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Abstract

Most of today’s embedded systems are required to work
in dynamic environments, where the characteristics of the
computational load cannot always be predicted in advance.
Still timely responses to events have to be provided within
precise timing constraints in order to guarantee a desired
level of performance. Hence, embedded systems are, by na-
ture, inherently real-time. Moreover, most of embedded sys-
tems work under several resource constraints, due to space,
weight, energy, and cost limitations imposed by the specific
application. As a consequence, efficient resource manage-
ment is a critical aspect in embedded systems, that must be
considered at different architecture levels.

The objective of this document is to present the major
research trends identified by the international community
on real-time systems to make the next generation embedded
systems more predictable and adaptive to environmental
changes. After describing the characteristics of modern em-
bedded applications, the paper presents the problems of the
current approaches and discusses the new research trends
in operating systems and scheduling emerging to overcome
them.

1 Introduction

The use of computer controlled systems has increased
dramatically in our daily life. Processors and microntrollers
are embedded in most of the devices we use every day, such
as mobile phones, PDAs, TVs, DVD players, cameras, cars,
dishwashers, etc. This trend is expected to continue in the
future. Several research projects on ambient intelligence,
pervasive systems, home automation, and ubiquitous com-
puting, aim at integrating computers in our environment
even more in a way that they are hidden. Most of these
devices share the following important properties:

� Limited resources. Several embedded devices are de-
signed under space, weight, and energy constraints

imposed by the specific application. Often they also
have cost constraints related with mass production and
strong industrial competition. As a consequence, em-
bedded applications typically run on small processing
units with limited memory and computational power.
In order to make these devices cost-effective, it is
mandatory to make a very efficient use of the compu-
tational resources.

� Real-time constraints. Most embedded devices inter-
act with the environment and have demanding quality
specifications, whose satisfaction requires the system
to timely react to external events and execute com-
putational activities within precise timing constraints.
The operating system is responsible for ensuring a pre-
dictable execution behavior of the application to allow
an off-line guarantee of the required performance.

� Dynamic behavior. The complexity of embedded sys-
tems is constantly increasing and several applications
consist of tens or hundreds of concurrent activities that
interact with each other and compete for the use of
shared resources. In addition, the behavior of some
activities depends on sensory data inputs, which can
hardly be predicted in advance. Finally, low-level
architecture features, such as caching, pre-fetching,
pipelining, DMA, and interrupts, although enhancing
the average computer performance, introduce a non
deterministic behavior on tasks execution, making the
estimation of worst-case computation times very un-
predictable. As a consequence, the overall workload of
complex real-time applications is subject to significant
variations that cannot be easily predicted in advance.

The combination of real-time features in tasks with dy-
namic behavior, together with cost and resource constraints,
creates new problems to be addressed in the design of
such systems, at different architecture levels. The classical
worst-case design approach, typically adopted in hard real-
time systems to guarantee timely responses in all possible
scenarios, is no longer acceptable in highly dynamic envi-
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ronments, because it would waste the resources and pro-
hibitively increase the cost.

Instead of allocating resources for the worst case,
smarter techniques are needed to sense the current state of
the environment and react as a consequence. This means
that, to cope with dynamic environments, a real-time sys-
tem must be adaptive; that is, it must be able to adjust its
internal strategies in response to a change in the environ-
ment to keep the system performance at a desired level or,
if this is not possible, degrade it in a controlled fashion.

Implementing adaptive embedded systems requires spe-
cific support at different levels of the software architecture.
The most important component affecting adaptivity is the
kernel, but some flexibility can also be introduced above the
operating system, in a software layer denoted as the middle-
ware. Some adaptation can also be done at the application
level; however, it potentially incurs in low efficiency due to
the higher overhead normally introduced by the application
level services. Normally, for efficiency reasons, adaptation
should be handled at the lower layers of the system architec-
ture, as close as possible to the system resources. For those
embedded systems that are distributed among several com-
puting nodes, special network methodologies are needed to
achieve adaptive behavior and predictable response.

