
IEEE Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04), Catania, Italy, July 2004.1

Biasing Effects in Schedulability Measures�

Enrico Bini
Scuola Superiore S. Anna

Pisa, Italy
e.bini@sssup.it

Giorgio C. Buttazzo
University of Pavia

Pavia, Italy
buttazzo@unipv.it

Abstract
The performance of a schedulabilty test is typically eval-

uated by generating a huge number of synthetic task sets
and then computing the fraction of those that pass the test
with respect to the total number of feasible ones. The result-
ing ratio, however, depends on the metrics used for evaluat-
ing the performance and on the method for generating ran-
dom task parameters. In particular, an important factor that
affects the overall result of the simulation is the probability
density function of the random variables used to generate
the task set parameters.

In this paper we discuss and compare three different
metrics that can be used for evaluating the performance
of schedulability tests. Then, we investigate how the ran-
dom generation procedure can bias the simulation results
of some specific scheduling algorithm. Finally, we present
an efficient method for generating task sets with uniform
distribution in a given space, and show how some intuitive
solutions typically used for task set generation can bias the
simulation results.

1. Introduction
Rate Monotonic (RM) scheduling [13] is the most used

approach for implementing periodic real-time applications
in fixed priority systems. Although, the superior behavior
of EDF over RM has been shown under different circum-
stances [5], the simpler implementation of RM seems to be
the major cause that prevents the use of dynamic priority
schemes in practical applications.

The exact schedulability analysis of fixed priority sys-
tems, however, requires high computational complexity,
even in the simple case in which task relative deadlines
are equal to periods [8, 12, 1]. Methods for improving the
computation of task response times have been recently pro-
posed [14, 16, 2], but the complexity of the approach re-
mains pseudo-polynomial in the worst case.

This fact has led the research community to investigate
new feasibility tests that are less complex than exact tests,
but still provide a reasonable performance in terms of ac-
ceptance ratio. For example, Bini and Buttazzo proposed a

�Enrico Bini was visiting University of North Carolina at Chapel Hill
when working on this paper.

sufficient guarantee test, the Hyperbolic Bound [3], that has
the same���� complexity of the classical utilization bound
proposed by Liu and Layland [13], but better performance.
Other feasibility tests [4, 7, 9] exploit additional informa-
tion on period relations to verify schedulability in a polyno-
mial time complexity. A tunable test, called the Hyperplane
Æ-Exact Test, has recently been proposed [2] to balance per-
formance versus complexity using a single parameter.

When dealing with approximate tests, the problem of
evaluating their performance with respect to the exact case
becomes an important issue. The effectiveness of a guar-
antee test for a real-time scheduling algorithm is measured
by computing the number of accepted task sets with respect
to the total number of feasible ones. Such a ratio can be
referred to as theacceptance ratio.

Computing the acceptance ratio using a mathematical
approach is not always possible, except for very simple
cases. In all the other cases, the performance of a guar-
antee test has to be evaluated through extensive simulations,
where a huge number of synthetic task sets need to be gener-
ated using random parameters. So both the evaluation met-
ric and the way task parameters are generated significantly
affect the overall performance of the test.

In this paper we discuss and compare three different
metrics that can be used for evaluating the performance
of schedulability tests. Then, we investigate how the ran-
dom generation routine bias the simulation of some spe-
cific scheduling algorithm. Finally, we present an efficient
method for generating task sets with uniform distribution in
a given space, and show how some intuitive solutions for
task set generation can bias the simulation results.

2. Metrics
It is well known that the RM scheduling algorithm can-

not schedule all the feasible task sets. Several methods
have been proposed to compare the effectiveness of the RM
scheduling algorithm with the optimal EDF. The most com-
mon approaches are based on the concept ofbreakdown uti-
lization [11] and utilization upper bound [15, 6, 10]. As
we discuss in Sections 2.1 and 2.2, both techniques present
some drawback, thus in Section 2.3, we present a new per-
formance evaluation criterion, theOptimality Degree (OD),
which prevents those problems.

