Proceedings of the 13th IEEE Euromicro Conference on Real-Time Systems - June 2001 - Delft, NL 1

A New Kernel Approach for Modular Real-Time systems Development

Paolo Gai, Luca Abeni, Massimiliano Giorgi

RETIS Lab

Scuola Superiore S. Anna, Pisa
{pj,luca,massy } @hartik.sssup.it

Abstract

This paper presents a dynamic configurable ker-
nel architecture designed for supporting a simple im-
plementation, integration and evaluation of schedul-
ing algorithms. The main goal of the proposed ar-
chitecture is to provide a platform for fast prototyp-
ing scheduling algorithms both for the CPU and for
the devices. The kernel is fully modular in terms
of scheduling policies, aperiodic servers, and con-
currency control protocols, allowing applications to
be developed independently from a particular sys-
tem configuration. Finally, the system is compli-
ant with the POSIX 1003.13 PSE5?2 specifications to
simplify porting of application code developed for
other POSIX compliant kernels.

1. Introduction

Real-time computing is required in many applica-
tion domains, ranging from embedded process con-
trol to multimedia systems. Each application has pe-
culiar characteristics in terms of timing constraints
and computational requirements (such as periodicity,
criticality of the deadlines, tolerance to jitter, and so
on). For this reason, a lot of different scheduling
algorithms and resource allocation protocols have
been proposed to conform to such different applica-
tion demands, from the classical fixed or dynamic
priority allocation schemes to adaptive or feedback-
based systems.

However, most of the new approaches have been
only theoretically analyzed, and sometimes evalu-
ated using a scheduling simulator. In this case, the
algorithm performance is not evaluated on real ex-
amples, but only on a synthetic workload. This
choice is often dictated from the fact that writing a
kernel from scratch every time a new scheduling al-
gorithm is proposed would be unrealistic and would
not offer the availability of meaningful applications.

Giorgio Buttazzo
University of Pavia (Italy)
INFM - Pavia research unit

buttazzo @unipv.it

A more effective approach is to modify an existing
kernel (such as Linux), since most of the existing
applications and device drivers written for the host
OS can be used in a straightforward fashion. On
the other hand, a general purpose kernel is designed
aiming at specific goals and generally its architec-
ture is not modular enough for replacing or modify-
ing the scheduling policy. Moreover, classical OSs
do not allow to easily define a scheduling policy for
resources other than the CPU and this poses a further
limitation for testing novel research solutions. This
is mainly due to the fact that the classical OS struc-
ture does not permit a precise device scheduling (due
to problems involving resource contention, priority
inversion, interrupt accounting, long non-preemptive
sections, and so on).

In this paper we present S.Ha.R.K. (Soft and Hard
Real-time Kernel), a research kernel purposely de-
signed to help the implementation and testing of
new scheduling algorithms, both for the CPU and
for other resources. The kernel can be used to per-
form early validation of the scheduling algorithms
produced in the research labs, and to show the ap-
plication of real-time scheduling in real-time sys-
tems courses. These goals are fulfilled by making
a trade off between simplicity and flexibility of the
programming interface on one hand and efficiency
on the other. This approach allows a developer to fo-
cus his/her attention on the real algorithmic issues,
thus saving significant time in the implementation of
new solutions. Another important design guideline is
the use of standard naming conventions for the sup-
port libraries in order to ease the porting of mean-
ingful applications written for other platforms. The
results have been satisfactory for applications such
as an MPEG player, a set of network drivers and a
FFT library.

The kernel provides the basic mechanisms for
queue management and dispatching and uses one
or more external configurable modules to perform
scheduling decisions. These external modules can

Proceedings of the 13th IEEE Euromicro Conference on Real-Time Systems - June 2001 - Delft, NL 2

implement periodic scheduling algorithms, soft task
management through real-time servers, semaphore
protocols, and resource management policies. The
modules implementing the most common algorithms
(such as RM, EDF, Round Robin, and so on) are al-
ready provided, and it is easy to develop new mod-
ules. Each new module can be created as a set of
functions that abstract from the implementation of
the other scheduling modules and from the resource
handling functions. Also the applications can be de-
veloped independently from a particular system con-
figuration, so that new modules can be added or re-
placed to evaluate the effects of specific schedul-
ing policies in terms of predictability, overhead, and
performance. Low-level drivers for the most typi-
cal hardware resources (like network cards, graphic
cards, and hard disks) are also provided, without
imposing any form of device scheduling. In this
way, device scheduling can be implemented by the
user to test new solutions. To avoid the implemen-
tation of a new non-standard programming inter-
face, which would discourage people from using the
kernel, S.Ha.R.K. implements the standard POSIX
1003.13 PSES2 interface [21, 22].

