, R . Rajkumar, and J. P. Lehoczky:
"Priority Inheritance Protocol: An Approach to
Real-Time Synchronization", IEEE Transactions
on Computer, Vol. 39, No. 9, pp. 1175-1185,
September 1990.

J . A . Stankovic: " A Serious Problem for Next-
Generation Systems", IEEE Computer, pp. 10-
19, October 1988.

B . Sprunt, L. Sha, and J . P . Lehoczky:
"Scheduling Sporadic and Aperiodic Events in a
Hard Real-Time System", Technical Report,
CMUISEI-89-TR-11, EDS-TR-89-19, Software
Engineering Institute, Carnegie Mellon
University, Pittsburg, Pennsylvania, April
1 9 8 9 .

5. References

53