2.1. Breakdown utilization

The concept of breakdown utilization was first intro-
duced by Lehoczky, Sha, and Ding, in their seminal
work [11] aimed at providing exact characterization and av-
erage case behavior of the RM scheduling algorithm.

Definition 1 (Section 3 in [11]) A task set is generated
randomly, and the computation times are scaled to the point
at which a deadline is first missed. The corresponding task
set utilization is the breakdown utilization � �

�.

In such a scaling operation, computation times are in-
creased if the randomly generated task set is schedulable,
whereas they are decreased if the tasks set is not schedula-
ble. This scaling stops at the boundary which separates the
RM-schedulable and RM-unschedulable task sets. Hence,
all task sets with the same period configuration that can be
obtained by scaling the computation times have the same
breakdown utilization, because they all hit the boundary in
the same point. We denote these task sets asa group of
��-aligned task sets. This concept is illustrated in Figure 1.

11/2

1/3

1 BA

O

��

��

�
�

-a
lig

ne
d

���

���

��

Figure 1. Interpretation of the breakdown uti-
lization.

For example, if we assume the computation times to
be uniformly distributed in��� ��� (i.e., the�� uniform in
��� ��), the number of task sets belonging to the same� �-
aligned group is proportional to the length of the�� seg-
ment in Figure 1.

Note that a group of��-aligned task sets contains more
sets when the�� are similar to each other, because in this
case the segment�� is longer. The utilization disparity in
a set of tasks can be expressed through the following pa-
rameter, called the� -difference:

Æ �
�	
����� �����������

��� ��

� (1)

As it can be argued from Figure 1, when a group of� �-
aligned task sets is characterized by a small value ofÆ, the
segment�� is longer (that is, the number of task sets in the

hypercube���� � � � � ��� � ��� ��� belonging to the same
group is larger).

In the case of two tasks, the relationship betweenÆ and������ can be explicitly derived. Without any loss of gener-
ality, we assume�� � ��. SinceÆ does not vary within
the same��-aligned group, the relation can be computed
by fixing any point on the�� segment. Thus, to simplify
the computation, we select the set with�� � �. For this
group we have�� �

��	���. Hence:

Æ �
�	
����� �����������

��� ��

�
�� � ��

��
 ��
�

��
��	���

�

��	�����	��� � �� Æ

�
 Æ

then: ������ ���

��	���� �

�
���
 Æ��

�
 Æ
� (2)

Note that ifÆ � �, then
������ � �, whereas ifÆ � �, then������ � �

�.
In the general case of� tasks, finding the exact

������ is
much harder. However, the longest�� segment is equal to
the diagonal of a unitary�-dimensional cube, whose length
is
���

� �� �
���

� � �
�
�, which grows with�. The

result illustrated above can be summarized in the following
observation.

Remark 1 When uniformly generating the utilizations
���� � � � � ��� in ��� ���, a group of��-aligned task sets con-
tains more sets if it has a smaller value of � -differenceÆ.
This phenomenon becomes more considerable (by a factor�
�) as the number of tasks grows.

These geometrical considerations are very relevant when
evaluating the performance of the scheduling algorithm. In
fact, among all task sets with the same total utilization, RM
is more effective on those sets characterized by tasks with
very different utilization (i.e.,Æ � �). The intuition behind
this statement is also supported by the following facts:

	 Liu and Layland proved [13] that the worst-case con-
figuration of the utilization factors occurs when they
are all equal to each other;

	 using the Hyperbolic Bound [3], which guarantees fea-
sibility if

��
�����
 ��� � �, it has been shown that

the schedulability under RM is enhanced when tasks
have very different utilizations��.

Hence, we can state that:

Remark 2 For a given total utilization factor � , the feasi-
bility of a task set under the RM scheduling algorithm im-
proves when task utilizations have a large difference, that is
when Æ is close to �.