The rest of the paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 intro-
duces the overall architecture of the system. Section
4 illustrates how the system allows to separate the
Quality of Service (QoS) specification from the al-
gorithms used to provide the requested service. Sec-
tions 5, 6, and 7 describe the approach for achieving
modularity in task scheduling, resource access, and
device management respectively. Section 8 briefly
presents some experiences with the kernel, and fi-
nally Section 9 states our conclusions and future
work.

2. Related Work

A big number of real-time scheduling algorithms
have been proposed in literature to deal with timing
constraints, starting from the classical Rate Mono-
tonic (RM) or Earliest Deadline First (EDF) algo-
rithms [12]. Since the analysis originally proposed
for these algorithms was performed under very re-
strictive assumptions (independent tasks, fixed ex-
ecution times and periods, completely preemptive
scheduling, and so on), a lot of successive papers
have been devoted to extend the original analysis and
present new algorithms for dealing with shared re-
sources or aperiodic requests.

On the other hand, commercial real-time operat-
ing systems, such as QNX [23] and VX Works [18],
and other free projects, like RT-Linux [10], tend to

minimize the kernel non-preemptable sections, in or-
der to make the schedule more similar to the com-
pletely preemptive model assumed by Liu and Lay-
land in [12]. This is usually done by reducing con-
text switch and interrupt handling times and increas-
ing the kernel efficiency. However, these kernels are
still based on fixed priority scheduling, hence only
RM and its derivates can easily be implemented.

RT-Mach [15] is a research system that pro-
vides real-time facilities and directly implements
RM, EDEF, Priority Inheritance, and CPU reserva-
tions [13], presenting a wide (but fixed) range of
scheduling algorithms. Another research system
developed to support time-sensitive application is
Nemesis [17], based on an unconventional (vertical)
OS structure. While RT-Mach is a micro kernel with
the goal of minimizing the non-preemptable sections
in the kernel, reducing the kernel size, and imple-
menting the OS functions into external processes
(called servers), Nemesis tends to implement all the
OS functions in the application code. The Nemesis
kernel only implements some support to access the
hardware, and provides temporal protection through
a reservation approach based on EDF. If an applica-
tion needs some particular scheduling algorithm, it
has to implement it at the user level.

Other authors [7, 24, 25] decided to modify a
conventional OS, based on a monolithic kernel ap-
proach. Some of them [25] proposed modifications
in the kernel in order to introduce preemption points,
schedule the interrupt handlers, and provide some
limited form of device scheduling. In general, all
these works introduce a new scheduling algorithm
in the kernel; however, since conventional kernels
provide a quantum based resource allocation and are
very difficult to modify, only a few algorithms can be
implemented on them easily. Proportional Share al-
gorithms [7, 24], being based on a per-quantum CPU
allocation, are expressly designed to be implemented
on a conventional kernel. Another interesting tech-
nology that is growing up recently is represented by
Resource Kernels (RK). An RK is a resource-centric
kernel that complements the OS kernel providing
support for QoS, and enabling the use of reservation
techniques in traditional OSs. As an example, this
technology has been applied to Linux, implementing
the Linux/RK [16].

In any case, scheduling flexibility is becoming
a hot topic in OS research, and some experimental
kernels are beginning to provide support for imple-
menting different scheduling policies (although the
concept of separating the policy from the mecha-
nism is not new). For example, the L4 pkernel [11]
provides a mechanism based on preempter threads

Proceedings of the 13th IEEE Euromicro Conference on Real-Time Systems - June 2001 - Delft, NL 3

to implement flexible scheduling (however, the base
scheduling mechanism uses a fixed priority scheme).
A different solution is proposed by the ExoKernel
[4], which does not introduce any abstraction, but
requires the resource scheduling to be performed
by user applications. From one hand, User-level
scheduling represents a good solution for imple-
menting different scheduling algorithms on the same
kernel: for example, in [8] scheduling is performed
by a privileged process running in user space. On the
other hand, user level scheduling can introduce a sig-
nificant overhead, and is not general enough (in fact,
some scheduling algorithms require a global view of
all the tasks in the system, while a user level sched-
uler can manage only a fraction of all the tasks).