The rest of this document mainly focuses on operating
systems, presenting the major research trends in real-time
scheduling and resource management identified by the in-
ternational community on real-time systems to make the
next generation embedded systems more predictable and
adaptive to environmental changes. After analyzing the
current state of practice in some real-time application do-
mains, the paper presents the limitations of current solu-
tions and the new research trends emerging to overcome
them. A more complete discussion on other architectural as-
pects, including middleware, networks, languages, and de-
sign methodologies, can be found in the ARTIST Roadmap
for embedded systems design [31].

In particular, Section 2 illustrates the characteristics of
modern applications; Section 3 explains the problems of the
current industrial practice; Section 4 reports the most inno-
vative research areas in operating systems and scheduling
to overcome these limitations; and Section 5 concludes the
paper summarizing the major research challenges.

2 Novel applications requirements

The complexity of embedded systems is constantly in-
creasing. While in the past embedded systems were syn-
onym of 8-bit processors and small memory footprint, most
of today’s systems are developed on 32-bit processors with
several megabytes of memory, and some of them include
advanced multimedia features. For example, a modern mo-
bile phone typically consists of several million lines of code

with use-cases involving large number of concurrent activi-
ties. Utilizing available hardware and software resources in
an optimal fashion is crucial both to save costs and to keep
the competitive edge.

In the large domain of consumer electronics, most of the
application software includes at least three types of activi-
ties, with different characteristics and requirements with re-
spect to timing and resource sharing:

� Control software is typically implemented by periodic
tasks and uses only a small fraction of the available
resources. Sensory acquisition and control tasks are
subject to hard timing requirements that must be guar-
anteed off line in all operating conditions.

� Media processing software is typically data or through-
put driven, and is a major consumer of hardware
resources (processor and network bandwidth). Au-
dio/video processing and graphics applications are the
main examples in this category. They are normally
treated as soft real-time aperiodic tasks with quality-
of-service (QoS) requirements. Due to the large re-
source consumption, achieving high resource utiliza-
tion is of crucial importance.

� Interaction software is very complex and vastly in-
creasing in size and complexity. Typical exam-
ples are electronic program guides, internet browsing,
photo/music browsing, broadcast enhancement (for
example, player info and statistics in sports games).
In a high-end TV set, the total code size currently ap-
proaches 4 Mbytes. For this software, the timing re-
quirements are interactive-response requirements.

A problem in handling such different types of activities
is to manage the available resources so that each class of
tasks can meet its specific quality constraints. Adding or
removing features may cause a system to fail. For complex
and dynamic systems, exhaustive design and testing of ev-
ery possible use case is not tractable. Therefore, tools and
metrics for expressing and handling resource requirements
are essential in future system design.

In more sophisticated devices (e.g., smart phones), these
problems are often addressed by multiple CPU solutions,
where one CPU is dedicated to real-time tasks, while an-
other CPU runs the user applications on top of a non real-
time kernel. Such a separation between real-time and non
real-time functionality simplifies resource allocation and
protects real-time tasks from a misbehaving user applica-
tion. However, more CPUs consume more power, require
special multiprocessor scheduling algorithms and there is
still a need for managing resources on the individual pro-
cessors and support the communication among tasks run-
ning on different processors.
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A single CPU system with proper resource management
would provide a viable alternative. For example, a system
supporting “memory and temporal protection” would allow
safely mixing real-time and non real-time applications with
the benefit of achieving a more scalable platform. Adding
and removing features would become predictable, allowing
configuring the system without worrying about unpleasant
surprises.

Finally, especially in multimedia systems, embedded ap-
plications exhibit a highly dynamic behavior, since task ex-
ecution times are often depended on input data that are dif-
ficult to predict. For example, if a multimedia task man-
ages compressed frames, the time for coding/decoding each
frame can vary significantly; hence, the worst-case execu-
tion time (WCET) of the task can be much higher than its
mean execution time.

3 Problems with the current approach

In spite of the increased systems complexity, real-time
applications are mainly configured acting on task priorities,
which usually express the importance of tasks. This is for
many reasons inadequate when configuring complex dy-
namic systems, because there are other system constraints
that cannot be mapped into a set of priority levels. As a
consequence, today, systems require extensive testing and
tuning to operate optimally.

Another problem with priorities is that activities often
consist of several tasks, which may play different roles in
different scenarios, making the priority assignment even
more difficult. Any attempt to group tasks together fails
since priority is a global property and will always break any
type of encapsulation.

