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Abstract

This paper presents the shadow mechanism, a
mechanism that enables independence between the im-
plementation of scheduling algorithms and mutual
exclusion protocols. The mechanism can be used
in operating systems that support the definition of
application-defined schedulers using implementation-
independent interfaces.

The proposed method is simple to implement and
introduces a negligible run-time overhead, enabling
the implementation of mutual exclusion protocols, like
Priority Inheritance, Priority Ceiling, and Stack Re-
source Policy, in a way that is independent of the
scheduler structure.

The paper discusses advantages and shortcomings
of the approach, illustrating sample code taken from
a real implementation done in the S.Ha.R.K. Kernel.

1 Introduction

The increasing power offered by modern computer
systems, together with the increasing performance re-
quired by new applications, create an additional de-
mand for flexible operating systems, which should be
easily portable to different platforms and adaptable
to different application requirements.

New techniques have been recently developed to
allow a modular specification of scheduling and syn-
chronization mechanism, enabling applications to the
usage of proprietary application-defined scheduling
algorithms. The proposed models are different, rang-
ing from the modification of the operating system in-
ternals to generic interfaces for middleware user-level
scheduling.

These models, like the one adopted in S.Ha.R.K.
[4] and in MarteOS [7], propose an interface that is
suitable for shared memory systems (some of them
enhances the POSIX Pthread library). Communica-
tion among tasks is performed by accessing shared
buffers, and tasks that concurrently access the same
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shared resource must be synchronized through mu-
tual exclusion. In these cases, real-time theory [§]
teaches that mutual exclusion through semaphores is
prone to priority inversion. In order to avoid or limit
priority inversion, suitable resource access protocols
have to be used, like for example Priority Inheritance
and Priority Ceiling (note that these protocols have
been accepted into the standard interfaces for oper-
ating systems, proposed by the POSIX 1003.1b and
OSEK standards).

All the new interfaces that propose an applica-
tion defined scheduling provide a coherent redefini-
tion of the behavior for the mutual exclusion, which
require at least the support for the same functionality
provided in these standards. The current approach
in this redefinition is to provide access to a set of
events/function calls that cover the behavior of both
the scheduling part and the mutual exclusion part.

When defining an interface for application-defined
schedulers, an important issue is to avoid duplica-
tion of code, because users would like to write things
once, and then reuse them everywhere. The definition
of application-defined schedulers that are too local
would prevent the schedulers to share an application-
defined mutual exclusion protocol implementation.
Also, the tasks scheduled by different schedulers could
not share application-defined mutexes as well, be-
cause each scheduler could not access the internal
data representation of other schedulers.

Moreover, for the same reason, local application-
defined policies could not support application-defined
mutual exclusion of system-wide resources that have
to be shared among tasks (for example, when access-
ing hardware devices).

Users usually think of scheduling algorithms and
mutual exclusion protocols as two separate mecha-
nisms. Whereas a lot of scheduling algorithms have
been proposed in the real-time literature, the number
of mutual exclusion protocols is quite limited. If only
one interface is provided for specifying both schedul-
ing and mutual exclusion, the user is forced to imple-
ment a mutual exclusion protocol every time a new
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scheduling algorithm is included in the kernel.

We believe that a good kernel interface should al-
low the specification of a scheduling algorithm in a
way that is independent from the specification of the
mutual exclusion protocol. This approach would al-
low the following advantages:

e treating a scheduling algorithm in separation
from the mutual exclusion protocol;

e implementing an application-defined scheduler
without caring about the mutual exclusion pro-
tocol;

e implementing a synchronization mechanism that
can be applied to tasks belonging to different
application-defined schedulers, providing both
local and system wide application-defined mu-
tual exclusion protocols, independent of the im-
plementation of a single algorithm.

This paper proposes a mutual exclusion syn-
chronization method, called the shadow mechanism,
which is independent from the scheduling algorithm.
Advantages and shortcomings of the proposed ap-
proach are analyzed throughout the paper.

The shadow mechanism, that has been imple-
mented on the S.Ha.R.K. operating system [4], en-
ables resource sharing between tasks in a way that
is independent of the application-defined scheduler.
The method can be implemented with little effort
and with negligible run-time performance. A simple
implementation independent interface can be easily
derived from it.