Summarizing the observations discussed above, we can
conclude that when task sets are randomly generated so that
task utilizations have a uniform distribution in the hyper-
cube���� � � � � ��� � ��� ���, the number of sets with a low
value ofÆ will be dominant. Hence the average breakdown
utilization will be biased by those task sets with a small� -
difference Æ, for which RM is more critical. Moreover such
a biasing increases as� grows (see Remark 1). Hence, we
can state the following remark.

Remark 3 The use of breakdown utilization as a metric
for evaluating the performance of the schedulability algo-
rithms, penalizes RM more than EDF.

The formal proof of the last observation is out of the
scope of this paper. However, the intuitive justification we
provided so far is confirmed in Section 4 by additional ex-
perimental results (see Fig. 4).

In order to characterize the average case behavior of the
RM scheduling algorithm, Lehoczky et al. treated task peri-
ods and execution times as random variables, and then stud-
ied the asymptotic behavior of the breakdown utilization.
Their result is expressed by the following theorem.

Theorem 1 (from Section 4 in [11]) Given task periods
uniformly generated in the interval ��� ��, �
 �, then for
� � � the breakdown utilization � �

� converges to the fol-
lowing values:

	 if � � �:
��
� � � (3)

	 if �
 � � �:

��
� �

�����

� � �
(4)

	 if �
 �:

��
� �

�����

�

��

������
���

�

�

(5)

and the rate of convergence is ��
�
��.

Then, the authors derive a probabilistic schedulability
bound for characterizing the average case behavior of RM.

Remark 4 (Example 2 in [11]) For randomly generated
task sets consisting of a large number of tasks (i.e. ���)
whose periods are drawn in a uniform distribution (i.e. hyp.
of Th. 1 hold) with largest period ratio ranging from �� to
��� (i.e. �� � � � ���), 88% is a good approximation to
threshold of the schedulability (i.e. the breakdown utiliza-
tion) for the rate monotonic algorithm.

The major problem in using this results is that it is based
on specific hypotheses about periods and computation times

distributions. Such hypotheses are needed to cut some
degrees of freedom on task set parameters and provide a
“single-value” result, but they may not hold for a specific
real-time application.

In the next sections, we will overcome this limitation by
making the metrics dependent on a specific task set domain.

2.2. Utilization upper bound
The utilization upper bound��� is a well known pa-

rameter, used by many authors [13, 15, 6, 10] to provide
a schedulability test for the RM algorithm. Following the
approach proposed by Chen et al. [6], the utilization upper
bound is defined as a function of a given domain� of task
sets.

Definition 2 The utilization upper bound ����� � is the
maximum utilization such that if a task set is in the domain
� and satisfies

�
�� � ��� then the task set is schedulable.

More formally:

����� � � �	
��� � �� � � �
�
����

�� � ���

� � is schedulable��
(6)

From the definition above it follows that:

� � � � � � ����� � �
 ����� � �� (7)

According to this definition, Liu and Layland [13] found
the upper bound��� for all possible sets of� tasks. If��

is the domain of all sets of� tasks, they proved that:

������� � ��
�
�
�� �� (8)

which is also referred to asutilization least upper bound,
because�� is the largest possible domain, and hence
������� � ���� is the lowest possible utilization upper
bound (see Eq. (7)).

The typical choice for the domain of the task sets is
given by fixing task periods and deadlines. So the do-
main� � ���� � � � � ��� ��� � � � � ���, also simply denoted by
� � , is the domain consisting of all task sets having periods
��� � � � � �� and deadlines��� � � � � �� (so only the compu-
tation times��� � � � � �� are varying).

For such a domain, the following result has been
found [6] when�� � �� and ��

��
� �:

���

�
� � � ��

��
� � � �� � ��

�
� �

���	
���

�

�

����
���

� � �

(9)
where
� �

����
��

for � � �� � � � � �� �.

