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Abstract

At early stages in the design of real-time embedded ap-
plications, the timing attributes of the computational activ-
ities are often incompletely specified or subject to changes.
Later in the development cycle, schedulability analysis can
be used to check the feasibility of the task set. However, the
knowledge of the worst-case response times of tasks is often
not sufficient to precisely determine the actions that would
correct a non-schedulable design. In these situations, sensi-
tivity analysis provides useful information for changing the
implementation, by giving a measure of those computation
times that must be reduced to achieve feasibility, or those
that can be increased in case of a product extension, or pro-
viding the range of feasible periods for selecting the proper
task activation rates.

In this work, we exploit the concept of feasibility region
to propose a faster and more concise solution to the sen-
sitivity analysis problem with respect to existing techniques
based on binary search. Furthermore, we show how the for-
malization of other problems in the feasibility domain, such
as managing overloads through elastic scheduling, can be
extended to the exact analysis.

1. Introduction

Schedulability theory can be used at design time for
checking the timing constraints of a real-time system,
whenever a model of its software architecture is avail-
able. In specific cases, standard schedulability analysis
techniques can significantly shorten the development cycle
and reduce the time to market. Experiences on real-world
applications show that design time validation of the schedu-
lability properties can save over 50% of the time needed
for the whole design process [22], by simply pruning non-
feasible solutions from the design space.

In many cases, however, the system is characterized by a
high degree of heterogeneity and uncertainty, which makes
the use of standard schedulability analysis much less prof-
itable. Uncertainty is tackled through a set of simplifica-
tions, typically based on worst-case assumptions, which
make the system tractable at the price of an abundant re-
source allocation. Most schedulability analysis tools use a
simplified view of the software architecture, which is mod-

eled through a set of tasks, each characterized by a tuple
(Ci, Ti, Di) specifying its worst-case computation time, pe-
riod and deadline, respectively. Determining the values of
these task parameters is not trivial, because in real systems,
external events and computation times are often character-
ized by a high degree of uncertainty.

Based on this model, companies such as TimeSys and
TriPacific (among others) produce tools to be used at design
time to check the timing properties of a real-time applica-
tion. These tools can act as plugins for design environments,
such as the IBM Rational Rose Technical Developer. Other
vendors (ARTISAN and ILogix, among those) feature their
own sets of tools/utilities for checking the schedulability of
a real-time design.

In order to cope with heterogeneity, research efforts have
been devoted to propose models that provide enough ex-
pressive power for the definition of the semantics of task
activation, communication and synchronization, and possi-
bly avoid the excessive simplification of modeling the exe-
cution time with a single attribute. Extensions of the model
based on the triple (Ci, Ti, Di) have been proposed to add
flexibility and reduce pessimism. For example, the multi-
frame task model proposed by Mok [16] allows the user
to specify different execution times for different task in-
stances, through a sequence of numbers. The generalized
multi-frame task model [3] adds explicit deadlines to the
multi-frame model and allows assigning distinct minimum
separation values to the instances inside a multi-frame cy-
cle. The recurring task model defined by Baruah [2] allows
modeling restricted forms of conditional real-time code and
control flows.

To relax the pessimistic assumptions typically made in
the evaluation of the task set attributes, some authors [6, 14]
proposed a probabilistic model for task execution times and
activations, which can be used to analyze soft real-time ap-
plications. Feasibility tests for these models are derived by
applying stochastic analysis techniques and provide a prob-
ability for each task to meet its deadline.

Besides pessimism and insufficient flexibility, there is at
least another problem with most current analysis method-
ologies: no informative result is provided to assist the de-
signer in understanding how a change in the task parame-
ters would affect the feasibility of the system. To be use-
ful, the output of a schedulability analyzer should highlight
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the amount of lateness or slack available in each thread to
plan for a corrective action. Desirable or allowable changes
should be precisely expressed and measurable.

Information on how modifications of the task parame-
ters may affect the system is indeed provided by sensitivity
analysis, which is a generalization of feasibility analysis.
In the definition of a new product, sensitivity analysis may
be applied to a system model where computation times are
defined with a degree of uncertainty. When a system imple-
mentation already exists, it can be used to define the bounds
for possible function extensions. In both cases, starting
from a feasible task set, sensitivity analysis provides the ex-
act amount of change affordable in task computation times
or periods to keep the task set feasible.