RED-Linux [25] tries to solve these problems us-
ing a general scheduling framework composed by
a Schedule Allocator, which creates jobs character-
ized by some common parameters, and a Schedule
Dispatcher, which schedules the jobs inserted by the
Allocator. A different approach is represented by
the CPU Inheritance Scheduling [6], which provides
some kernel mechanisms to “inherit” CPU time from
one task to another. In this way, the kernel provides
only the basic mechanisms used by application tasks
to implement the scheduler.

Finally, in the literature other solutions can be
found, like for example Vino[19] (that is an oper-
ating system which provides a collection of mecha-
nisms, and the applications dictate the policies ap-
plied to those mechanisms; all resources are ac-
cessed through a single, common interface), Spin [1]
(that provides a core of extensible services, that al-
low applications to safely change the operating sys-
tem’s interface and implementation) and Rialto [9]
(that is an architecture supporting coexisting inde-
pendent real-time and non-real-time programs; it al-
lows multiple independently authored real-time ap-
plications with varying timing and resource require-
ments to dynamically coexist and cooperate to share
the limited physical resources available to them).

In conclusion, all the presented works are very in-
teresting for their efficiency, preemptability and pre-
dictability, but none of them are so flexible and sim-
ple to allow the user to fast prototype a new schedul-
ing algorithm without carrying on limitations due to
a complex system interface.

3. Scheduling Architecture

In order to realize independence between appli-
cations and scheduling algorithms (and between the
schedulers and the kernel), S.Ha.R.K. is based on a
Generic Kernel, which does not implement any par-

Application and
Libraries

Module X
Generic
Kernel
Module Y

Hardware

Figure 1. The S.Ha.R.K. Architecture.

ticular scheduling algorithm, but postpones schedul-
ing decisions to external entities, the scheduling
modules. In a similar fashion, the access to shared
resources is coordinated by resource modules. A
simplified scheme of the kernel architecture is de-
picted in Figure 1.

The Generic Kernel provides the mechanisms
used by the modules to perform scheduling and re-
source management, thus allowing the system to ab-
stract from the algorithms that can be implemented.
The Generic Kernel simply provides the primitives
without specifying any algorithm, whose implemen-
tation resides in external modules, configured at run-
time with the support of the Model Mapper (see Sec-
tion 4).

Another important component of the Generic
Kernel is the Job Execution Time (JET) estimator,
which monitors the computation time actually con-
sumed by each job. This is a generic mechanism, in-
dependent from the scheduling algorithms, that can
be used for statistical measurements, for enforcing
temporal protection’, or for resource accounting (see
Section 7).

The API is exported through the Libraries, which
use the Generic Kernel to support some common
hardware devices (i.e., keyboard, sound cards, net-
work cards, graphic cards) and provide a compati-
bility layer with the POSIX Realtime Controller Sys-
tem Profile [22]. An application consists of a set of
threads that share all the memory space (no memory
protection is implemented).

Each Module consists of a set of data and func-
tions used for implementing a specific algorithm,
whose implementation is independent from the one
of the other modules in the system, thus realizing
a trade-off between user-level and in-kernel sched-
ulers. In this way, many different module configu-
rations are possible. For example, a Polling Server
can either work with a RM or an EDF scheduling
Module without any modification.

Currently, S.Ha.R.K. provides two basic kind of

IThe temporal protection is enforced evaluating the Job exe-
cution time and forcing the preemption of a thread if it executes
more than the declared total execution time.

Proceedings of the 13th IEEE Euromicro Conference on Real-Time Systems - June 2001 - Delft, NL 4

modules:

e modules that implement scheduling algorithms
and aperiodic service policies (Scheduling
Modules);

e modules that manage shared (hardware or soft-
ware) resources (Resource Modules);

All resource access protocols, such as Priority Inher-
itance, are implemented as a mutex module whose
interface is derived from the resource module inter-
face. A POSIX mutex interface is also provided on
top of the implemented protocols.