When� � � and
 � ��
��

, it was proved [6] that:

����� � � �� � ��� � �� �
 � �

���
� �
�

� (10)

When no restrictions apply on periods and deadlines, the
utilization upper bound����� � �, shortly denoted by���

from now and on, can be found by solving� linear pro-
gramming problems [15, 10]. The� �� optimization problem

(for � from � to �) comes from the schedulability constraint
of the task��. It is formulated as follows:

���
����			����

��

��

�

�

subject to

��

����

��

�
�
��

�
�
 � � �� � ��������

�

 � �� � �� � � � � �

(11)

where the reduced set of schedulability points� �������,
found in [14, 2], is used instead of the largest one firstly
introduced in [11]. If we label the solution of the� �� prob-
lem (11) as� ���

�� , the utilization upper bound is given by:

��� � ���
����			��

�
���
�� (12)

Once the utilization upper bound��� is found, the guar-
antee test for RM can simply be performed as follows:

��
���

�� � ���� (13)

The utilization bound defined above is tight, meaning
that for every value� � ��� there exists a task set, having
utilization� , which is not schedulable by RM. However, a
common misconception is to believe that the test provided
by Equation (13) is a necessary and sufficient condition for
the RM schedulability, meaning that“all the task sets hav-
ing total utilization � � ��� are not schedulable”. Un-
fortunately, this is not true and the RM schedulability is far
more complex. Nevertheless,��� is very helpful to under-
stand the goodness of a given period configuration, because
it tends to the EDF utilization bound (which is�) as RM
tends to schedule all the feasible task sets.

In the next section we introduce a new metric that keeps
the good properties of the utilization upper bound� ��, still
able to provide a measure of all the schedulable task sets.

2.3. OD: Optimality Degree

As stated before, the reason for proposing a new met-
ric is to provide a measure of the real number of task sets
which are schedulable by a given scheduling algorithm. As
for the definition of the utilization upper bound, the concept
of Optimality Degree (OD) is defined as a function of a
given domain� . This a very important property because, if
some task set specification is known from the design phase
(e.g., some periods are fixed, or constrained in an interval),
it is possible to evaluate the performance of the test on that
specific class of task sets, by expressing the known infor-
mation by means of the domain� .

Definition 3 The Optimality Degree ��� �� � of an algo-
rithm A on the domain of task sets � is:

��� �� � �
��������� ��
����������� �� (14)

where

�������� � � �� � � � � is schedulable by ��� (15)

and Opt is any optimal scheduling algorithm.

From this definition it follows that:

	 for any scheduling algorithmA and for any domain� ,
� � ��� �� � � �;

	 for any optimal algorithmOpt,����� �� � � � for all
domains� .

In this section we will focus on���	 �� � and we will
consider EDF as a reference for optimality, since our goal
is to measure the difference between RM and EDF in terms
of schedulable task sets. In fact, by using the definition of
��, as the domain of all possible sets of� tasks (see Sec-
tion 2.2), we can measure the goodness of the RM algorithm
by evaluating���	 ����.

However, the domain�� is hard to be characterized,
since the concept of“all the possible task sets” is too fuzzy.
As a consequence,���	 ���� can only be computed by
simulation, assuming the task set parameters as random
variables with some probability density function (p.d.f.). In
order to make the���	 ���� metric less fuzzy and to find
some meaningful result, we need to reduce the degrees of
freedom of domain��.

An important classification of the task sets is based on
its utilization� . Hence, we could be interested in knowing
how many task sets are schedulable among those belonging
to a domain� with a given utilization� .

Notice that by using the utilization upper bound we can
only say that a task set is schedulable if� � ����� �, but
there is still uncertainty among those with� � ����� �. In-
stead by using the Optimality Degree the number of schedu-
lable task sets can be measured by:

���	 �� � �� � ���	

� �

��
���

�� � �

�
(16)

It is worth observing that���	 �� � �� does not suffer
the weakness of����� �, because it is capable of measur-
ing the number of schedulable task sets even when the total
utilization exceeds����� �.

To derive a numeric value from���	 �� � ��, we need
to model the utilization as a random variable with a p.d.f.
�� ��� and then compute the expectation of���	 �� � ��.

