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Abstract 

In this paper we present a general architecture 
for a real-time system dedicated to traffic control 
applications. The proposed system is being 
developed within the TRACS Esprit 111 project, and 
applied to a vessel trafSic control application. In 
this work, we focus our attention on the hard real- 
time aspects of the system, by -addressing the design 
issues of the operating system kernel for achieving 
predictable and reliable behavior even in worst 
case conditions. 

1. Introduction 

Modem VTS's (Vessel Traffic Systems) are being used 
in many big harbours all over the world. They are 
especially used to collect data for traffic management, 
information service, navigational assistance service and 
support for other activities. However, one of the main 
goals of these systems is always to achieve safety, 
efficiency and protection of the environment. 

The goal of the TRACS project is to investigate how 
advanced functionalities can be added to complex traffic 
control systems, such as VTS's. This implies the 
specification and the implementation of a prototype of a 
VTS, having the characteristics and the features described 
in the following. 

Basically, the system must be able to collect data from 
several sensors, and to globally control the navigation of 
vessels in a harbour area and/or along narrow channels. 
Due to their capacity of operating in all weather 
conditions, the choice of radars as sensors is quite natural. 
Furthermore, modern advances allow us to extract from 
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radar images several parameters like shape, area, position 
of the ship, etc. 

The environment is supposed to be known by the 
system, which has geographical maps of the harbour area. 
Some assumptions are made on the scenario too, that is, 
the minimum and the maximum values for the ships size 
are assumed as well as the maximum traffic density, which 
specifies how many ships, buoys, wharves, etc. can be at 
most in a given area. For safety reasons, the VTS must be 
able to control the width of the ships paths, the ships 
speed, the cross distance between two ships and the 
distance of the ships from their anchorage points. All these 
values must be kept in certain specified rangesh particular 
the software must deal with and predict for each vessel: the 
Estimated Time of Amval (ETA), the path through the 
designated channel lanes, the Closest Point of Approach 
(CPA) and the Time to Closest Point of Approach 
(TCPA). 

The control center must generate alarm signals when 
dangerous situations are detected. The nature of these 
situations and the main goal of avoiding accidents and 
especially loss of human lives, give rise to stringent 
deadlines for system alarms. To correctly manage these 
deadlines the application is supposed to run on a suitable 
hard real-time platform. Furthermore the control system 
has to handle ship guidance, stranding avoidance, moored 
ships monitoring, intrusion avoidance. 

In order to obtain a more reliable and dependable 
application, several radar sensors are used to scan the same 
harbour area. The control of the maritime traffic is done 
through a multiradar tracking which is achieved carefully 
applying data fusion algorithms to the incoming data from 
the sensors. That is, all the information coming from the 
radar sensors and the a-priori knowledge of the scene have 
to be used in order to perform a higher level scene 
comprehension and a trajectory prediction, successively 
used for dangers or anomalies detection. 

Two other higher level functionalities are required for 
the control center: the scene presentation and the data base 
management. All the information collected by the 
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multiradar tracking has to be presented in a suitable 
graphic way, allowing the operator to control the whole 
harbour area through a clear image available even in 
critical conditions. In addition, any information regarding 
the traffic in the harbour, i.e., the ship information, has to 
be collected in a data base. Another data base is also 
necessary to collect all the a-priori knowledge of the 
environment, i.e., the maps of the harbour area. 

2. Overall system architecture 

Some of the operative requirements and of the 
functional specifications of the TRACS project have had a 
strong influence in the choice of the overall system 
architecture. In particular, the following characteristics 
have been considered: 

a) the introduction of image processing techniques to the 
radar signals in order to extract significant features of 
the objects under control, 

b) the need of implementing hard real-time features in 
order to control dangerous situations that can arise and 
that may imply damage or loss of goods and injury to 
people if not appropriately handled, 

the usefulness of implementing a sophisticated man- 
machine interface in order to visualize the traffic 
scenario and to allow the operator to easily understand 
the scene and to immediately detect dangerous 
situations. 

c) 

Taking into account the different computational needs 
derived from these operative requirements, the proposed 
computer architecture has been decomposed into two 
different logical subsystems: the first one (see point a) 
dedicated to the processing of the radar signals and to the 
implementation of the image processing techniques (Data 
Processing Subsystem); the other (see points b and c) 
responsible for processing data coming from the Data 
Processing Subsystem, for controlling dangerous 
situations, and for presenting the scene on the operator 
console (Console Subsystem). This logical modularization 
of the system corresponds also to a physical 
decomposition. In fact, keeping in mind both the physical 
locations of the sensors and of the console, and the 
functions of the two subsystems, a distributed architecture 
seems to be suitable. 
The activities of the Console Subsystem can be carried out 

by two processing units: 

a User Subsystem (US). 

a Real-Time Control Subsystem (RTCS). 

