IEEE Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04), Catania, Italy, July 20Q4.

Biasing Effectsin Schedulability M easur es*

Enrico Bini
Scuola Superiore S. Anna
Pisa, Italy
e. bi ni @ssup. it

Abstract

The performance of a schedulabilty test is typically eval-
uated by generating a huge number of synthetic task sets
and then computing the fraction of those that pass the test
with respect to the total number of feasible ones. The result-
ing ratio, however, depends on the metrics used for evaluat-
ing the performance and on the method for generating ran-
domtask parameters. In particular, animportant factor that
affects the overall result of the simulation is the probability
density function of the random variables used to generate
the task set parameters.

In this paper we discuss and compare three different
metrics that can be used for evaluating the performance
of schedulability tests. Then, we investigate how the ran-
dom generation procedure can bias the simulation results
of some specific scheduling algorithm. Finally, we present
an efficient method for generating task sets with uniform
distribution in a given space, and show how some intuitive
solutions typically used for task set generation can bias the
simulation results.

1. Introduction

Giorgio C. Buttazzo
University of Pavia
Pavia, Italy
buttazzo@ni pv. it

sufficient guarantee test, the Hyperbolic Bound [3], that has
the same)(n) complexity of the classical utilization bound
proposed by Liu and Layland [13], but better performance.
Other feasibility tests [4, 7, 9] exploit additional informa-
tion on period relations to verify schedulability in a polyno-
mial time complexity. A tunable test, called the Hyperplane
0-Exact Test, has recently been proposed [2] to balance per-
formance versus complexity using a single parameter.

When dealing with approximate tests, the problem of
evaluating their performance with respect to the exact case
becomes an important issue. The effectiveness of a guar-
antee test for a real-time scheduling algorithm is measured
by computing the number of accepted task sets with respect
to the total number of feasible ones. Such a ratio can be
referred to as thacceptanceratio.

Computing the acceptance ratio using a mathematical
approach is not always possible, except for very simple
cases. In all the other cases, the performance of a guar-
antee test has to be evaluated through extensive simulations,
where a huge number of synthetic task sets need to be gener-
ated using random parameters. So both the evaluation met-
ric and the way task parameters are generated significantly
affect the overall performance of the test.

In this paper we discuss and compare three different

Rate Monotonic (RM) scheduling [13] is the most used
approach for implementing periodic real-time applications metrics that can be used for evaluating the performance
in fixed priority systems. Although, the superior behavior of schedulability tests. Then, we investigate how the ran-
of EDF over RM has been shown under different circum- dom generation routine bias the simulation of some spe-
stances [5], the simpler implementation of RM seems to be cific scheduling algorithm. Finally, we present an efficient
the major cause that prevents the use of dynamic priority method for generating task sets with uniform distribution in
schemes in practical applications. a given space, and show how some intuitive solutions for

The exact schedulability analysis of fixed priority sys- task set generation can bias the simulation results.
tems, however, requires high computational complexity, _
even in the simple case in which task relative deadlines 2. Méetrics
are equal to periods [8, 12, 1]. Methods for improving the y; js \ell known that the RM scheduling algorithm can-
computation of task response times have been recently proy,o¢ schedule all the feasible task sets. Several methods
posed [14, 16, 2], but the complexity of the approach re- paye heen proposed to compare the effectiveness of the RM
mains pseudo-polynomialin the worst case. _scheduling algorithm with the optimal EDF. The most com-

This fap'g .has led the research community to investigate o, approaches are based on the concelmisakdown uti-
new feasibility tests that are less complex than exact tests,jj 4tion [11] and utilization upper bound [15, 6, 10]. As

but still provide a reasonable performance in terms of ac- e giscuss in Sections 2.1 and 2.2, both techniques present
ceptance ratio. For example, Bini and Buttazzo proposed agme drawback, thus in Section 2.3, we present a new per-

formance evaluation criterion, tii@ptimality Degree (OD),
which prevents those problems.

*Enrico Bini was visiting University of North Carolina at Chapel Hill
when working on this paper.