Definition 4 We define the Numerical Optimality Degree
(NOD) as the expectation of ���	 �� � ��, which is:

����	 �� � �

� �

	

���	 �� � �� �� ������ (17)

As for the average 88% bound derived by Lehoczky et al.,
in order to achieve a numerical result we have to pay the
price of modelling a system quantity (the utilization�) by

a random variable. If we assume the utilization uniform in
��� �� Equation (17) becomes:

����	 �� � �

� �

	

���	 �� � �� �� (18)

which finalizes our search. In fact, this value well represents
the fraction of the feasible task sets which are schedulable
by RM in the following hypotheses:

	 the task sets belong to� ;

	 the utilization of the task sets is a uniform random vari-
able in��� ��.

Moreover, as expected, we have that:� �

	

���	 �� � �� �� �

����� �

� �

������

���	 �� � �� ��

and then: � �

	

���	 �� � �� ��
 ����� � (19)

which shows thatNOD is less pessimistic than���.

3. Synthetic task sets generation
The typical way to measure the performance of a guar-

antee test is to randomly generate a huge number of syn-
thetic task sets and then verify which percentage of feasible
sets pass the test. However, the way task parameters are
generated may significantly affect the result and bias the
judgement about the schedulability tests. In this section we
analyze some common techniques often used to randomly
generate task set parameters and we highlight their positive
and negative aspects.

In a synthetic task set, task periods are usually generated
as random variables with a uniform distribution in a given
interval. Although this choice may not reflect the character-
istics of a real application, assuming some probability den-
sity for the periods cannot be avoided.

Once task periods�� have been selected, running a guar-
antee test in the whole space of task set configurations re-
quires computation times�� to be generated with a uniform
distribution in��� ���. Notice that, since computation times
�� and utilizations�� differ by a scaling factor of��, this is
equivalent of assuming each�� to be uniform in��� ��.

Considering the dependency of some schedulability test
from the total processor utilization, a desirable feature of the
generation algorithm is the ability to create synthetic task
sets with a given utilization factor� . Hence, individual task
utilizations�� should be generated with a uniform distribu-
tion in ��� � �, subject to the constraint

�
�� � � . Imple-

menting such an algorithm, however, hides some pitfalls. In
the next paragraphs we will describe some “common sense”

algorithms, discuss their problems, and then propose a new
efficient method.

A first intuitive approach, referred to as theUScaling al-
gorithm, is to generate the��’s in ��� � � and then scale them

by a factor ��
�
�
��

, so that the total processor utilization is

exactly� . TheUScaling algorithm has an���� complex-
ity and, using Matlab syntax1, can be so coded:

function vectU =���	
��
(n,�)
vectU = rand(1,n);
vectU = vectU.�� ./sum(vectU);

Unfortunately, the algorithm illustrated above incurs in
the same problem discussed in Section 2.1 for the scaling
of ��-aligned task sets, whose effect was to bias the break-
down utilization. Here, the consequence of the scaling oper-
ation is that task sets having similar��’s (those withÆ close
to �) are generated with higher probability.

Figure 2 illustrates the values of 5000 utilization tuples,
generated by theUScaling algorithm with � � � and
� � �. As expected, the generated values are more dense

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

U1
U2

U
3

Figure 2. Result of the UScaling algorithm.

around the point where all the�� are equal to�
�

. As ar-
gued in Remark 2, these task sets are penalized by RM,
hence generating the utilizations by theUScaling algorithm
is pessimistic for RM.

A second algorithm for generating task sets with a given
utilization � consists in making�� uniform in ��� � �, ��

uniform in ��� �����,�
 uniform in ��� ��������, and
so on, until�� is deterministically set to the value�� �

� �����
��� ��. This method, referred to asUFitting, can be

described by the following code:

function vectU =�������
(n,�)
upLimit = � ;
for i=1:n�1,

vectU(i) = rand�upLimit;
upLimit = upLimit�vectU(i);

end
vectU(n) = upLimit;

1Note that in Matlab arrays can be assigned as variables.

TheUFitting algorithm has an���� complexity, but has the
major disadvantage of being asymmetrical, meaning that
the�� has a different distribution than��, and so forth.