One of the main advantages of this method is its in-
dependence from the implementation of the schedul-
ing algorithms. Once a synchronization protocol is
written and tested once, it can be reused for free in
all the application schedulers that will be written in
the future.

The rest of the paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 presents
the overall architecture of the shadow mechanism.
Section 4 illustrates how the mechanism has been
implemented in S.Ha.R.K. Section 5 briefly presents
what is needed on a generic system for implementing
the mechanism together with an implementation in-
dependent interface, and finally Section 6 states our
conclusions and future work.

2 Related works

In the last few years, new approaches have been
described for developing application-defined schedul-
ing. For example, in the MarteOS project [7], a novel
scheduling framework has been proposed consisting
of scheduler threads that communicate with the ker-
nel using an event passing mechanism. This approach

uses application defined mutexes and a set of events
to address the problem of synchronization, when the
user wants to specify its own mutual exclusion pol-
icy. The user needs to use the global POSIX mu-
texes when mutual exclusion needs to be implemented
among tasks of different applications.

Other systems, instead of using an event based ap-
proach, preferred to use a set of function calls inserted
in the kernel code to abstract from a particular sched-
uler implementation. Examples of this approach are
the S.Ha.R.K. Kernel [4], and the upcoming modular
scheduler of FreeBSD [9]. In the following, we will use
the term callback to refer to a function call or an event
(depending on the implementation) that implements
a particular behavior in the scheduling algorithm.

An approach similar to the one proposed in this pa-
per has been implemented in the context of the CPU
Inheritance Scheduling [3], which provides some ker-
nel mechanisms to “inherit” CPU time from one task
to another. In this way, the kernel provides only the
basic mechanisms used by application tasks to im-
plement the scheduler: using this approach a blocked
task “donates” its execution time to the blocking task
waiting for the release of the blocking resource.

Another approach that is worth citing is the Band-
width Inheritance Algorithm (BWI) [5], that differs
from the method proposed in this paper because in-
heritance is done in a way that the inherited task
consumes the bandwidth of the blocked task . Please
note that the approach cannot be applied in general,
because it may be that two application-defined sched-
ulers do not share information about available band-
width, priorities and deadlines that are needed to im-
plement the BWI approach.

Aiming at a proposal for standardization, our ap-
proach is to follow a generic method to implement
synchronization that is independent of the imple-
mentation of each application-defined scheduler: only
with the orthogonality between application-defined
scheduling and synchronization mechanisms the users
will be able to cope with the complexity in designing
new scheduling algorithms.

3 The shadow mechanism

The typical way of thinking of a mutual exclusion
protocol is to consider it together with the imple-
mentation of the scheduling algorithm. Typically,
when implementing a mutual exclusion protocol (e.g.,
Priority Inheritance), the mutual exclusion callbacks
know the internal data structures of a particular im-
plementation of a scheduling algorithm (e.g,, the Rate
Monotonic ready queue) so they can modify it to im-
plement a desired behavior (e.g., removing a blocked

n our proposal the task pointed by a shadow pointer con-
sumes its own capacity.
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Figure 1. The shadow relationship can be
thought as a pointer to a shadow task.

task from the queue and moving the task that inherits
the priority out of the priority order).

This approach is commonly used because some
protocols directly interact with the scheduler, mak-
ing the protocol dependent on the particular schedul-
ing algorithm implementation. Although a solution
based on a direct interaction between the scheduler
and the resource protocol is efficient in terms of run-
time overhead, it limits the full modularity of the
particular scheduler implementation, preventing the
substitution of a scheduling algorithm with another
that handles the same task and synchronization mod-
els. For example, the Rate Monotonic scheduler could
be replaced by Deadline Monotonic, since both are
still compatible with Priority Inheritance. However,
in general the substitution cannot be done if the im-
plementation of Priority Inheritance depends on the
particular data structures used in the scheduling al-
gorithm.

The fundamental idea of our approach is to replace
the queue reordering, needed for the implementation
of most resource access protocols, with a more general
interaction method?. Such a mechanism is based on
the concept of shadow tasks.