2.1. Breakdown utilization

The concept of breakdown utilization was first intro-
duced by Lehoczky, Sha, and Ding, in their seminal
work [11] aimed at providing exact characterization and av-
erage case behavior of the RM scheduling algorithm.

Definition 1 (Section 3in [11]) A task set is generated
randomly, and the computation times are scaled to the point
at which a deadlineis first missed. The corresponding task
set utilization is the breakdown utilization U:.

In such a scaling operation, computation times are in-

creased if the randomly generated task set is schedulable, |@| -
whereas they are decreased if the tasks set is not schedula-

hypercube(Uy, . ..
group is larger).

,Un) € [0,1]™ belonging to the same

__Inthe case of two tasks, the relationship betwéemd
|OB| can be explicitly derived. Without any loss of gener-

ality, we assumé/; < U,. Sinced does not vary within
the sameC;-aligned group, the relation can be computed

by fixing any point on the) B segment. Thus, to simplify

the computation, we select the set with = 1. For this
group we havé/; = [AB|. Hence:

maxi{Ui} — man{UZ} _ UQ — U1 _ 1-— |E|

6= Z?:lUi _U2+U1_1—|—|E|
)

1
1+

(=9

ble. This scaling stops at the boundary which separates the
RM-schedulable and RM-unschedulable task sets. Hencegnen:

all task sets with the same period configuration that can be
obtained by scaling the computation times have the same
breakdown utilization, because they all hit the boundary in
the same point. We denote these task seta gup of
C;-aligned task sets. This concept is illustrated in Figure 1.

U,
A s B
&
Uub’ §
Gi\»
U*
(7] SR
| U
0 12 1

Uu b

Figure 1. Interpretation of the breakdown uti-
lization.

For example, if we assume the computation times to
be uniformly distributed if0, T;] (i.e., theU; uniform in
[0,1]), the number of task sets belonging to the sathe
aligned group is proportional to the length of tiiB seg-
ment in Figure 1.

Note that a group of’;-aligned task sets contains more
sets when thé/; are similar to each other, because in this
case the segmentB is longer. The utilization disparity in
a set of tasks can be expressed through the following pa-
rameter, called th&-difference:
maxi{Ui} - man{Ul} (1)

E?:l Ul .

As it can be argued from Figure 1, when a grouggf
aligned task sets is characterized by a small valué,dhe
segmenO B is longer (that is, the number of task sets in the

d =

V2 + 07

— — 2

|OB| = \/1+ |4B| =5 ()
Note that if6 = 1, then|OB| = 1, whereas iy = 0, then
0B = V2.

In the general case of tasks, finding the exadOB| is
much harder. However, the long€3B segment is equal to
the diagonal of a unitarng-dimensional cube, whose length
is /> 712 = /> 1 = /n, which grows withn. The
result illustrated above can be summarized in the following
observation.

Remark 1 When uniformly generating the utilizations
(Uy,...,U,)in[0,1]™, agroup of C;-aligned task sets con-
tains more sets if it has a smaller value of U-differenced.
This phenomenon becomes more considerable (by a factor
\/n) as the number of tasks grows.

These geometrical considerations are very relevant when
evaluating the performance of the scheduling algorithm. In
fact, among all task sets with the same total utilization, RM
is more effective on those sets characterized by tasks with
very different utilization (i.e.y — 1). The intuition behind
this statement is also supported by the following facts:

e Liu and Layland proved [13] that the worst-case con-
figuration of the utilization factors occurs when they
are all equal to each other;

¢ using the Hyperbolic Bound [3], which guarantees fea-
sibility if T, (1 4+ U;) < 2, it has been shown that
the schedulability under RM is enhanced when tasks
have very different utilization¥/;.

Hence, we can state that:

Remark 2 For a given total utilization factor U, the feasi-
bility of a task set under the RM scheduling algorithm im-
proves when task utilizations have a large difference, that is
when § iscloseto 1.