Each type of Module provides a well defined
interface to communicate with the Generic Kernel
(user programs do not directly interact with the mod-
ules). The interface functions are called by the
Generic Kernel to implement the kernel primitives.
When modules need to interact with the hardware
(for example, the timer), they can use the service
calls provided by the Generic Kernel.

4. QoS Specification

One of the goals of the S.Ha.R.K. Kernel is to
allow the user to easily implement and test novel
scheduling algorithms. In particular, the kernel has
been designed in order to achieve independence be-
tween the kernel mechanisms and the scheduling
policies for tasks and resource management, allow to
configure the system at run-time by specifying the al-
gorithms to be used for task scheduling and resource
access and achieve independence between applica-
tions and scheduling algorithms.

These requirements are useful when different al-
gorithms need to be compared and tested on the same
application. Such a module independence also al-
lows the user to configure and test applications with-
out recompiling them (only relinking is needed).

Independence between applications and schedul-
ing algorithms is achieved by introducing the con-
cept of model. Each task asks the system to be
scheduled according to a given QoS specified by a
model. In other words, a model is the entity used
by S.Ha.R.K. to separate the scheduling parameters
from the QoS parameters required by each task. In
this way, the kernel provides a common interface
to isolate the task QoS requirements from the real
scheduler implementation.

Models are descriptions of the scheduling re-
quirements expressed by tasks. S.Ha.R.K. provides
two different kinds of models: Task Models and Re-
source Models. A task model expresses the QoS re-

New task |

New task |

Model 1 Model 2

Generic
Model Mapper

Model 2

QO0S Mapper

H Internal
Data Structures

Model 1

i Module 2}

Q0S Mapper

Internal
bata Structures

Specific
Algorithm
(Scheduling,
Resource, ...)

Module 1}

Specific
Algorithm
(Scheduling,
Resource, ...)

Figure 2. The interaction between the
Model Mapper and the QOS Mapper.

quirements of a task for the CPU scheduling. Re-
quirements are specified through a set of parame-
ters. A resource model is used to define the QoS
parameters relative to a set of shared resources used
by a task. For example, the resource model can be
used to specify the semaphore protocol to be used
for protecting critical sections (e.g., Priority Inheri-
tance, Priority Ceiling, or SRP).

Each task is characterized by a single mandatory
QoS parameter, the task criticality (hard, soft, firm,
non real-time, and so on). This parameter belongs to
the common part of the task model, together with a
model identifier and some other parameters, such as
the stack size.

Each task model is implemented as a C structure,
in which the first field is the model identifier, the fol-
lowing fields are the mandatory parameters, and the
last field is a sequence of bytes containing the model-
dependent parameters, that only the specific mod-
ule can interpret. Resource models are completely
generic and depend on the resource they describe:
the only mandatory parameter is the model identifier.

Models are required to make the generic kernel
independent from the implemented scheduling algo-
rithms: since the generic kernel does not implement
any algorithm, it does not know how to serve a task,
but invokes a service request to scheduling entities
realized as external modules. Hence, the generic
kernel does not interpret the models, but just passes
them to the modules; each module, reading the com-
mon part of the model, can understand whether the
task can be served or not.

Task creation works as follows (see Figure 2):
when an application issues a request to the kernel for
creating a new task, it also sends the model describ-
ing the requested QoS. A kernel component, namely

Proceedings of the 13th IEEE Euromicro Conference on Real-Time Systems - June 2001 - Delft, NL 5

the model mapper, passes the model to a module, se-
lected according to an internal policy, and the mod-
ule checks whether it can provide the requested QoS;
if the selected module cannot serve the task, the
model mapper selects a different module. When a
module accepts to manage the task described by the
specified model, it converts the model’s QOS pa-
rameters into the appropriate scheduling parameters.
Such a conversion is performed by a module compo-
nent, called the QoS Mapper. In general, a module
can manage only a subset of the models, and the set
of models is not limited by the kernel. This is pos-
sible because the kernel does not handle the models,
but it simply passes them to the Model Mapper, that
selects a module and passes the model to it. Cur-
rently, the Model Mapper uses a simple strategy, ac-
cording to which modules are selected based on the
task models that they can handle. If they are more
than one, it is a user responsibility to choose the right
module that will manage the task.