Moreover, as depicted in Figure 3, the achieved distri-
bution is again not uniform, and task sets having different
values of��’s (those withÆ close to�) are generated with
higher probability. Hence, for the same reasons stated in

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

U1
U2

U
3

Figure 3. Result of the UFitting algorithm.

Remark 2, generating the utilizations by theUFitting algo-
rithm favors RM with respect to EDF.

The problems described above can be solved though the
following method, referred to as theUUniform algorithm:

function vectU =��������(n,�)
while 1

vectU =� .�rand(1,n�1);
if sum(vectU)
= � % boundary condition

break
end

end
vectU(n) = U�sum(vectU);

The problem with this algorithm, however, is that it has to
run until the boundary condition is verified once (see the
code ofUUniform). As proved in [3] the probability of such
an event is �

������ , hence the average number of iterations
needed to generate a single tuple is�� � ���, which makes
the algorithm unpractical.

To efficiently generate task sets with uniform distribution
and with���� complexity, we introduce a new algorithm,
referred to as theUUniFast algorithm. It is built on the con-
sideration that the p.d.f. of the sum of independent random
variables is given by the convolution of their p.d.f.’s. Given
that the� random variables are uniformly distributed in��� ��
(so their p.d.f.’s are� in ��� �� and� everywhere else) the
convolution is a piecewise polynomy of the�� � �� �� de-
gree. In our fortunate case, the sum of the variables must
be less than or equal to a value� � �, thus the p.d.f. of the
sum of the uniform variables, constrained to be less than or
equal to�, is:

����� �

�
�

���� if � � ��� ��

� otherwise
(20)

Hence, the cumulative distribution function (c.d.f.) is:

����� �

��
�

� if � � ��
�

��
if �
 � � �

� if � � �

(21)

Using this c.d.f.’s, theUUniFast algorithm first gener-
ates a value of the sum of� � � variables. Then it sets
the first utilization equal to the difference between� and
the just generated value. So it keeps generating the ran-
dom variable “sum of� uniform variables” and computing
the single utilization�� as the difference with the previous
sum. The algorithm can be precisely described by the fol-
lowing code:

function vectU =�����	��(n,�)
sumU =� ;
for i=1:n�1,

nextSumU = sumU.�randˆ(1/(n�i));
vectU(i) = sumU� nextSumU;
sumU = nextSumU;

end
vectU(n) = USum;

As we can see from the code, the complexity of theUU-
niFast algorithm is���� and the generated utilization tu-
ples are characterized by a uniform distribution.

4. Simulation results
In this section we present a set of simulation experiments

aimed at comparing the three metrics discussed in the pa-
per. Although the numerical results provided here are not
intended to be an absolute measure of the RM schedulabil-
ity, the objective of this work is to show that RM is capable
of scheduling many more task sets than commonly believed.

Comparing the three metrics is not trivial, because they
have different definitions and require different simulations.
More specifically, while the utilization upper bound��� de-
pends only on periods and deadlines, both the breakdown
utilization� � and the optimality degreeOD also depend on
the computation times (i.e., on the utilizations). Hence, the
algorithm selected for the random generation of the compu-
tation times/utilizations may affect the results.

Two groups of experiments are presented: the first group
is intended to check the influence of the random parame-
ters generation routines on the considered metrics; the sec-
ond group is aimed at testing how period relations affect the
metrics.

4.1. Effects of the generation algorithm

The first two experiments show the influence of the gen-
eration algorithm on the metrics. We remind that��� does
not depend on the computation times of the tasks set. For

this reason, this subsection only compares the breakdown
utilization � �

� with the Optimality Degree���	 �� � ��.
The simulation was carried out by fixing the periods and
deadlines, and then generating the computation times. Note
that this choice is not restrictive, because the distribution of
��
� and���	 �� � �� scales with���. Task periods were

set to the values shown in Table 1.

where� ���
�� occurs

� ��� �� �
���
�� �� �� �
 �� �
 ��

� � � � - - - - -
� � ����� � � - - - -
� �� ��� � � � - - -
� �� ����� � � � �� - -
� ��� ����� � � � �� �� -
� ��� ��� � � � � �� ���

Table 1. Task set parameters.