Summarizing the observations discussed above, we cardistributions. Such hypotheses are needed to cut some
conclude that when task sets are randomly generated so thadlegrees of freedom on task set parameters and provide a
task utilizations have a uniform distribution in the hyper- *“single-value” result, but they may not hold for a specific

cube(Uy,...,Uy) € [0,1]™, the number of sets with alow real-time application.
value of§ will be dominant. Hence the average breakdown In the next sections, we will overcome this limitation by
utilization will be biased by those task sets with a small making the metrics dependent on a specific task set domain.

difference §, for which RM is more critical. Moreover such

a biasing increases asgrows (see Remark 1). Hence, we 2-2. Utilization upper bound

can state the following remark. The utilization upper bound/,;, is a well known pa-
rameter, used by many authors [13, 15, 6, 10] to provide

Remark 3 The use of breakdown utilization as a metric a schedulability test for the RM algorithm. Following the

for evaluating the performance of the schedulability algo- approach proposed by Chen et al. [6], the utilization upper

rithms, penalizes RM more than EDF. bound is defined as a function of a given domiaiof task
sets.

The formal proof of the last observation is out of the
scope of this paper. However, the intuitive justification we Definition 2 The utilization upper bound U,,(D) is the
provided so far is confirmed in Section 4 by additional ex- maximum utilization such that if a task set is in the domain
perimental results (see Fig. 4). D and satisfies Y U; < U, thenthetask set is schedulable.
In order to characterize the average case behavior of theMore formally:
RM scheduling algorithm, Lehoczky et al. treated task peri- . .
ods and execution times as random variables, and then stud- Uu(D) = max{Uy: (L €D A > Us < Us)

ied the asymptotic behavior of the breakdown utilization. _ €D (6)
Their result is expressed by the following theorem. = I"isschedulable}.
Theorem 1 (from Section 4in [11]) Given task periods From the definition above it follows that:
uniformly generated in the interval [1, B], B > 1, then for Dy CDy = Up(Dr) > Usp(Do). (7)
n — oo the breakdown utilization U}; converges to the fol- According to this definition, Liu and Layland [13] found
lowing values: the upper bound’,,, for all possible sets of, tasks. IfT,,
e ifB -1 is the domain of all sets of tasks, they proved that:
Ur =1 3) U(Tn) = n(V2-1) (8)
. which is also referred to agtilization least upper bound,
e ifl<B<L2: becauseT,, is the largest possible domain, and hence
U log, B 4) Uw(T,) = U is the lowest possible utilization upper
" B-1 bound (see Eq. (7)).
o ifB>2 The typical choice for the domain of the task sets is
= log, B given by fixing task periods and deadlines. So the do-
Up = ——51 (5) mainM,, (T4, . .., T, D1, ..., D,), also simply denoted by
B s 1 M., , is the domain consisting of all task sets having periods
| B] —~ i Ti,...,T, and deadline®, ..., D, (so only the compu-
tation timesC', ..., C,, are varying).
and the rate of convergenceis O(/n). For such a domain, the following result has been

found [6] whenD; = T; and% <2
Then, the authors derive a probabilistic schedulability 1 no1
bound for characterizing the average case behavior of RM. 77 (MIn n In <2nD, = T-) —9 H 1 + ZT. —n
u 111 = K3 K3 J ’ ' K3
i=1 i=1

r;

Remark 4 (Example2in [11]) For randomly generated h h 9)
task sets consisting of a large number of tasks (i.e. n — o) wherer; = % fori=1,...,n—1.
whose periodsare drawnin aL_miform distribgtion (i.e. hyp. Whenn = 2 andr = % it was proved [6] that:
of Th. 1 hold) with largest period ratio ranging from 50 to 1
100 (i.e. 50 < B < 100), 88% is a good approximation to oy g =1rD(r] =)
. . - Uub(M2 N Dz - Tz) =1 . (10)
threshold of the schedulability (i.e. the breakdown utiliza- r
tion) for the rate monotonic algorithm. When no restrictions apply on periods and deadlines, the

utilization upper bound/,,(M,,), shortly denoted by/,;,
The major problem in using this results is that it is based from now and on, can be found by solvimglinear pro-
on specific hypotheses about periods and computation timesgramming problems [15, 10]. Thé&" optimization problem