If the task set is not feasible, sensitivity analysis provides
a quantitative indication of the actions required to bring the
system back into a feasible state. If a system is not schedu-
lable, there can be many causes and remedies: insufficient
computing power from the CPU; excessive computational
load from one or more real-time tasks, thereby requesting a
faster (hence, often simpler and less accurate) implemen-
tation; excessive usage of shared resources; and, finally,
too short periods for the execution of periodic tasks, which
could be increased at the price of a performance degrada-
tion.

Being a generalization of feasibility analysis, sensitiv-
ity analysis heavily borrows from existing results. The
most popular among them is the Response Time Analy-
sis (RTA) [11, 1]. Although alternative efficient techniques
have been proposed in the literature [4], RTA is currently the
most adopted technique for deciding upon the schedulabil-
ity of a task set, since it provides a necessary and sufficient
condition. Efforts have been devoted to reduce its average
complexity [21] and extend its applicability to more general
task models [17]. Unfortunately, however, RTA is unfit for
sensitivity analysis since it provides an aggregate value as
the result of the application of a non invertible (and discon-
tinuous) function to the task parameters.

1.1. A motivating example

In the following, we illustrate a simple example that
highlights the main problem of RTA. Figure 1(a) shows
the schedule generated by the Rate Monotonic algorithm
on four periodic tasks, whose parameters (Ci, Ti) are indi-
cated in the figure (relative deadlines are equal to periods).
We are interested in computing, for example, the admissible
values for the computation time C1 of the highest priority
task τ1 such that the response time R4 of the fourth task τ4

does not exceed its deadline D4, equal to 32.
The initial estimate for C1 is 1 unit of time, which makes

the task set schedulable and lets the lowest priority task τ4

complete at time t = 24. Unfortunately, the 8 units of slack
of τ4 do not guarantee a robust design against changes in the

computation time and/or period of the other tasks. In fact,
even a small increase in the computation time of any task
(suppose, for example C1 = 1.01) leads to a non feasible
schedule, with the completion time of τ4 equal to at least 34
units of time. Similarly, a small decrease in the periods of
tasks τ1 or τ2 would compromise schedulability.

As shown in Figure 1(b), the response time of task τ4,
denoted by R4, is a discontinuous function of the computa-
tion time of the highest priority task, and it is impossible to
analytically invert this relation to compute the exact value
of C1 that would allow R4 to match the deadline of τ4.
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Figure 1. (a) RM schedule of 4 periodic tasks.
(b) Response time R4 as a function of C1.

Discontinuities in the response time functions for sys-
tem tasks are the main reason why response-time analysis
is ill-fit for sensitivity analysis, except possibly by applying
a binary search algorithm, which requires an estimate of the
initial bounds and the evaluation of the response times of all
tasks at each step.

1.2. Related Work

Most of the existing solutions to the sensitivity problem
have been provided in the domain of computation times.
Early solutions to the sensitivity analysis problem can be
traced back to the evaluation of the breakdown utiliza-
tion [12], where the critical scaling factor is computed for a
fixed-priority scheduled system as the largest possible scal-
ing value for task execution times still allowing the feasibil-
ity of the set.

The approach was later extended by Vestal [24], who
addressed sensitivity analysis of fixed priority task sets by
introducing slack variables in the exact feasibility equa-
tions defined in [12] and solving the corresponding equal-
ity conditions. The approach suffers from the possibly very
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large number of conditions to be evaluated according to [12]
and assumes deadlines equal to periods. Other techniques
for sensitivity analysis are based on binary search over the
schedulability property defined by Lehoczky [12], or other
formulations of the algorithm for computing the response
time of a task [18, 23].

In the context of distributed scheduling, a system-level
sensitivity analysis of the task computation times against
end-to-end deadlines has been proposed [19]. The method
is based on binary search and has been implemented in com-
mercial tools by SymTAVision [10]. A problem of this
method is that it performs a feasibility test at each itera-
tion of the binary search, making the resulting complex-
ity considerably high. Our algorithm does not suffer from
this drawback, because it is as complex as a feasibility test.
This greater simplicity comes at the price of a simpler task
model. Other tools offering a built-in sensitivity analysis
engine are RTA-OSEK by ETAS (formerly LiveDevices)
and the analysis tool in MAST [15].

In this paper we present a new type of sensitivity analysis
that exploits the concept of feasibility region in the domain
of the task variables, as introduced in [4, 5]. By measuring
the distance of a task configuration, expressed as a point in
the space of the task variables, from the region delimiting
the set of the feasible tasks, we can provide the variations
that are required on each design parameter, if taken sepa-
rately, for bringing the task set back into the schedulability
region or for changing some parameters while preserving
feasibility.