When dealing with dynamic applications with vari-
able execution requirements, the use of dynamic priorities
schemes would give higher flexibility to the system, allow-
ing better adaptivity and full resource exploitation. How-
ever, most of today’s industrial products with dynamic be-
havior are still based on fixed priority schemes and have
very limited flexibility. The main reason is due to the fact
that they are built on top of commercial components that
do not offer the possibility of being reconfigured at run-
time. For example, at the operating system level, most of
the internal kernel mechanisms, such as scheduling, inter-
rupt handling, synchronization, mutual exclusion, or com-
munication, have a fixed behavior dictated by a specific pol-
icy that cannot be easily replaced or modified.

The typical approach used today at the operating sys-
tem level to affect the execution behavior and achieve some
level of adaptation is to modify task priorities. However,
this method does not always succeed and it is not trivial to
predict how the system performance will change as a func-
tion of priorities. For example, increasing the priority of a

task with long execution time could lead to an overload con-
dition that would degrade system performance. Even de-
creasing the priority of a task could create problems, since
it would implicitly raise the relative priority of other tasks,
so also leading to an overload situation. If tasks interact
through shared resources, task priorities also affect the de-
lays caused by blocking on critical sections. If the kernel
uses a priority inheritance protocol for accessing shared re-
sources, changing the priority of a task at the “wrong” time
instant could interfere with the protocol and cause very un-
desirable effects, such as priority inversion [32]. This ex-
amples show that today’s commercial operating systems are
not suited for on-line adaptation because they do not pro-
vide explicit support for quality-of-service (QoS) manage-
ment.

4 Challenges and work directions

The most important mechanism in the operating system
affecting adaptiveness is scheduling. Unfortunately, how-
ever, the majority of today’s commercial operating systems
schedule tasks based on a single parameter, the priority. Re-
cent research on flexible scheduling showed that a single
parameter is not enough to express all the application re-
quirements. In order to provide effective support to QoS
management, modern operating systems should be:

� Reflective. That is, they should reflect the application
characteristics into a set of parameters, which can be
used by appropriate scheduling algorithms to optimize
system performance. For example, typical parameters
that may be useful for effective task management in-
clude deadlines, periodicity constraints, importance,
QoS values, computation time, and so on.

� Resource aware. That is, they should give the possi-
bility of partitioning the resources (e.g., the processor)
among the existing activities based on their computa-
tional requirements. Such a partitioning would enforce
a form of temporal protection that would prevent re-
ciprocal interference among the tasks during overload
conditions.

� Informative. That is, they should provide information
on the current state of execution to allow the imple-
mentation of adaptive management schemes at differ-
ent levels of the software architecture. Any difference
between the expected and the actual behavior of a com-
putation can be used to adjust system parameters and
achieve a better control of the performance.

To achieve these general objectives, further research is
needed in several areas. They are illustrated in the following
sections.
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Figure 1. Example of three tasks running under a
CPU reservation scheme implemented by a CBS.
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The problems caused by priorities, mentioned in Sec-
tion 3, could be solved by using a programming model that
enables the designer to explicitly control the resources as-
signed to a given activity at a given point in time. With
reservation-based scheduling, a task or subsystem receives a
real-time share of the system resources according to a given
allocation policy [27].

Notice that, from a timing point of view, receiving a frac-
tion of the processor is equivalent to executing on a private
processor running at reduced speed. As a consequence, this
approach isolates the execution of tasks running under re-
source reservations, thus protecting the other activities from
possible overruns (temporal protection).

Resource reservation can be efficiently implemented us-
ing a Constant Bandwidth Server (CBS) [2], which is a ser-
vice mechanism allocating a budget of �� units of time ev-
ery period ��. The ratio ����� is denoted as the server
bandwidth, defining the fraction of the CPU reserved to the
task.