(for 7 from 1 to n) comes from the schedulability constraint where

of the taskr;. It is formulated as follows: scheda(D) = {T' € D : T isschedulableby A}, (15)
) el and Opt is any optimal scheduling algorithm.
lencv) Z T
(GG 55 From this definition it follows that:
i—1 t
subject to Ci+ Ej:l [T]-I Cj<t vt € Pi—1(Di) ¢ for any scheduling algorithrA and for any domaii®,
C;>0 Vi=1,...,i 0<ODa(D) <1;
11
(11) ¢ for any optimal algorithn©pt, OD op: (D) = 1 for alll
where the reduced set of schedulability poifts | (D;), domainsD.
found in [14, 2], is used instead of the largest one firstly _ _ _ _
introduced in [11]. If we label the solution of thié" prob- In this section we will focus o®Dgy (D) and we will
lem (11) aSULEé)’ the utilization upper bound is given by: _conS|der EDF as a_reference for optimality, since our goal
] is to measure the difference between RM and EDF in terms
Uwp = '_r?in Uff)) (12) of schedulable task sets. In fact, by using the definition of

o _ T,, as the domain of all possible setsrotasks (see Sec-
Once the utilization upper bourid,s, is found, the guar- tjon 2.2), we can measure the goodness of the RM algorithm

antee test for RM can simply be performed as follows: by evaluatingDD gy (T5).
n However, the domairT,, is hard to be characterized,
Z Ui < Uup- (13) since the concept dfall the possibletask sets” is too fuzzy.
i=1 As a consequenc&Dgy (T,,) can only be computed by

The utilization bound defined above is tight, meaning simulation, assuming the task set parameters as random
that for every valué/ > U, there exists a task set, having variables with some probability density function (p.d.f.). In
utilization U, which is not schedulable by RM. However, a order to make th®©Dgwm (T),) metric less fuzzy and to find
common misconception is to believe that the test provided some meaningful result, we need to reduce the degrees of
by Equation (13) is a necessary and sufficient condition for freedom of domairT,,.
the RM schedulability, meaning thaall the task sets hav- An important classification of the task sets is based on
ing total utilization U > U,, are not schedulable”. Un- its utilizationU. Hence, we could be interested in knowing
fortunately, this is not true and the RM schedulability is far how many task sets are schedulable among those belonging
more complex. Nevertheles8,,, is very helpful to under- to a domairi) with a given utilizationU.
stand the goodness of a given period configuration, because Notice that by using the utilization upper bound we can
it tends to the EDF utilization bound (which 1§ as RM only say that a task set is schedulabl&if< U,,(D), but

tends to schedule all the feasible task sets. there is still uncertainty among those with> U ,, (D). In-
In the next section we introduce a new metric that keeps stead by using the Optimality Degree the number of schedu-
the good properties of the utilization upper boungl, still lable task sets can be measured by:

able to provide a measure of all the schedulable task sets. n
oD D,U) = 0D DN U, =U 16

2.3.0D: Optimality Degree wm (B, 1) i (; ') (10)

As stated before, the reason for proposing a new met- It is worth observing thaODgwm (D, U) does not suffer
ric is to provide a measure of the real number of task setsthe weakness o/,,(DD), because it is capable of measur-
which are schedulable by a given scheduling algorithm. As ing the number of schedulable task sets even when the total
for the definition of the utilization upper bound, the concept Utilization exceed#/, (D).
of Optimality Degree (OD) is defined as a function of a To derive a numeric value fro®@Drwm (D, U), we need
given domairD. This a very important property because, if to model the utilization as a random variable with a pdf
some task set specification is known from the design phasefv (1) and then compute the expectatior@D gy (D, U).
(e.g., some periods are fixed, or constrained in an interval),
it is possible to evaluate the performance of the test on that
specific class of task sets, by expressing the known infor-
mation by means of the domaih

Definition 4 We define the Numerical Optimality Degree
(NOD) asthe expectation of ODgy (D, U), whichis:

1
Lo . . NODRM (]D)) = / ODRM (]D), U) fU(U)dU. (17)
Definition 3 The Optimality Degree OD 4 (D) of an algo- 0

rithm A on the domain of task setsD is:
_|scheda(ID)]
|schedopt (D)

As for the average 88% bound derived by Lehoczky et al.,
in order to achieve a numerical result we have to pay the

ODx (D) price of modelling a system quantity (the utilizatidh) by

(14)

a random variable. If we assume the utilization uniform in algorithms, discuss their problems, and then propose a new
[0, 1] Equation (17) becomes: efficient method.