5. Scheduling Modules

Scheduling Modules are used by the Generic Ker-
nel to schedule tasks, or serve aperiodic requests us-
ing an aperiodic server. In general, the implemen-
tation of a scheduling algorithm should possibly be
independent of resource access protocols, and han-
dle only the scheduling behavior. Nevertheless, the
implementation of an aperiodic server relies on the
presence of another scheduling module, called the
Host Module (for example, a Deferrable Server can
be used if the base scheduling algorithm is RM or
EDF, but not Round Robin). Such a design choice
reflects the traditional approach followed in the lit-
erature, where most aperiodic servers insert their
tasks directly into the scheduling queues of the base
scheduling algorithm. Again, the modularity of the
architecture hides this mechanism with the task mod-
els: an aperiodic server must use a task model to in-
sert his tasks into the Host Module. In this way, the
Guest Module have not to rely on the implementa-
tion of the Host Module.

The Model Mapper distributes the tasks to the
registered modules according to the task models
the set of modules can handle. For this rea-
son, the task descriptor includes an additional field
(task_level), which points to the module that is
handling the task.

When the Generic Kernel has to perform a
scheduling decision, it asks the modules for the task
to schedule, according to fixed priorities: first, it in-
vokes a scheduling decision to the highest priority
module, then (if the module does not manage any

task ready to run), it asks the next high priority mod-
ule, and so on. In this way, each module manages its
private ready task list, and the Generic Kernel sched-
ules the first task of the highest priority non empty
module’s queue.

The interface functions provided by a scheduling
module can be grouped in three classes: Level Calls,
Task Calls and Guest Calls.

6. Shared Resource Access Protocols

S.Ha.R.K. is based on a shared memory program-
ming paradigm, so communication among tasks is
performed by accessing shared buffers. In this case,
tasks that concurrently access the same shared re-
source must be synchronized through mutual exclu-
sion: real-time theory [20] teaches that mutual ex-
clusion through semaphores is prone to priority in-
version. In order to avoid or limit priority inversion,
suitable shared resource access protocols have to be
used.

As for scheduling, S.Ha.R.K. achieves modular-
ity also in the implementation of shared resource ac-
cess protocols. Resource modules are used to make
resource protocols modular and almost independent
from the scheduling policy and from the others re-
source protocols. Each resource module exports a
common interface, similar to the one provided by
POSIX for mutexes, and implements a specific re-
source access protocol. A task may also require to
use a specified protocol through a resource model.

Some protocols (like Priority Inheritance or Pri-
ority Ceiling), directly interact with the scheduler
(since a low-priority task can inherit the priority
from a high-priority task), making the protocol de-
pendent on the particular scheduling algorithm. Al-
though a solution based on a direct interaction be-
tween the scheduler and the resource protocol is ef-
ficient in terms of runtime overhead, it limits the
full modularity of the kernel, preventing the substi-
tution of a scheduling algorithm with another one
handling the same task models (for example, Rate
Monotonic could be replaced by the more general
Deadline Monotonic algorithm).

To achieve complete modularity, the S.Ha.R.K.
Generic Kernel supports a generic priority inheri-
tance mechanism independent from the scheduling
modules. Such a mechanism is based on the con-
cept of shadow tasks. A shadow task is a task that
is scheduled in place on another task chosen by the
scheduler. When a task is blocked by the protocol,
it is kept in the ready queue, and a shadow task is
binded to it; when the blocked task becomes the first
task in the ready queue, its binded shadow task is

Proceedings of the 13th IEEE Euromicro Conference on Real-Time Systems - June 2001 - Delft, NL 6

Blocked Task Blocked Task |
J

N\

Blocked Task Blocking Task

J

C

Figure 3. The shadow task mechanism.

scheduled instead. In this way, the shadow task “in-
herits” the priority of the blocked task.