A shadow task is a task that is scheduled in place
on another task chosen by the scheduler. When a
task is blocked by the protocol, it is kept in the
ready queue, and a shadow task is binded to it; when
the blocked task becomes the first task in the ready
queue, its binded shadow task is scheduled instead.
In this way, the shadow task “inherits” the priority of
the blocked task. The shadow relation can be thought
as a pointer from the blocked task to the blocking task
(see Figure 1).

When a task 7 releases a mutex, all the shadow
pointers that were set to 7 (because the correspond-
ing tasks were blocked on the resources) have to be
voided, and the system has to check again for preemp-
tion. In fact, the tasks that had the shadow pointer
reset may have higher priority than the task that re-
leased the resource, hence 7 needs to be preempted.
In general, the task that will be scheduled after un-
locking depends on the particular application-defined
scheduling policy.

20ur approach does not handle direct blocking on a syn-
chronization point. That feature is usually part of every appli-
cation defined scheduling interface and it is needed to imple-
ment blocking primitives that have no relations with mutual
exclusion.

In the general case of nested resources, a directed
acyclic graph (DAG) can grow, which expresses the
dependencies between the tasks in the system (see
Figure 3). It is worth noting that, in the classical ap-
proach, implementing the transitive property of pri-
ority inheritance requires at least some bookkeeping.
On the other hand, under the shadow mechanism,
handling transitive blocking is much simpler, since
transitivity is expressed by the graph. Also note that,
since the dependency relations are encoded into the
DAG graph, deadlock conditions can be easily de-
tected simply checking for cycles every time a shadow
pointer is set.

Common mutual exclusion protocols like Priority
Inheritance, Priority Ceiling and Stack Resource Pol-
icy can be implemented using the shadow mechanism,
as shown in the next section. Since the shadow mech-
anism is independent of the implementation of a par-
ticular scheduling algorithm, mutual exclusion can be
performed globally among tasks handled by different
scheduling algorithms (for example, we can enable
resource sharing using Priority Inheritance between a
task scheduled by Round Robin and a task scheduled
by EDF).

4 A prototype implementation

An important issue when implementing a schedul-
ing mechanism is to keep the runtime overhead as
low as possible. In this section we will describe how
the shadow mechanism has been successfully imple-
mented in the S.Ha.R.K. kernel. Then, in the next
section we will shortly describe the requirements that
a kernel should fulfill to properly implementing the
mechanism.

The S.Ha.R.K. kernel internally maintains a task
control block, called proc_table[], that stores all the
information about a task. The task identifier coin-
cides with its index inside the table, NIL being an in-
valid task ID constant. The running task is stored in a
global variable called exec_shadow, whereas the task
selected by the scheduler is stored in the exec vari-
able (note that it may be different from exec_shadow
due to the shadow mechanism).

A new field shadow is added to the task control
block. This field points to the shadow task. Ini-
tially, the shadow field is equal to the task ID (no
substitution; see Figure 2.a). When the task blocks,
the shadow field is set to the task ID of the block-
ing task, or to the task that must inherit the blocked
task priority (see Figure 2.b). As noted in Section 3,
a graph can grow during multiple resource conflicts
(see Figure 3).

Then, the scheduler is decoupled from the dis-
patcher. In S.Ha.R.K., that is obtained using two
different function calls, one for the scheduler and one
for the dispatcher, that can be customized to imple-
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Figure 2. The implementation of the shadow
mechanism. a) typically, the shadow field
points to the task itself. b) the shadow
pointer is set when a task blocks.
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Figure 3. Using the shadow mechanism,
a graph can grow independently from the
data structures used by the scheduling
module.

extern taskID_t exec, exec_shadow;

[...1
exec_shadow = exec = appl_defined_scheduler();
while (exec_shadow != proc_table[exec_shadow] .shadow)

exec_shadow = proc_table[exec_shadow] .shadow;
appl_defined_dispatch(exec_shadow) ;
[...1

Figure 4. The scheduler code.

while (mutex->owner != NIL) {
proc_table[exec_shadow] .shadow = mutex->owner;
<record the task as ‘‘blocked’’
inside the mutez structure>
scheduler();
<contezt change>

}

mutex->owner = exec_shadow;

Figure 5. The Priority Inheritance lock call-
back.

ment application defined scheduling inside the kernel.
The source code is tiny, and in our implementation it
looks like the one showed in Figure 4.