1 A first intuitive approach, referred to as tb&caling al-
NOD«gum (D) :/ ODgm (D, u) du (18) gorithm, is to generate thig;’s in [0, U] and then scale them
0

by a factor%, so that the total processor utilization is
exactlyU. TheUScaling algorithm has am(n) complex-

ity and, using Matlab syntax can be so coded:

function vectU =UScaling(n, U)
vectU =rand(1,n);
« the utilization of the task sets is a uniform random vari- VectU = vectUxU ./sum(vectU);

able in[0, 1]. Unfortunately, the algorithm illustrated above incurs in
the same problem discussed in Section 2.1 for the scaling
of C;-aligned task sets, whose effect was to bias the break-

which finalizes our search. In fact, this value well represents
the fraction of the feasible task sets which are schedulable
by RM in the following hypotheses:

¢ the task sets belong i

Moreover, as expected, we have that:

! ODwur (Do) du — down utilization. Here, the consequence of the scaling oper-
/0 ru (D,) du = ation is that task sets having simild’s (those withd close
1 to 0) are generated with higher probability.
Uuwp(D) + / ODgu (D, u) du Figure 2 illustrates the values of 5000 utilization tuples,
Uu (D) generated by th&JScaling algorithm withn = 3 and
and then: U = 1. As expected, the generated values are more dense
1
/ ODgui (D,) du > Uyy(D) (19)

0

which shows thaNOD is less pessimistic thali,,.

3. Synthetic task setsgeneration

The typical way to measure the performance of a guar-
antee test is to randomly generate a huge number of syn-
thetic task sets and then verify which percentage of feasible
sets pass the test. However, the way task parameters are
generated may significantly affect the result and bias the
judgement about the schedulability tests. In this section we
analyze some common techniques often used to randomly Figure 2. Result of the UScaling algorithm.
generate task set parameters and we highlight their positive
and negative aspects.

In a synthetic task set, task periods are usually generate
as random variables with a uniform distribution in a given
interval. Although this choice may not reflect the character-
istics of a real application, assuming some probability den-
" once tadk periods: have been selected, runing a guar- UliZ810N U consits in making), uniform in 0, U1, U

) v ’ . . uniformin[0, U — Uy], Us uniformin[0, U — U; — U], and
antee test in the whole space of task set configurations re- : . S =

. L . . so on, untilU,, is deterministically set to the valug,, =
guires computation tim&s; to be generated with a uniform 7o En_l U This method. referred to a4Fitting. can be
distribution in[0, 7;]. Notice that, since computation times <i=1 NN 9
C; and utilizationd; differ by a scaling factor of;, this is ~ aescribed by the following code:
equivalent of assuming ea€h to be uniform in[0, 1]. function vectU =UFitting(n, U)

Considering the dependency of some schedulability testyp| jmit = T7;
from the total processor utilization, a desirable feature of the oy j=1:n—1,
generation algorithm is the ability to create synthetic task vectU(i) = rand«upLimit;
sets with a given utilization factdr. Hence, individual task upLimit = upLimit—vectU(i);
utilizationsU; should be generated with a uniform distribu- o, 4
tion in [0, U], subject to the constraint, U; = U. Imple-
menting such an algorithm, however, hides some pitfalls. In
the next paragraphs we will describe some “common sense” !Note that in Matlab arrays can be assigned as variables.