To implement this solution, a new field shadow
is added to the generic part of the task descriptor.
This field points to the shadow task. Initially, the
shadow field is equal to the task ID (no substitution).
When the task blocks, the shadow field is set to the
task ID of the blocking task, or to the task that must
inherit the blocked task priority. In general, a graph
can grow from a blocking task (see Figure 3). In
this way, when the blocked task is scheduled, the
blocking (shadow) task is scheduled, thus allowing
the schedulers to abstract from the resource proto-
cols. This approach has also the benefit of allowing
a classical deadlock detection strategy: cycles have
to be searched in the shadow graph when a shadow
field is set.

Using this approach a large number of shared re-
sources protocols can be implemented in a way inde-
pendent from the scheduling implementation. This
independence is very important, since one of the ob-
jective of the architecture is to allow a simple imple-
mentation of a scheduling algorithm that tries to be
independent from other implementations and from
the shared resource policies. The classical approach,
however, can also be pursued, but obviously it not
reach the independence of the latter method.

7. Device Management

One of the goals of the S.Ha.R.K. design is to
allow device scheduling, permitting to extend the
scheduling techniques applied to the CPU to all the
other hardware resources. To do that, device man-
agement has to be performed without affecting the
other system activities guarantee. In particular, an
hardware device has o be shared among applications
respecting the real-time requirements expressed by
the Resource Models.

Current research [17, 15] in real-time and mul-

timedia operating systems suggests that QoS guar-
antee on hardware resource access, can be better
achieved if device management is performed outside
the kernel. This is important for ensuring that the de-
vice management code will not steal execution time
to the application code. If, on the other hand, devices
are managed in the traditional way, as in monolithic
kernel, some problem like the receiving livelock [14]
can happen.

In order to perform device scheduling allowing
a real-time management and a precise resource ac-
counting, S.Ha.R.K. makes a distinction between de-
vice drivers and device managers. A device driver
is responsible for accessing hardware resources at a
low level and it is generally composed of code ac-
cessing I/O ports and memory in response to user
requests or hardware interrupts. Thus, device drivers
are the hardware dependent part of the device man-
agement code. A resource manager uses the driver
code to access the hardware and implements some
real-time device management and resource alloca-
tion strategy. In this way, it is possible to perform
any form of device scheduling.

7.1. Device Drivers

Device drivers are the hardware dependent part
of the device management code, implementing the
routines necessary to perform low-level accesses to
the devices. Depending on the implemented man-
agement scheme, the driver code can be embedded
in the Generic Kernel (obtaining a solution similar
to that used in classical Unix systems), in a system
or user dedicated thread (as in multithreaded kernels,
like Solaris, or in pkernel architectures like Mach or
L4), or in the user-level application code (as in the
ExoKernel architectures or in the Nemesis vertical-
structured kernel).

In our solution, the driver code can be inher-
ited from other free OSs, and can be compiled in
the S.Ha.R.K. environment using some glue code,
remapping the other system calls to the Generic Ker-
nel interface. In this way, it is possible to support all
the devices supported by the free OS from which the
driver is inherited (note that we can inherit code from
Linux, that supports most of the current PC hard-
ware).

In our experience, the driver code does not need
special design techniques to be used in a real-time
environment, thus inheriting legacy code at the de-
vice driver level does not cause major problems. As
an example, we implemented the glue code for using
the Linux network drivers, and successfully inherited
code for all the 3COM and NE network cards.

Proceedings of the 13th IEEE Euromicro Conference on Real-Time Systems - June 2001 - Delft, NL 7

7.2. Device Managers

The device manager is responsible for using the
driver level to share a device among all the appli-
cations. The manager is hardware independent and
must only perform device scheduling, taking de-
vice management costs into account to provide some
form of guarantee on hardware accesses.

For this purpose, the manager can be imple-
mented as a dedicated thread, or as an application
code: the first solution ensures that the device man-
agement will not influence the other system’s activi-
ties (if an aperiodic server or an isolation technique is
used to serve the device management task), whereas
the second solution permits a better precision in ac-
counting the CPU time used by the device manager
to the application using the hardware resource.

As an example, we describe the S.Ha.R.K. file
system: the device driver is a low level IDE code
accessing the hard disk (exporting services such as
block-read and block-write), while the manager is
composed by the FAT file system code and by a disk
scheduler. The scheduler selects the I/O requests to
pass to the driver, according to some well known
disk scheduling policy (such as SCAN), or to some
real-time algorithm (derived from EDF). The device
scheduling algorithm can be specified at the initial-
ization of the device manager, and each task can
specify its desired disk QoS using a resource model.