Unlike previous work, our sensitivity analysis also ap-
plies to the domain of task periods, providing a theoretical
support for those control systems that perform rate adapta-
tion to cope with overload conditions [7, 8]. Moreover, it
addresses very practical design issues, such as finding the
fastest execution rate that can be assigned to one or more
critical control loops. Alternatively, when fixing the defects
of a non-schedulable configuration, it provides a measure of
the required relaxation in the execution rate of one or more
tasks to make the set schedulable.

The rest of the paper is organized as follows: Section 2
introduces the terminology and the system model; Section 3
describes the notion of feasibility region; Section 4 and 5
describe the sensitivity analysis of the computation times
and the periods respectively; Section 6 provides an example
of application, whereas Section 7 discusses the implemen-
tation of the proposed techniques in available tools; finally
Section 8 states our conclusions and future work.

2. Terminology and System Model
In this paper, we assume that an application consists of a

set T = {τ1, τ2, . . . , τN} of N real-time tasks running on a
uniprocessor system. Each task τi is characterized by a pe-
riod Ti, a worst-case execution time Ci and a relative dead-

line Di. The notion of normalized deadline δi = Di/Ti

and activation rate fi = 1
Ti

are often used throughout the
paper. Moreover, bold letters are used to denote vectors of
parameters, such as T = (T1, . . . , TN), f = (f1, . . . , fN),
and C = (C1, . . . , CN ). Note that the task set utilization U
can be written by the dot product C ·f . Finally, the response
time [11, 1] of task τi is denoted by Ri.

Tasks are scheduled by a fixed priority scheduler (not
necessarily Rate Monotonic) and they are ordered by de-
creasing priorities, meaning that τ1 has the highest priority,
and τn the lowest one. The set of the first i higher prior-
ity tasks is denoted by Ti = {τ1, . . . , τi}, and the corre-
sponding vectors of computation times, periods, and rates
are denoted by Ci, Ti, and fi, respectively. We consider
the general case of deadlines less than or equal to periods,
meaning that 0 < δi ≤ 1.

Each periodic task τi is considered as an infinite se-
quence of jobs τi,j , where each job τi,j is activated at time
ai,j = (j − 1)Ti and must be completed by its absolute
deadline di,j = ai,j + Di.

Task execution is modeled by the linear compute time
model introduced by Vestal [24] because of its general-
ity and its aptness at representing real-world applications.
Within this framework, the computation time of each task
consists of a set of software modules (or procedures) that
are called by the task to perform its computations. If
there is a set of M software modules in the system M =
{μ1, μ2, . . . , μM}, and each module μj is characterized by
a worst-case computation time mj , the execution time of
each task can be expressed as a linear combination of the
mj values:⎡
⎢⎢⎢⎣

C1

C2

...
CN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1,1 a1,2 · · · a1,M

a2,1 a2,2 · · · a2,M

...
. . .

...
aN,1 aN,2 · · · aN,M

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

m1

m2

...
mM

⎤
⎥⎥⎥⎦

or, in a more compact expression,

C = A ·m (1)

where A is the N × M array of the ai,j coefficients. No-
tice that the computation model expressed in Equation (1)
is a generalization of the classical “Ci’s” model, obtainable
by simply setting A equal to the identity. Each ai,j can be
conveniently thought as the product of an integer term xi,j ,
expressing the number of times module mj is invoked by
τi, and a real part αi,j expressing other architecture-related
issues. For example, the model is suited for power-aware
speed scaling operations if the αi,j terms in a given row rep-
resent the reciprocal of the processor speed selected for τi.

Finally, whenever some variation is applied to the task
set T , the altered task set will be denoted by T ′. For exam-
ple, if computation times are modified by an amount ΔC,
then the new computation times of the modified set T ′ are
denoted as C′ = C + ΔC.
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3. Feasibility region
The options available for sensitivity analysis can be bet-

ter understood in the context of a new representation of the
feasibility condition as a region defined in the space of those
task attributes X considered as design variables. More for-
mally the feasibility region can be defined as follows.

Definition 1 Let X be the set of design variables for a task
set T . Then, the feasibility region in the X-space is the set
of values of X such that T is feasible.

In this work, the schedulability region will be defined in
the space of the worst-case computation times (X = C),
referred to as the C-space, and in the space of the task rates
(X = f ), referred to as the f -space.