Oaround the point where all thg; are equal to%. As ar-
gued in Remark 2, these task sets are penalized by RM,
hence generating the utilizations by ti8caling algorithm
is pessimistic for RM.
A second algorithm for generating task sets with a given

vectU(n) = upLimit;

TheUFitting algorithm has a®(n) complexity, but has the L _
major disadvantage of being asymmetrical, meaning that fi(u) = { E’U,271 if ue [(_),b] (20)
theU; has a different distribution thali,, and so forth. ! 0 otherwise

Moreover, as depicted in Figure 3, the achieved distri- once the cumulative distribution function (c.d.f.) is:
bution is again not uniform, and task sets having different

values ofU;’s (those withd close tol) are generated with 0 i if u<0
higher probability. Hence, for the same reasons stated in Fi(u)=<¢ (%) fo<u<b (21)
1 if u>b

Using this c.d.f’s, thaJUniFast algorithm first gener-
ates a value of the sum of — 1 variables. Then it sets
the first utilization equal to the difference betweénand
the just generated value. So it keeps generating the ran-
dom variable “sum of uniform variables” and computing
the single utilizatiorU; as the difference with the previous
sum. The algorithm can be precisely described by the fol-

lowing code:
function vectU =UUniFast(n, U)
sumU =U;
for i=1:n—1,
Figure 3. Result of the UFitting algorithm. nextSumu = sumukrand”(1/(n—i));

vectU(i) = sumU— nextSumU;

Remark 2, generating the utilizations by tdEitting algo- enzumu = nextSumu;

rithm favors RM with respect to EDF. vectU(n) = USum;
The problems described above can be solved though the - '

following method, referred to as théUniform algorithm: As we can see from the code, the complexity of thd-
. niFast algorithm isO(n) and the generated utilization tu-

function vectU =UUniform(n, U) ples are characterized by a uniform distribution.
while 1

vectU =T .xrand(1,n—1); 4. Simulation results

if sum(vectU)<=U % boundary condition In this section we present a set of simulation experiments

break aimed at comparing the three metrics discussed in the pa-

end per. Although the numerical results provided here are not
end intended to be an absolute measure of the RM schedulabil-
vectU(n) = U-sum(vectU); ity, the objective of this work is to show that RM is capable

of scheduling many more task sets than commonly believed.

The problem with this algorithm, however, is that it has to Comparing the three metrics is not trivial, because they
run until the boundary condition is verified once (see the have different definitions and require different simulations.
code ofuUniform). As proved in [3] the probability of such More specifically, while the utilization upper boubi,, de-
an event is;;4y;, hence the average number of iterations pends only on periods and deadlines, both the breakdown
needed to generate a single tuplérns— 1)!, which makes utilization U* and the optimality degre®D also depend on
the algorithm unpractical. the computation times (i.e., on the utilizations). Hence, the

To efficiently generate task sets with uniform distribution algorithm selected for the random generation of the compu-
and withO(n) complexity, we introduce a new algorithm, tation times/utilizations may affect the results.
referred to as thElUniFast algorithm. It is built on the con- Two groups of experiments are presented: the first group
sideration that the p.d.f. of the sum of independent random is intended to check the influence of the random parame-
variables is given by the convolution of their p.d.f’s. Given ters generation routines on the considered metrics; the sec-
that thei random variables are uniformly distributed 1] ond group is aimed at testing how period relations affect the
(so their p.d.f’s ard in [0, 1] and0 everywhere else) the metrics.
convolution is a piecewise polynomy of tije — 1)t" de- .)
gree. In our fortunate case, the sum of the variables must4'1' Effects of the generation algorithm
be less than or equal to a valbe< 1, thus the p.d.f. of the The first two experiments show the influence of the gen-
sum of the uniform variables, constrained to be less than oreration algorithm on the metrics. We remind tha, does
equal tob, is: not depend on the computation times of the tasks set. For

this reason, this subsection only compares the breakdowndifference between RM and EDF in terms of schedulability.
utilization U with the Optimality DegreddDgy (D, U). For this purpose, th®ptimality Degree (OD) has been in-
The simulation was carried out by fixing the periods and troduced in Section 2.3. Figure 5 reports the OD values as a
deadlines, and then generating the computation times. Notefunction of the total utilization and for different generation
that this choice is not restrictive, because the distribution of methods.