If a task is handled by a CBS with bandwidth ��, it is
guaranteed that it will never demand more than its reserved
bandwidth, independently of its actual requests. This is
achieved by assigning each task a suitable (dynamic) dead-
line, computed as a function of the reserved bandwidth and
its actual requests. If a task requires to execute more than its
expected computation time, its deadline is postponed by the
server, so that its reserved bandwidth is never exceeded. As
a consequence, overruns occurring in a served task will only
delay that task, without stealing the bandwidth assigned to
other tasks, which are then isolated and protected from re-
ciprocal interference. In other words, the CBS acts as a filter
that reshapes the served task in a more uniform way. Figure
1 illustrates an example in which three tasks are scheduled
under a CPU reservation scheme.

Currently, reservation-based scheduling is focused on
the CPU only. However, a system wide approach is de-
manded, including other system resources, including mem-
ory, disk, and network. Pertinent research directions include

adding support for resource reservation schemes in embed-
ded systems. Here, a major challenge is to contain com-
putational overhead in the implementation. One of the few
existing kernels for small embedded systems supporting re-
source reservation is Erika Enterprise [17], developed by
Evidence S.r.l.

A further step in this area is providing a notion for real-
time contracts that includes the rights and duties of the in-
volved parties in a detailed way.
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Although the resource reservation paradigm may solve
many problems related to priority-based scheduling, its be-
havior heavily depends on a balanced allocation of the avail-
able resources to the application tasks. In fact, if the amount
of resource reserved to a task is less than required, that task
will slow down too much, decreasing system performance.
Conversely, if the amount of resource reserved to a task is
too high, resources are wasted and the system will run with
low efficiency (increasing the overall cost of the applica-
tion).

However, providing an exact estimation of the resources
needed by each system activity is a non trivial job, which re-
quires heavy execution tests and specific tools for code anal-
ysis. Nevertheless, the resulting estimations are usually af-
fected by large errors (up to 20%). Therefore, an additional
runtime reclaiming mechanism is required in the kernel to
cope with wrong or imprecise resource reservations. The
idea behind resource reclaiming is quite simple: whenever
a task completes earlier than expected, so leaving part of a
resource unused, this part is temporally kept in the system
to be given to other tasks that may require more bandwidth.

It is worth observing, however, that resource reclaiming
is an on-line mechanism that exploits early completions,
hence it cannot always compensate for reservation errors.
In the average, resource reclaiming is quite effective for
compensating for small reservation errors, but it does not
represent the solution for coping with large and systematic
deviations in the execution behavior of computational activ-
ities. A few examples of reclaiming algorithms have been
proposed in the literature [25, 9, 16, 23].
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��	�
��� 	����
��� ��� 
��
	��

When application tasks have an extremely variable and
unpredictable execution behavior, feedback control theory
can be used to estimate the current workload conditions and
perform proper parameter tuning [35]. Integration of real-
time and control theory just begun to be studied and is a
promising research area. The advantage of such an integra-
tion is twofold. From one hand, feedback control schemes
can be used in the kernel to make the system more adap-
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tive to unpredictable changes. On the other hand, real-time
theory and schedulability analysis can be also considered
during the design of control systems, to take into account
jitter and delays introduced in control loops by resource
contention and concurrent execution.

In the traditional approach to the analysis and design of
computer control systems, controllers are assumed to exe-
cute in dedicated processors and these are assumed to be
fast and predictable enough to meet all the application re-
quirements. However, when resources such as processor
time or network bandwidth are limited, the analysis and de-
sign of computer control systems is a challenging task: the
resource limitations must be taken into account in the con-
troller design stage, or the controlled system may exhibit
unexpected behavior.

For example, the criteria for scheduling tasks on proces-
sors influences the timing of all tasks and can thus intro-
duce timing variability (jitter) in the execution of control
loops. These timing variations in the execution of control
algorithms - which are allowed as long as the schedulabil-
ity constraints are preserved - affect performance and pos-
sibly cause instability. This degradation appears because
the controller execution violates the timing assumptions of
classical discrete-time controller design theory, equidistant
sampling and actuation.

On the other hand, trying to reduce jitter for control
tasks by over-constraining the control task specification
(e.g. by very tight deadlines) reduces the degradation of
the controlled systems, but at the expense of finding feasi-
ble scheduling solutions for the entire task set.