Currently, S.Ha.R.K. implements separation be-
tween resource drivers and managers, and the most
important device drivers have been implemented (in-
dependently from the device scheduling algorithms)
either inheriting them from other operating systems
or writing them from scratch. We are currently work-
ing on the definition of a generic architecture for the
device managers, to allow an easy implementation of
device schedulers in proper independent modules.

8. Experiences and successful results

A number of different modules have been im-
plemented on S.Ha.R.K. for experimenting real-time
scheduling algorithms, aperiodic servers and shared
resource access protocols on real applications. A list
of the implemented modules is reported in Table 1.

A student of the OS course at the University of
Pisa implemented the Sporadic Server (either static
and dynamic) in about 2 weeks, as a project for the
exam;

A visiting PhD student from Malardalens Univer-
sity (Sweden) implemented the Slot Shifting [5] al-
gorithm in 2 weeks. Note that S.Ha.R.K. was de-

e Scheduling modules

Earliest Deadline First, Rate Monotonic,
POSIX scheduler, Round Robin, Slot Shift-

ing
e Aperiodic servers

Polling Server, Deferrable Server, Sporadic
Server, Total Bandwidth Server, Constant
Bandwidth Server, CBS-FT, CASH

e Shared resource access protocols

Classic blocking protocol, non-preemptive
protocol, Priority Inheritance, Priority Ceil-
ing, Stack Resource Policy

Table 1. Modules Implemented in the
S.Ha.R.K. Kernel.

signed without any knowledge of the Slot Shifting
algorithm;

A group of students from Malardalens University
(Sweden) successfully implemented a value-based
scheduler as a scheduling module. The training pe-
riod has been a few days to explain the interface to
be used and a few hours to implement the scheduler;

A student from the University of Pavia imple-
mented a new reservation algorithm for handling
fault-tolerant real-time tasks in about 20 days;

A PhD student implemented the CBS-hd algo-
rithm [3], and its evolution, the CASH algorithm [2],
for testing performance results and overhead on a
real kernel setting.

Note that when the kernel was developed, CBS-
hd and CASH did not exist yet.

9. Conclusions and Future Work

In this paper we presented S.Ha.R.K., a dynamic
configurable research kernel architecture designed
for supporting a simple implementation, integration
and comparison of scheduling algorithms. The ker-
nel is fully modular in terms of scheduling poli-
cies, aperiodic servers, and concurrency control pro-
tocols.

Modularity has been achieved by a trade-off be-
tween efficiency and flexibility and by properly par-
titioning the system activities between a generic ker-
nel and a set of modules which can be registered at
initialization time to configure the kernel according
to the specific application requirements.

The flexibility of this approach allows important
benefits from three different points of view. At the

Proceedings of the 13th IEEE Euromicro Conference on Real-Time Systems - June 2001 - Delft, NL 8

user level, an application can be developed indepen-
dently from a particular configuration of the system.
At the research level, new modules can be added and
tested on the same application to evaluate the impact
in terms of predictability, overhead, and performance
(in a way independent from the others modules). The
development of new Modules is so simple that they
can be implemented also by an undergraduate stu-
dent from an Operating System course. Finally, the
compliance with the POSIX standard allows to re-
cycle existing code written and developed for other
kernels, allowing in this way the testing of the newly
created scheduling algorithms.

A lot of work has still to be done: in particular,
we plan to extend the QoS specification provided by
the models, and implement and test more complex
strategies for the Model Mapper. We are currently
working on the definition of a more generic structure
(similar to the one used for the CPU scheduling) for
performing device management. The Kernel is dis-
tributed under the GPL license, and it can be found
atthe URL http://shark.sssup.it.

Acknowledgements The authors would like to
thank Luigi Palopoli and Giuseppe Lipari for their
valuable suggestions to improve the paper.

References

[1] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fi-
uczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility, safety and performance in the spin op-
erating system, 1995.