U} andODgy (D, U) scales withU,,. Task periods were

set to the values shown in Table 1. o ‘ ‘ ‘ 1 U
- 0.8 : i
whereU}) occurs ' !
. (i) SO 0 | OB et Ura et | 1
it | T;,Dy | Uy | Ci | Oy | C3 | Cy | C5 | Cg 2 ' OBt Uit moma | !
S5l ' = = Uub = Uub(3) = Uub(6) = 0.9000 | |
1 3 1 3 - - - - - 1 Uub(2) = 0.9167 !
9 8 0917 9 9 _) _) " : — - Uub(4) = Uub(5) = 0.9571 :
31 20 |09 | 0|48]| -]-]|- N
4 42 0957 1 O 2 22 - - 8.89 0.9 0.91 0.92 0.93 O.i:"zalil())fs 0.96 0.97 0.98 0.99 1
5| 120 10957 0 0 0|36 | 12) Figure 5. OD for different algorithms.
6 300 0.9 0 0 0 0 | 60 | 120

Table 1. Task set parameters. In this experiment3 - 10° task sets are generate@00

() . for each value of the utilization. The insight we derive is
In Table 1 all theU,,,” are reported. The computation consistent with the previous experiment: tH8caling al-

times where the optimal solution of the problem (11) occurs gorithm penalizes RM more thasiUniFast, whereadJFit-
is reported as well. As you can notice, the schedulability of tjng favors RM by generating easier task sets.

the taskr; is not influenced in any way by all the lower Assuming the total utilization is uniform ifo, 1], the
symbol “-". For the specific period selectioff,; is given computed and reported in Table 2, showing a much better

by the minimum among the numbers in the third column, penavior with respect to the breakdown utilization.
whichis 2 = 0.9.
Considering the Definition 1, we expect the breakdown Metric Value
utilization to be always greater than tbg,. This fact is Uub (M) 09
u n .

E[U*|UScaIing] 0.9296

1

i
*

5087 E E[U *|UUniFast] 0.9372
2 ' E[U |UFitting] 0.9545
L NOD|ygyjing | 0-9679
foat 1 T e g e NOD| s | 09739
% ' cd.f._BU (used_UFlmng_method) o
gozi : - BEE(E)Liug(gig?Uub(G)—09000 NO UFIttI.ng. 0-9837
° D = Table 2. Schedulability results for RM.

8.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

utilization
Figure 4. c.d.f. of U* for different algorithms. The metric we consider more reliable]OD | e,

because it is related to the real percentage of feasible task

confirmed by the simulation results reported in Figure 4. Sets and it refers to task sets uniformly distributed in the uti-
In this experiment2 . 10° tup|es have been generated for lization space. As a conseqguence, in the next simulations,
each method described in Section 3. The plots in the figure the UUniFast algorithm is adopted for generating the uti-
clearly show the biasing factor introduced by the different lizationsU;.
generation algorithms. In fact, the breakdown utilization
has a larger c.d.f. when tasks are generated with/Beal- 4.2. Effects of thetask set parameters
ing algorithm, meaning that RM is penalized. The opposite In the two experiments described in this section task pe-
effect occurs when tasks are generated Wigitting, which riods are uniformly generated ji, B] and then utilizations
favors RM more than under the uniform distribution pro- are generated by the algoritHdUniFast. The objective of
duced byUUniFast. As synthetic values for the c.d.f'swe the experiments is to compare the metri¢/], E[U*]
can use the expectation of the three breakdown utilization and EINOD)]. For the sake of simplicity, we will omit the
random variables obtained by the three different methods, expectation operatdt|-].
reported in Table 2. The objective of the first experiment is to study the de-

However, as extensively discussed in Section 2.1, the pendency of the metrics on the numbeof tasks. To do
breakdown utilization is not a fair metric for evaluating the that, we seB = 100 and generated a total number2efl0*

0.95F BU

metrics

n = number of tasks

Figure 6. Metrics as a function of n.

assignments than for dynamic systems. The use of unbi-
ased metrics, such as tlgptimality Degree, shows that the
penalty payed in terms of schedulability by adopting fixed
priority scheduling is less than commonly believed.