These kinds of problems can be addressed using a com-
bination of control and real-time scheduling principles. In-
stead of separating the two aspects during design, control
design and computer implementation have to be jointly con-
sidered early in the design. A number of algorithms to com-
bine real-time and control have been presented in the liter-
ature in both areas of research, with different perspectives
and objectives.

��� �������� �
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Novel applications combine various types of tasks and
constraints within the same system. The requirements on
tasks may also change dynamically. While off-line guar-
antees are still essential for meeting minimum performance
levels, different types of requirements and runtime changes
are included in the system analysis, such as demands on
quality of service (QoS) or acceptance probabilities. Algo-
rithms might even change during system’s runtime to better
adapt to environment variations. In such a new scenario, the
basic assumptions made on the classical scheduling theory
are no longer valid. New approaches are needed to han-
dle these situations in a predictable fashion. They should

enforce timing constraints with a certain degree of flexibil-
ity, aimed at achieving the desired trade-off between pre-
dictable performance and efficient use of resources [14].

Flexible scheduling is an underlying theme to most novel
scheduling trends which go beyond the standard model of
completely known tasks with timing constraints expressed
as periods and deadline. Many applications areas, notably
for control and media processing, have timing requirements
which cannot be expressed only by deadlines and periods.
As a consequence, scheduling algorithms should consider
more flexible ways of expressing temporal constraints, to
meet the demands of application level requirements rather
than system models.

Issues addressed include probabilistic parameters [1,
12], handling of applications with only partially known
properties [22], relaxed constraints, coexistence of activi-
ties with diverse properties and demands in a system, com-
binations of scheduling schemes, and adaptive scheduling
schemes.

While individual algorithms have been proposed to adapt
scheduling parameters to changes in application demands,
a systematic approach is needed to identify changes in the
application, distinguish them between temporary and struc-
tural variations, and adjust the scheduling parameters to de-
termine a proper system response.

��� ���	�	
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Today’s computers are powerful enough to execute mul-
tiple applications at the same time. This may require parti-
tioning the processor into several “virtual” machines, each
with a proper fraction of computation power and schedul-
ing algorithm. When different scheduling schemes are de-
manded in the same computer, the analysis of the entire sys-
tem becomes complex and more theoretical work is needed
for providing guarantee tests of multiple concurrent appli-
cations.

Hierarchical scheduling means that there is not just one
scheduling algorithm for a given resource, but a hierarchy
of schedulers. The tasks in the system are hierarchically
grouped. The root of the hierarchy is the complete system;
the leaves of the hierarchy are the individual tasks. At each
node in the hierarchy, a scheduling algorithm schedules the
children of that node. The practical value of a two level-
hierarchy is immediately obvious: intermediate nodes are
applications that are independently developed and/or inde-
pendently loaded. If the root scheduler provides guaran-
teed resource reservation and temporal isolation, the appli-
cations can (with some additional precautions) be viewed
to be running on private processors. There are two very
distinct real-time processing domains where some form of
hierarchical scheduling is proposed: one is the area of soft
real-time in personal computers; the other is the area of cer-
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tified hard real-time systems. In the first domain, several
frameworks [18, 19, 3, 30, 36] have been proposed for deter-
ministic soft real-time scheduler composition. In the second
domain, ARINC [5] proposes a root scheduler that provides
time slots in a recalculated schedule. In other proposals, the
root scheduler provides some form of guaranteed bandwidth
allocation [24, 28].

�� !��	���� ��������

Predictability in dynamic systems is strictly related to
the capability of controlling the incoming workload to pre-
vent overload conditions. In fact, when the computation
exceeds the processor capabilities, breakdown phenomena
may cause abrupt performance degradation. Computational
workload can be controlled using different techniques, each
requiring deeper investigation.

� Selection of different QoS levels. Some computations
can be performed using different algorithms with dif-
ferent execution requirements, hence leading to results
with different quality. In other cases, the precision
(hence, the quality) of a result can be enhanced by in-
creasing the number of steps of an iterative solution.
Hence, the workload can be controlled by selecting the
proper quality level for each system activity.

� Adjustable timing constraints. In a real-time system,
the workload depends not only on the amount of com-
putation arriving per each unit of time, but also on the
timing constraints associated with the computations.
Hence, another way to react to overloads is to relax the
timing constraints of the application tasks in the pres-
ence of high computational requirements. For periodic
tasks, the load can be reduced by enlarging the periods
[13], but more work is needed to deal with generic task
sets with arbitrary deadlines.