The overall system architecture is shown in figure 1. 
The RTCS is in charge of traffic monitoring and control, 
and includes typical functionalities of a hard real-time 
system. The functionalities of the US are those typically 
found in a time-sharing system. In this paper we focus our 
attention on the Real-Time Control Subsystem. The 
architectural specification of the RTCS directly comes 
from the tasks assigned to this subsystem. 

RTCS us 
subsystem 

Cons ol e 
Subsystem 

Figure 1: The TRACS architecture. 

The main goal of RTCS is to keep the harbour area 
under control in order to avoid dangerous conditions. 
Synthetic data of the objects detected by the radar sensors 
are extracted the Data Processing Subsystem and sent to 
the RTCS. Using these data, RTCS performs multiradar 
tracking and data fusion in order to detect dangerous 
conditions and generate warning and alarm signals. 

The RTCS must be equipped with a hard real-time 
operating system able to support the execution of 
application processes with explicit time constraints 
specified in terms of both hard and soft deadlines. This 
subsystem must be able to run hard real-time processes 
whose goal is to control the environment and generate 
alarm signals when dangerous situations are detected. 
Concurrently, the RTCS is supposed to run also sofi real- 
time processes, which are activities causing no 
catastrophic consequence in case of missed deadlines. 

3. Real-Time Control Subsystem 

When dealing with time critical applications, real-time 
computing is not equivalent to fast computing. In fact, 
whereas the objective of fast computing is to minimize the 
average response time of a given set of tasks, the objective 
of real-time computing is to meet the individual timing 
requirement of each task [Sta88]. Therefore, rather than 
being fast, a real-time system should be predictable. 

Within TRACS project, we want the timing properties 
of tasks to be easily predictable and testable, not only for 
the prototype, but also for more complex applications, 
when the number of tasks is expected to grow together 
with the number of the sensors. 
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From the analysis of the system specifications, the 
underlying operating system developed for this project has 
been designed to: 

deal with periodic tasks for data acquisition and control 
activities; 

satisfy and guarantee stringent timing constraints for 
critical activities, such as alarms and safety condition 
monitor in g ; 

allow to directly express timing constraints in 
absolute time units, rather than process priorities; 

deal with tasks of different nature, to integrate real- 
time and non real-time activities. 

Such characteristics are being developed, as a hard real- 
time layer, on the CHORUS operating system [Cho89]. 
Within our project, the system interface allows the 
programmer to express deadlines or periods explicitly, and 
provides support for a predictable scheduling of time 
constrained tasks. Moreover, to obtain a predictable 
behavior, a guarantee routine analyzes the feasibility of the 
scheduling every time a critical process is activated, so that 
a possible time-ovefflow can be seen in advance, and hence 
avoided. 

Based on the environment characteristics considered in 
TRACS, the scheduling policy has been designed 
according to the Rate-Monotonic algorithm [Liu73]. The 
Rate-Monotonic algorithm can be easily implemented in a 
priority-based kernel, such as the CHORUS kernel, 
without imposing high overheads. 

In order to deal with different classes of activities that 
may be created in a real-time control application, such as a 
traffic control system, the modified kernel has been 
designed to deal with different scheduling algorithms for 
handling four types of tasks: 

periodic processes, with critical deadlines; for instance, 
periodic tasks checking for the existence of life-critical 
conditions and alarm generation: 

sporadic processes, with irregular arrival times and 
critical deadlines; an example is given by triggered 
alarms that need to be activated only once; 

soft tasks, with non critical time constraints, as tasks 
devoted to periodic warning signals or task performing 
non-critical periodic data-fusion algorithms; 

non real-time tasks, both periodic and aperiodic, with 
no time constraints at all; like monitoring tasks, or 
tasks for data-base inquiring. 