In the following sections we show how the most
common synchronization protocols are implemented.

4.1 Priority Inheritance

The implementation of the Priority Inheritance
Protocol using the shadow mechanism is straightfor-
ward, because the shadow mechanism itself allows a
natural expression of an inheritance protocol. Con-
sidering the lock an unlock callbacks, we have the
following implementation.

lock When a task blocks, its shadow pointer is set
to point to the blocking task. The callback also
stores the information about the fact that the task
has blocked on the mutex (that information will be
used later in the unlock callback). A pseudo code of
the callback is shown in Figure 5.

Please note that the lock must be done inside a
while loop. That is because when all the shadow
pointers of the blocked tasks are reset to unlock them,
all them become suddenly ready, and only the first
ready task will access the resource. The other tasks
have to wait their turn blocking again. However this
condition is rare, because tasks are scheduled using
some kind of order (e.g., a priority), so every un-
blocked task will access the resource in the given right
order.

unlock When a task unlocks a mutex, if some tasks
are blocked on it the shadow pointer are reset. Then,
the system is rescheduled to allow the unblocked tasks
to preempt the running task.



task a|b|lc|d|e|f|g]|h
preemptionlevel | 1 | 2 [ 2 |2 |3 |4 |45

sysceiling | curr shadow pointer

1) 0 nil e|f|g|h
2) 2 d |ajal|ala|le|f|g|h
3) 4 g f f{f|f|h

Table 1. The SRP Implementation using the
shadow mechanism.

4.2 Priority Ceiling

The implementation of the Priority Ceiling (PC)
protocol can be done using the original proposal from
Rajkumar in [6]. In this case, S.Ha.R.K. maintains a
queue of the blocked mutexes ordered by ceiling. The
while condition in Figure 5 becomes the PC blocking
condition, and the shadow pointer in case of blocking
is set equal to the owner of the locked mutex with the
highest ceiling.

When that mutex is unlocked, all the shadow
pointers of the blocked tasks are reset, letting the
blocked tasks to test again the blocking condition.

4.3 SRP/Immediate Priority Ceiling

The implementation of the Stack Resource Policy
(SRP) using the shadow mechanism is a little bit
more complex than the other presented above, be-
cause the SRP protocol does not “directly” use the
inheritance. Please also note that the implementa-
tion of the Immediate Priority Ceiling protocol is the
same as the SRP implementation, because the only
difference between the two is the queuing policy, and
the shadow mechanism does not rely on that.

Basically, all the tasks that use SRP have a pre-
emption level (that can be detached from the actual
application-defined scheduling), and they are inserted
in an ordered list, called tasklist. When a task locks
a mutex and changes the system ceiling, all the shad-
ows pointers of the tasks with preemption level less
than the current task are set to the locking task, and
viceversa when a mutex is unlocked.

The real algorithm is slightly optimized. For ex-
ample, consider a task set of 8 tasks. For each task
T4 ... Th, We represent the shadow pointer and its pre-
emption level. There are also two global fields: cur-
rent, used to scan the tasklist (it always points to
the last task that has a ceiling equal to the system
ceiling), and sysceiling, that stores the system ceiling.

When the system starts, the situation is as de-
picted in Table 1 row 1).

Suppose that 7, is scheduled and locks a mutex
that causes sysceiling to become 2. The situation will
be the one depicted in Table 1 row 2). Now suppose
that task 7y preempts task 7, (the shadow setting
does not change). Then, suppose that task 7; locks

a mutex that raises sysceiling to 4. The shadows will
be set as in Table 1 row 3).

In practice, the system maintains a stack of the
locked mutexes. Each mutex has in its descriptor the
space for implementing a stack, useful in the unlock()
function to undo the modifications to the shadow
pointers done with the last lock(). This approach
minimizes the number of shadows to be set, so mini-
mizes the complexity of the lock/unlock operations.