� Admission control. A third way to control the load is
to filter the incoming requests of computation. This
solution is the most drastic one, because it solves the
overload by rejecting one or more tasks. However, ad-
ditional research is needed to evaluate the effect of a
rejection on the overall system performance.

��" ���	�#��$�	� �
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In battery-powered devices, reducing energy consump-
tion is crucial for increasing system lifetime. Modern pro-
cessors can operate at variable voltage/frequency levels for
trading performance vs. energy consumption. In real-time
systems, however, decreasing voltage prolongs task execu-
tion and may cause deadline misses; hence, future schedul-
ing algorithms must take voltage into account to meet tim-
ing constraints while minimizing energy consumption.

The majority of scheduling algorithms with energy con-
siderations mainly concentrates on the CPU, integrating dy-
namic voltage scaling into the scheduling problem. How-
ever, the CPU is only one resource consuming power. Other
components, like memory, disk, communication devices,
and input/output peripherals, are not yet considered by the
theory. Hence, new approaches for a system wide energy
view are needed. In particular, the “energy overhead” of
the scheduling algorithm with respect to CPU and memory
should also be considered.

Applying dynamic voltage scaling techniques to control
energy consumption causes also other problems in real-time
systems. In fact, in the presence of timing and resource
constraints, the performance of a real-time system does not
always improve as the speed of the processor is increased.
Similarly, when reducing the processor speed, the quality of
the delivered service may not always degrade as expected
[15]. To prevent these problems, new approaches need to
be investigated to allow the development of real-time ap-
plications whose performance can be scaled in a controlled
fashion as a function of the processor speed.

��% &�	
�����
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With the constant evolution of hardware, portability is
also a very important issue, necessary to run applications
developed for a particular platform into new hardware plat-
forms. The use of standard programming interfaces opens
the door to the possibility of having several operating sys-
tem providers for a single application, and promotes com-
petition among vendors, thus increasing quality and value.

Current operating system standards mostly specify
portability at the source code level, requiring the application
developer to recompile the application for every different
platform. There are four main operating system standards
available today:

� RT-POSIX, which is the main general-purpose operat-
ing system standard, with real-time extensions;

� OSEK, for the automotive industry;

� APEX, for avionics systems;

� �ITRON, for small embedded systems.

However, extensions are needed in these standards to
support application-defined scheduling services and facil-
itate the evolution from fixed-priority scheduling towards
more flexible scheduling algorithms. This additional flexi-
bility is necessary to provide better support to systems with
quality of service requirements, even though it is expected
that most of the services required by these systems will con-
tinue to be implemented in a specialized middleware layer.
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Modelling plays a central role in systems engineering.
The existence of modelling techniques is a basis for rigor-
ous design and should drastically simplify validation. In
current industrial practice, models are essentially used only
at the early phases of system design and at a high level of
abstraction. Requirements and design constraints are spread
out and they do not easily carry through the entire develop-
ment lifecycle. Validation of large real-time applications is
mainly done by experimentation and measurement on spe-
cific platforms, in order to adjust design parameters and,
hopefully, achieve conformity with requirements. Thus, ex-
perimenting with different architectures and execution plat-
forms becomes error-prone.

The use of models can profitably replace experimenta-
tion on actual systems with incomparable advantages, such
as:

� Enhanced modifiability of the system parameters;

� Ease of construction by integration of models of het-
erogeneous components;

� Generality by using abstraction and behavioural non-
determinism;

� Predictability analysis by application of formal meth-
ods.

Modelling methodologies should be closely related to
implementation methodologies for building correct real-
time systems as a sequence of steps involving both the de-
velopment of software components and their integration in
an execution and communication platform. These method-
ologies should support end-to-end constraints at every step
in the design process and provide means to automatically
propagate them down to the implementation. To be useful
in practice, they should be accompanied by the development
of appropriate middleware, QoS management support, and
validation tools.