In Table 1 all the� ���
�� are reported. The computation

times where the optimal solution of the problem (11) occurs
is reported as well. As you can notice, the schedulability of
the task�� is not influenced in any way by all the lower
priority tasks. This fact is represented in the table by the
symbol “-”. For the specific period selection,��� is given
by the minimum among the numbers in the third column,
which is �

�	 � ���.
Considering the Definition 1, we expect the breakdown

utilization to be always greater than the���. This fact is

0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.2

0.4

0.6

0.8

1

utilization

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
ns

c.d.f. BU (used UScaling method)
c.d.f. BU (used UUniFast method)
c.d.f. BU (used UFitting method)
Uub = Uub(3) = Uub(6) = 0.9000
Uub(2) = 0.9167
Uub(4) = Uub(5) = 0.9571

Figure 4. c.d.f. of �� for different algorithms.

confirmed by the simulation results reported in Figure 4.
In this experiment,� � ��
 tuples have been generated for
each method described in Section 3. The plots in the figure
clearly show the biasing factor introduced by the different
generation algorithms. In fact, the breakdown utilization
has a larger c.d.f. when tasks are generated with theUScal-
ing algorithm, meaning that RM is penalized. The opposite
effect occurs when tasks are generated withUFitting, which
favors RM more than under the uniform distribution pro-
duced byUUniFast. As synthetic values for the c.d.f.’s we
can use the expectation of the three breakdown utilization
random variables obtained by the three different methods,
reported in Table 2.

However, as extensively discussed in Section 2.1, the
breakdown utilization is not a fair metric for evaluating the

difference between RM and EDF in terms of schedulability.
For this purpose, theOptimality Degree (OD) has been in-
troduced in Section 2.3. Figure 5 reports the OD values as a
function of the total utilization and for different generation
methods.

0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.2

0.4

0.6

0.8

1

utilization

O
D

(U
) OD(U) (used UScaling method)

OD(U) (used UUniFast method)
OD(U) (used UFitting method)
Uub = Uub(3) = Uub(6) = 0.9000
Uub(2) = 0.9167
Uub(4) = Uub(5) = 0.9571

Figure 5. OD for different algorithms.

In this experiment,� � ��
 task sets are generated,����
for each value of the utilization. The insight we derive is
consistent with the previous experiment: theUScaling al-
gorithm penalizes RM more thanUUniFast, whereasUFit-
ting favors RM by generating easier task sets.

Assuming the total utilization is uniform in��� ��, the
NOD parameter (see Definition 4 and Equation (18)) is
computed and reported in Table 2, showing a much better
behavior with respect to the breakdown utilization.

Metric Value
����� � � ���

�����
��
���� � ������

�����

���
��� ������
�����
������� � ������

����
��
���� ������

����

���
�� ������
����
������� ������

Table 2. Schedulability results for RM.

The metric we consider more reliable is����

���
��,
because it is related to the real percentage of feasible task
sets and it refers to task sets uniformly distributed in the uti-
lization space. As a consequence, in the next simulations,
the UUniFast algorithm is adopted for generating the uti-
lizations��.

4.2. Effects of the task set parameters

In the two experiments described in this section task pe-
riods are uniformly generated in��� �� and then utilizations
are generated by the algorithmUUniFast. The objective of
the experiments is to compare the metrics������, �����
and������. For the sake of simplicity, we will omit the
expectation operator����.

The objective of the first experiment is to study the de-
pendency of the metrics on the number� of tasks. To do
that, we set� � ��� and generated a total number of� ����

2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

n = number of tasks

m
et

ric
s

Uub
BU
NOD

Figure 6. Metrics as a function of �.

task sets. As expected, all the metrics report a decrease in
the schedulability under RM and they are ordered in a way
similar to the first experiment.