Note that this implementation creates a tree in
the shadows pointers (i.e., when sysceiling=4, task 7,
points to task 7, that points to task 7¢). This may
cause a performance a little worse with respect to a
“one-jump” shadow set. Anyway, this is not a big
problem because when a task is preempted it is very
unlikely that it may be rescheduled before the end of
another high priority task, so the multiple jumps in
the shadow pointers appear rarely.

5 Toward a generic interface

In order to be used in real systems, the shadow
mechanisms should be supported by a generic
implementation-independent interface that allows the
user to specify the desired behavior without depend-
ing too much on platform-dependent aspects.

The following paragraphs show the modifications
that must be made to implement the mechanism in a
generic system.

Scheduling separated from Dispatching. The
first thing behind the shadow mechanism is the sepa-
ration between the behavior of the scheduler (that is
“choose the task that must be executed now”) from
the behavior of the dispatcher (that is “hey, someone
has decided that this task will be executed next”). If
you think for example at a scheduler implementation
with a ready queue, the scheduling would be “look
at the first task in queue”, whereas the dispatching
would be “remove the first task from the queue”.

Sharing resources under temporal isolation.
When the kernel supports temporal isolation [1], the
mechanism for handling the execution budget allo-
cated to each task may influence the blocking time
experienced by tasks. In fact, if a task that causes
blocking finishes its budget while executing in a criti-
cal section, the blocking time is affected by the budget
replenishment policy.

As a consequence, when sharing resources between
scheduling algorithms that support temporal isola-
tion, it is important to consider how budget is han-
dled. Using the shadow mechanism, it can happen
that a task is dispatched not because it is scheduled
by its application defined scheduler, but because some
other task’s shadow pointer is pointing to it. In this
case, the budget exhaustion check should be disabled,



and a proper accounting of the consumed capacity
should be done, to let the pointed task terminate its
critical section. This fact can lead to tolerate nega-
tive budgets, because in general it is not known when
a task is going to access a critical section. A theoret-
ical analysis of blocking time and negative capacities
can be found in [2]. Please also note that negative
budgets are often inevitable due to non determinis-
tic behaviors of the hardware, so it is something that
the scheduling algorithms often have to care about
anyway.

Handling the shadow chain. When using the
shadow mechanism, between the scheduling and the
dispatching operations, the kernel has to follow the
shadow chain to get the task that is dispatched next.
From our experience with the Shark kernel we can
say that the shadow DAG rarely is deeper than a few
levels, so following the shadow chain usually takes a
negligible execution time.

An interface for mutual exclusion. Existing
application-defined schedulers are only marginally in-
fluenced from the adoption of the shadow mechanism,
because they simply schedule tasks without looking
at what happens to the shadow pointers.

When implementing the shadow mechanism, the
set of callbacks related to the scheduling and the set
of callbacks related to the mutual exclusion should be
clearly separated.

In particular, the separation between the callbacks
relative to the scheduling from those relative to mu-
tual exclusion is useful when integrating a mutual ex-
clusion mechanism at the global level and not only
from a single application defined scheduling. More-
over, the separation between the two interfaces helps
the developer to focus on what he has to do, without
being distracted by other parts that can be handled
in an independent way.

Finally, a primitive should be added to modify the
shadow pointer of a given task. The function can be
used to set/reset a shadow pointer, and possibly to
do a deadlock prevention check (the function should
simply verify that no cycles are created in the shadow
DAG graph).

6 Conclusions

This paper presented a novel method, the shadow
mechanism, for implementing resource access proto-
cols independently of the data structures defined in
application-defined schedulers. The proposed mecha-
nism can be used to make the mutual exclusion pro-
tocols orthogonal to the scheduler implementation,
helping the designer to reuse the developed code with
different, scheduling algorithms.

The shadow mechanism has been successfully
adopted in the S.Ha.R.K. kernel with negligible over-
head for implementing classical resources access pro-
tocols, such as Priority Inheritance, Priority Ceil-
ing, and Stack Resource Policy. Samples of the real
S.Ha.R.K. code have been also illustrated, and an in-
formal proposal for a generic interface for supporting
the mechanism has been discussed. We believe that
the shadow mechanism can be supported by other
application-defined scheduling interface with little ef-
fort and great benefits.
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