Modelling systems in the large is an important research
topic in both academia and industry [33]. Several trends can
be identified in this area:

� One line of research consists of the so-called model-
based approaches. This research groups the study of
unified frameworks for integrating different models
of computation [21], languages [20] and abstraction-
based design methodologies [11].

� A key issue in a modelling methodology is the
use of adequate operators to compose heterogeneous
schedulers (e.g., synchronous, asynchronous, event-
triggered, or time-triggered). For this reason, some re-
searchers propose model-based theories for composing
scheduling policies [4].

� Another challenge consists in adequately relating the
functional and non-functional requirements of the ap-
plication software with the underlying execution plat-
form. There are two current approaches to this prob-
lem:

1. One relies on architecture description languages
that provide means to relate software and hard-
ware components (e.g., MetaH [10]).

2. The other is based on the formal verification of
automata-based models automatically generated
from software and appropriately annotated with
timing constraints (e.g., Taxys [8, 34]).

� Nevertheless, building models that faithfully represent
real-time systems is not a trivial problem and still re-
quires a great amount of theoretical and experimental
research.

���) *�$�	�� 
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Another promising research area is to adopt a
component-based design paradigm at the kernel level. The
use of component-based operating systems would allow the
designer to quickly configure the kernel for a specific appli-
cation just by combining existing modules, thus speeding
up the development process and optimizing efficiency for
the required functionality.

Today, software modularity allows the same system to be
assembled in several incremental configurations, with dif-
ferent features and functionality. For example, the POSIX
standard, specifies four real-time profiles [29]:

� Minimal Real-Time System profile (PSE51). This
profile is intended for small embedded systems and can
be implemented with a few thousand lines of code and
with memory footprints in the tens of kilobytes range.
Processes are not supported and there is not a complete
file system (input/output is possible through predefined
device files).

� Real-Time Controller profile (PSE52). It is similar
to the PSE51 profile, with the addition of a file system
in which regular files can be created, read, or written.
It is intended for systems like a robot controller, which
may need support for a simplified file system.

� Dedicated Real-Time System profile (PSE53). It is
intended for large embedded systems (e.g., avionics)
and extends the PSE52 profile with the support for
multiple processes that operate with protection bound-
aries.

� Multi-purpose Real-Time System profile (PSE54).
It is intended for general-purpose computing systems
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running applications with real-time and non-real-time
requirements. It requires all of the POSIX functional-
ity for general purpose systems and, in addition, most
of the real-time services.

However, this level of modularity does not allow the user
to replace an internal kernel mechanism with another one
with the same interface, nor replacing a mechanism without
changing the application. This happens because all kernel
mechanisms have strong inter-dependencies and are usually
developed on the basis of other internal features. For ex-
ample, typical implementations of the Priority Inheritance
Protocol [32] strongly rely on a fixed priority scheduler
and cannot be used under deadline-based scheduling algo-
rithms.

A true component-based approach should separate
mechanisms from policies in order to replace a scheduling
algorithm or a resource management protocol without af-
fecting the applications and the others components. In addi-
tion, it should allow a safe combination of different schedul-
ing disciplines to support the development of hierarchical
software architectures.

There would be several benefits in adopting a
component-based approach at the operating system level.
First of all, it would be possible to enhance the function-
ality of the kernel by adding new blocks, depending of the
application requirements, so tailoring the kernel to the spe-
cific system to be developed. Secondly, it would facilitate
and speed up the integration of novel research results, which
could increase efficiency and/or predicability. Finally, it
would simplify the process of porting the kernel on different
platforms, so reducing the time to market and the develop-
ment costs on upgrades (since only small parts should be
developed). However, there are several practical and theo-
retical problems to be solved, since most of the mechanisms
implemented in a kernel (like scheduling, resource proto-
cols, interrupt handling, aperiodic servers, synchronization
and communication) heavily interact with each other and
have a high degree of inter-dependencies.

Specific research in this area should provide methods for
decoupling scheduling algorithms from applications, sep-
arating scheduling mechanisms from scheduling policies,
separating scheduling algorithms from resource manage-
ment protocols, and, finally, guaranteeing a safe integration
of resource reservation with resource management proto-
cols.