[2] M. Caccamo, G. Buttazzo, and L. Sha. Capac-
ity sharing for overrun control. In Proceedings of
the IEEE Euromicro Conference on Real-Time, Or-
lando, Florida, December 2000.

[3] M. Caccamo, G. Buttazzo, and L. Sha. Elastic feed-
back control. In Proc. of the IEEE Euromicro Con-
ference on Real-Time, Stocolm, Sweden, June 2000.

[4] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr.
Exokernel: an operating system architecture for
application-level resource management. In Proceed-
ings of the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP "95), pages 251-266, Copper
Mountain Resort, Colorado, December 1995.

[5] G. Fohler. Joint scheduling of distributed complex
periodic and hard aperiodic tasks in statically sched-
uled systems. In Proceedings of the 16th Real Time
System Symposium, Pisa, Italy, December 1995.

[6] B.Ford and S. Susarla. Cpu inheritance scheduling.
In Proceedings of OSDI, October 1996.

[7]1 P. Goyal, X. Guo, and H. M. Vin. A hierarchical cpu
scheduler for multimedia operating systems. In 2nd
OSDI Symposium, October 1996.

[8] H. hua Chu and K. Nahrstedt. CPU service classes
for multimedia applications. In Proceedings of the

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

IEEE International Conference on Mutimedia Com-
puting and Systems, Florence, Italy, June 1999.

M. Jones, P. Leach, R. Draves, and J. Barrera.
Support for user-centric modular real-time resource
management in the rialto operating system, 1995.

F. Labs. Real-time linux home page.
http://www.rtlinux.org/.

J. Liedtke. On p-kernel construction. In Proceed-
ings of the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP ’95), Copper Mountain Re-
sort, Colorado, December 1995.

C.L.LiuandJ. Layland. Scheduling alghorithms for
multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1), 1973.

C. W. Mercer, S. Savage, and H. Tokuda. Processor
capacity reserves for multimedia operating systems.
Technical Report CMU-CS-93-157, Carnegie Mel-
lon University, Pittsburg, May 1993.

J. Mogul and K. Ramakrishnan. Eliminating receive
livelock in an interuupt-driven kernel. ACM Trans-
actions on Computer Systems, 15(3):217-252, Au-
gust 1997.

R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa.
Resource kernels: A resource-centric approach to
real-time and multimedia systems. In Proceedings
of the SPIE/ACM Conference on Multimedia Com-
puting and Networking, January 1998.

R. R. Rajkumar, L. Abeni, D. de Niz, S. Ghosh,
A. Miyoshi, and S. Saewong. Recent developments
with linux/rk. In Proc. of the Second Real-Time
Linux Workshop, Orlando, Florida, november 2000.
D. Reed and R. F. (eds.). Nemesis, the kernel —
overview, May 1997.

W. River. Vxworks 5.4. http://www.wrs.com /prod-
ucts/html/vxwks54.html.

M. Seltzer, Y. Endo, C. Small, and K. Smith. Deal-
ing with disaster: Surviving misbehaved kernel ex-
tensions. In Proc. of the Symposium on Operating
System Design and Implementation (OSDI 11), 1995.
L. Sha, R. Rajkumar, and john P. Lehoczky. Priority
inheritance protocols: An approach to real-time syn-
chronization. IEEE transaction on computers, 39(9),
september 1990.

I. C. Society, editor. International Standard ISO/IEC
9945-1: 1996 (E) - IEEE Std 1003.1, 1996 Edition -
Information technology - Portable Operating System
Interface (POSIX). 1EEE, 1996.

I. C. Society, editor. [EEE Standard for Informa-
tion Technology - Standardized Application Environ-
ment Profile - POSIX Realtime Application Support
(AEP). 1IEEE, 1998.

Q. Software Systems Ltd. Qnx neutrino real-time os.

http://www.qnx.com/products/os/neutrino.html.

C. A. Waldspurger and W. E. Weihl. Stride schedul-
ing: Deterministic proportional-share resource
mangement. Technical Report MIT/LCS/TM-528,
Massachusetts Institute of Technology, June 1995.
Y. Wang and K. Lin. Implementing a general real-
time scheduling framework in the red-linux real-
time kernel. In Proceedings of IEEE Real-Time Sys-
tems Symposium, Phoenix, December 1999.