The second experiment of this section aims at consider-
ing the dependency of the metrics on the task periods. To
do so, we set� � � and let� vary in the interval��� ����.
We generated� � ��� task sets. The result is reported in Fig-
ure 7. When� � � the periods are all the same value. The

10
0

10
1

10
2

10
3

10
4

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

B = periods upper bound

m
et

ric
s

Uub
BU
NOD

Figure 7. Metrics as a function of periods.

value of� is then what we expected.
In addition, all the three metrics seems to have a mini-

mum for� � �. This fact is also confirmed by the asymp-
totical study of the breakdown utilization (reported in The-
orem 1) and by many different proofs in the real-time liter-
ature [13, 4, 6, 3] which show this phenomenon.

5. Conclusions
The motivation for writing this paper has been to analyze

in great detail how the methodology used for evaluating the
performance of fixed priority scheduling algorithms affects
the results. In particular, we have considered two metrics
commonly used in the literature and showed that both the
breakdown utilization and theutilization upper bound can
be unfair in judging the performance of the Rate/Deadline
Monotonic scheduling algorithms. We also illustrated that
significant biasing factors can be introduced by the routines
used for generating random task sets.

The main result achieved from this study is that current
metrics intrinsically evaluate the behavior of RM in pes-
simistic scenarios, which are more critical for fixed priority

assignments than for dynamic systems. The use of unbi-
ased metrics, such as theOptimality Degree, shows that the
penalty payed in terms of schedulability by adopting fixed
priority scheduling is less than commonly believed.

References
[1] N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and

A. Wellings. Applying new scheduling theory to static pri-
ority preemptive scheduling.Software Engineering Journal,
1993.

[2] E. Bini and G. C. Buttazzo. The space of rate monotonic
schedulability. InProc. of the ���� IEEE Real-Time Systems
Symposium, 2002.

[3] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate mono-
tonic scheduling: The hyperbolic bound.IEEE Transactions
on Computers, 52(7), 2003.

[4] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. New strate-
gies for assigning real-time tasks to multiprocessor systems.
IEEE Transactions on Computers, 44(12), 1995.

[5] G. C. Buttazzo. Rate monotonic vs. EDF: Judgment day.
In Proc. of the �

�� International Conference on Embedded
Software, 2003.

[6] D. Chen, A. K. Mok, and T.-W. Kuo. Utilization bound re-
visited. IEEE Transaction on Computers, 52(3), 2003.

[7] C.-C. Han and H.-y. Tyan. A better polynomial-time schedu-
lability test for real-time fixed-priority scheduling algorithm.
In Proc. of the ��

�� IEEE Real-Time Systems Symposium,
1997.

[8] M. Joseph and P. Pandya. Finding response times in a real-
time system.The Computer Journal, 29(5), 1986.

[9] S. Lauzac, R. Melhem, and D. Moss´e. An improved rate-
monotonic admission control and its applcations.IEEE
Transactions on Computers, 52(3), 2003.

[10] C.-G. Lee and L. Sha. Enhanced utilization bounds for QoS
management.Accepted for Publication in IEEE Transaction
on Computers, 2003.

[11] J. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic
scheduling algorithm: Exact characterization and average
case behavior. InProc. of the ���� IEEE Real-Time Systems
Symposium, 1989.

[12] J. P. Lehoczky, L. Sha, and J. Strosnider. Enhanced aperiodic
responsiveness in hard real-time environment. InProc. of the
�
�� IEEE Real-Time Systems Symposium, 1987.

[13] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment.Journal of
the ACM, 20(1), 1973.

[14] Y. Manabe and S. Aoyagi. A feasibility decision algorithm
for rate monotonic scheduling of periodic real-time tasks.
In Proc. of the �

�� Real-Time Technology and Applications
Symposium, 1995.

[15] D. Park, S. Natarajan, and M. J. Kim. A generalized utiliza-
tion bound test for fixed-priority real-time scheduling. In
Proc. of the �

�� International Workshop on Real-Time Sys-
tems and Applications, 1995.

[16] M. Sjödin and H. Hansson. Improved response-time analysis
calculations. InProc. of the ��

�� IEEE Real-Time Systems
Symposium, 1998.