5 Conclusions

In the last 30 years, embedded systems experienced an
exponential growth in many application domains, both in
terms of number and complexity. Surprisingly, however,
such a growth in complexity was not followed by a corre-
sponding evolution of the control software used to manage

the computational resources, which is substantially similar
to that adopted in the early 70s. In fact, application activi-
ties are still handled by cyclic executives or, in the best case,
by fixed priority kernels. The problem is not due to a lack
of alternatives, but more that nobody has been able to make
a convincing case for a transition. Every attempt to raise the
level of abstraction has included unacceptable penalties in
terms of memory and speed. Also from an industrial per-
spective, the support for legacy code has often been weak.

The possibilities for embedded systems to evolve and be-
come more reliable, while yet more complex, to some ex-
tent depend on what the next generation real-time operat-
ing systems and implementation tools have to offer. The
challenge is how to implement applications that can exe-
cute efficiently on limited resources, to meet non-functional
requirements, such as timeliness, robustness, dependability,
and performance.

Proper resource and quality-of-service management
would enable the implementation of embedded systems that
are more flexible, yet more deterministic, than it is possible
today. Since such systems would be better specified, their
properties would also be verified more easily. By support-
ing explicit resource allocation and quality-of-service func-
tionality, the system designers would regain control over the
system they are set to design.

To effectively assign system resources among applica-
tions and achieve predictability and flexibility, a number of
issues should be further investigated. At the higher abstrac-
tion level, protocols for managing quality levels and suit-
able architectures should be used to obtain flexible systems.
At a lower level, further work on resource management al-
gorithms, new task models, admission control, monitoring,
and adaptation algorithms should be done.

Also, a promising research area consists in developing
hybrid methods, which integrate two complementary types
of adaptation strategies: one embedded in the application
and the other performed by a QoS manager. Such an in-
tegration can be done by controlling the CPU bandwidth
reserved to a task, but allowing each task to change its QoS
requirements if the amount of reserved resources is not suf-
ficient to accomplish the goal within a desired deadline.
Using such an integrated approach, the QoS adaptation is
performed in a task-specific fashion: each task can react to
overloads in a different way and use different techniques to
scale down its resource requirements. On the other hand,
if a task does not react adequately to a lack of resources,
the scheduler will slow it down in order not to influence the
other tasks.

As a conclusion, the following recommendations for re-
search emerge in the area of real-time operating systems for
embedded applications:

� Flexible scheduling services. The complexity of mod-
ern applications requires more flexibility in schedul-
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ing than just fixed priorities. Defining APIs that could
make the scheduler a pluggable and interchangeable
object seems the most promising research direction.

� Protection. One way of managing the complexity of
applications is by providing appropriate levels of pro-
tection, both in space (memory) and time. The time
protection mechanisms specified in some standards,
like OSEK or ARINC, are somehow too rigid, and
there are needs to make this protection more flexible
but still effective.

� Dynamicity. The complexity of applications requires
moving from statically designed applications to a more
dynamic environment where the application compo-
nents can be changed on-line. Research is needed on
methods and new APIs are needed for effective on-line
admission tests and dynamic resource reservation.

� Quality of service. There is a need for middleware that
allows the application to define quality of service re-
quirements, using some contract mechanism that lets
the application specify its minimum and desired re-
quirements, so if the implementation accepts the con-
tract it can guarantee the minimum requirements and
try to provide the desired ones. To implement this
middleware, there is a need to develop techniques and
APIs at the operating system level to perform load
adaptation, monitoring and budgeting of the system re-
sources.

� Multiprocessor support. Predictability of the timing
behavior in multiprocessor systems is still a research
issue. Most multiprocessor real-time systems today re-
quire static allocation of threads to processors.

� Drivers. Portability of drivers for real-time applica-
tions is an open issue. There is a need for extending
current APIs for portable drivers to support real-time
requirements.

� Networks. There are few real-time networks and pro-
tocols, and the support for them in operating systems
is very limited. There is a need to develop protocol-
independent APIs that let a distributed application de-
fine its timing requirements for the network and the
remote services.

� Modeling. There is a need to develop precise mod-
els of the timing behavior of the operating system ser-
vices, which could be used in timing analysis tools. It
would be useful to have automatic procedures to obtain
the timing model of any operating system on a given
platform.
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