References

[1] N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and
A. Wellings. Applying new scheduling theory to static pri-
ority preemptive schedulingsoftware Engineering Journal,
1993.

[2] E. Bini and G. C. Buttazzo. The space of rate monotonic
schedulability. IrPrac. of the 23! | EEE Real-Time Systems

task sets. As expected, all the metrics report a decrease in Symposium, 2002.
the schedulability under RM and they are ordered in a way [3] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate mono-

similar to the first experiment.

The second experiment of this section aims at consider-
ing the dependency of the metrics on the task periods. To [4]

do so, we seb = 4 and letB vary in the interva[l, 10%].

We generated - 10* task sets. The result is reported in Fig-
ure 7. WhenB = 1 the periods are all the same value. The

08 I I I
10° 10 10° 10 10°
B = periods upper bound

Figure 7. Metrics as a function of periods.

value of1 is then what we expected.

In addition, all the three metrics seems to have a mini-
mum for B = 2. This fact is also confirmed by the asymp-
totical study of the breakdown utilization (reported in The-
orem 1) and by many different proofs in the real-time liter-

ature [13, 4, 6, 3] which show this phenomenon.

5. Conclusions

The motivation for writing this paper has been to analyze
in great detail how the methodology used for evaluating the
performance of fixed priority scheduling algorithms affects
the results. In particular, we have considered two metrics
commonly used in the literature and showed that both the

breakdown utilization and theutilization upper bound can

be unfair in judging the performance of the Rate/Deadline
Monotonic scheduling algorithms. We also illustrated that
significant biasing factors can be introduced by the routines

used for generating random task sets.

The main result achieved from this study is that current
metrics intrinsically evaluate the behavior of RM in pes-
simistic scenarios, which are more critical for fixed priority

tonic scheduling: The hyperbolic boundEEE Transactions

on Computers, 52(7), 2003.

A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. New strate-

gies for assigning real-time tasks to multiprocessor systems.

|EEE Transactions on Computers, 44(12), 1995.

[5] G. C. Buttazzo. Rate monotonic vs. EDF: Judgment day.
In Proc. of the 3" International Conference on Embedded
Software, 2003.

[6] D. Chen, A. K. Mok, and T.-W. Kuo. Utilization bound re-
visited. |EEE Transaction on Computers, 52(3), 2003.

[7] C.-C.Han and H.-y. Tyan. A better polynomial-time schedu-
lability test for real-time fixed-priority scheduling algorithm.

In Proc. of the 18" |EEE Real-Time Systems Symposium,
1997.

[8] M. Joseph and P. Pandya. Finding response times in a real-
time system.The Computer Journal, 29(5), 1986.

[9] S. Lauzac, R. Melhem, and D. Mass’An improved rate-
monotonic admission control and its applcation$EEE
Transactions on Computers, 52(3), 2003.

[10] C.-G. Lee and L. Sha. Enhanced utilization bounds for QoS
managementAccepted for Publication in |[EEE Transaction
on Computers, 2003.

[11] J. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic
scheduling algorithm: Exact characterization and average
case behavior. IRroc. of the 10*® |IEEE Real-Time Systems
Symposium, 1989.

[12] J.P.Lehoczky, L. Sha, and J. Strosnider. Enhanced aperiodic
responsiveness in hard real-time environmenrisc. of the
8" | EEE Real-Time Systems Symposium, 1987.

[13] C.L.LiuandJ.W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environmedburnal of
the ACM, 20(1), 1973.

[14] Y. Manabe and S. Aoyagi. A feasibility decision algorithm
for rate monotonic scheduling of periodic real-time tasks.
In Proc. of the 15 Real-Time Technology and Applications
Symposium, 1995.

[15] D. Park, S. Natarajan, and M. J. Kim. A generalized utiliza-
tion bound test for fixed-priority real-time scheduling. In
Proc. of the 2* International Workshop on Real-Time Sys-
tems and Applications, 1995.

[16] M. Sjodin and H. Hansson. Improved response-time analysis
calculations. IrProc. of the 19" |EEE Real-Time Systems
Symposium, 1998.