Each task is characterized by a number of additional 
parameters to those required by the commercial CHORUS 
kernel, in order to specify its type, its periodic or aperiodic 
nature, its timing constraints, or its priority if non real- 
time, and its estimated maximum execution time. These 
parameters feed a guarantee mechanism, used to achieve a 
predictable scheduling of time critical tasks. 

To guarantee execution time for sporadic activities, a 
server mechanism has been used, which periodically 
reserves some processor time for sporadic activities 
according to process requests and their minimum 
interarrival time, The chosen mechanism is based on the 
Sporadic Server, proposed by Sprunt, Sha and Lehoczky 
[Spr89], that, under the Rate-Monotonic scheduling 
policy, improves the response times for soft aperiodic 
tasks and can guarantee hard deadlines for both periodic and 
aperiodic processes. 

The minimum interarrival time of each sporadic 
process can be computed considering the physical 
restrictions of the objects under control. For example, the 
minimum interarrival time of a process handling alarms 
related to a restricted area can be computed considering the 
minimum time required by any ship to exit and enter the 
restricted area. 

Soft and non real-time processes can be handled by 
assigning them a priority lower than the lowest priority of 
time critical processes. This guarantees that soft and non 
real-time processes have no disturbing effect on the 
scheduling of time critical processes. 

An important feature that our predictable real-time 
system provides for supporting a critical application is the 
capability of guaranteeing the execution of all time critical 
activities. The guarantee for critical task executions is 
based on the knowledge of their worst case computation 
time. Schedulability analysis in presence of shared 
resources is also performed by evaluating the worst case 
blocking time of each task. Blocking time in critical 
sections is bounded using monitors together with the 
Priority Inheritance Protocol [Sha90]. Within TRACS 
project a tool for the static analysis of the timing 
properties of the application code is under development. 

Since TRACS application requires both real-time and 
non real-time processes, the kernel should provide 
synchronous and asynchronous time bounded 
communication primitives to adapt to different task 
requirements. However, synchronous interactions should 
be avoided among critical tasks, unless they are time 
bounded, since waiting for a message to arrive may 
introduce an unpredictable delay that may cause a task to 
miss its deadline. Non blocking primitives with overwrite 
capability have to be used in the communication among 
critical tasks whenever the most recent data is of primary 
importance, as in the case of sensory data collection. 
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Asynchronous primitives allow the sender to deliver 
messages without waiting for delivery confirmation. The 
message is read when present, otherwise a specific code is 
retumed to indicate message absence. To preserve the last 
arrived message for every receiver request, at any time, 
messages are not consumed by the receivers but remain 
"stuck" to the port until they are overwritten. The 
implementation of this semantics is realized providing new 
primitives that allow all the features described so far. Non 
real-time tasks can use remote procedure calls to require 
services to other tasks, for example to inquire local data- 
base servers, or to request services to remote nodes. 

Allowing each device to interrupt the CPU at any time, 
may introduce unpredictable delays at run-time, which may 
cause a critical task to miss its deadline. The drivers 
associated to the I/O devices of the Real Time Console, are 
written and scheduled using the mechanism that CHORUS 
provides to activate user tasks when interrupts are detected 
by the system. To guarantee deadlines for time critical I/O 
operations, U 0  handling processes must be scheduled as 
ordinary threads with the assigned deadlines or priorities, as 
for sporadic tasks, according to the application 
requirements. 

To avoid unpredictable delays on memory accesses, a 
fixed memory management scheme is used within hard 
type tasks. Such policy requires that the maximum 
amount of memory used by tasks is bounded and defined 
off-line. A pre-paging allocation policy can be used to 
guarantee memory requirements for all time critical tasks 
locking in main memory their pages, while soft and non 
real-time tasks share the remaining memory space in a 
conventional way. 

4. Conclusions 

In this paper, the application requirements of a vessel 
mffic control system have been described. An architectural 
solution is then discussed. In particular, we have focused 
our attention on the real-time aspects of the system, 
especially those concerning the scheduling algorithms of 
time critical tasks and inter process communications. 
Some modifications of an existing priority based kemel 
(the Chorus OS) are proposed to achieve a predictable and 
reliable system. 

In our description all real-time activities run on a 
single real-time console. The implementation of a full 
real-time distributed system would need the development of 
ad hoc scheduling algorithms and network protocols 
because of the lack of standardized commercial systems. 
However, the adopted solution seems to be reasonable in 
order to investigate the proposals of the TRACS project. 
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