This paper provides theory and algorithms for measur-
ing the distance of a scheduling solution from the boundary
of the feasibility region, when a fixed-priority scheduler is
adopted. Such a distance, expressed in the C-space or in
the f -space, is an exact measure of the available slack or,
conversely, of the correcting actions that must be taken on
the computation times or on the activation rates to make the
system schedulable.

For models that can be analyzed by a simple utilization-
based test, the feasibility region is defined by the well
known bound [13]

C · f ≤ UA
lub

where UA
lub is the least upper bound of the algorithm A con-

sidered for scheduling the set of tasks.
As it will be shown later, the feasibility region both in

the C-space and in the f -space is delimited by hyperplanes
and the positive quadrant.

3.1. Feasibility region in the C-space

When working in the C-space, we assume that the design
variables are only the task computation times, whereas the
periods and the deadlines are fixed.

The schedulability condition formulated by Bini and
Buttazzo [4] (originally proposed by Lehoczky et al. [12]),
can be conveniently used to establish a relationship between
the task set parameters, from which the feasible values of
computation times Ci can be inferred.

Theorem 1 (from [4]) A periodic task set T is schedulable
under fixed priorities if and only if

∀i = 1, . . . , N ∃t ∈ schedPi Ci +
i−1∑
j=1

⌈
t

Tj

⌉
Cj ≤ t

(2)
where schedPi is a set of schedulability points defined as
schedPi = Pi−1(Di), and Pi(t) is defined as follows{

P0(t) = {t}
Pi(t) = Pi−1

(⌊
t

Ti

⌋)
∪ Pi−1(t)

(3)

By using the more compact vectorial notation and some log-
ical operators, the Eq. (2) can be rewritten as∧

i=1,...,N

∨
t∈schedPi

ni ·Ci ≤ t (4)

where ni =
(⌈

t
T1

⌉
,
⌈

t
T2

⌉
, . . . ,

⌈
t

Ti−1

⌉
, 1
)

.

Equation (4) represents the feasibility region in the C-
space. Notice that the computation times C are subject to a
combination of linear constraints.

An example of the feasibility region for two tasks in the
C-space is shown later in Section 4, where we will show
how the feasibility region can be exploited to perform sen-
sitivity analysis.

3.2. Feasibility region in the f -space

When reasoning in the f -space the design variables are
the task frequencies f , whereas the computation times C
and the normalized deadlines are fixed.

The formal definition of the feasibility region in the f -
space can be conveniently derived from the schedulability
condition provided by Seto et al. [20] and later explicitly
formalized in [5].
Theorem 2 (from [20, 5]) A periodic task set T is schedu-
lable under fixed priorities if and only if

∀i = 1, . . . , N ∃ni−1 ∈ N
i−1 (5)

such that:⎧⎪⎪⎨
⎪⎪⎩

0 ≤ fi ≤
δi

Ci + ni−1 · Ci−1

ni−1 − 1
Ci + ni−1 ·Ci−1

≤ fi−1 ≤ ni−1

Ci + ni−1 ·Ci−1

(6)

where N
i−1 is the set of i − 1 tuples of positive integers.

For each vector ni−1, each task activation frequency fj

has an upper and lower bound defining an N -dimensional
parallelepiped. Hence, the feasibility region in the f -space
is given by the union of the parallelepipeds corresponding
to all the possible tuples ni−1.

To better understand the insight behind Theorem 2, the
feasibility region in the f -space for a set of two tasks is
illustrated in Figure 2. The graph is obtained for C1 = 1
and C2 = 2 and deadlines equal to periods. For two tasks,
the region is the union of rectangles given by Equations (6)
for each possible value of n1.

The EDF bound is also plotted in the figure (dashed line).
In the f -space it is a linear constraint, which is, as expected,
larger than the fixed priority region.

The next section explains how the sensitivity analysis
can be performed based on the feasibility region.

4. Sensitivity analysis in the C-space
As discussed above, it is very important to know the

range of admissible variations of the computation times, be-
cause it often happens that the designer can select among
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Figure 2. Feasibility region in the f -space.

different implementations for the same functionality, corre-
sponding to different computation times.

From the computation model expressed in Equation (1),
it follows that the action that the designer would undertake
by altering the module implementation (so affecting the mj

value) is a linear scaling of the computation times. More
formally, the modified computation times C′ can be ex-
pressed as

C′ = C + λd (7)

where d is a non-negative vector setting the direction of ac-
tion and λ measures the amount of variation imposed on the
original task set. Notice that we expect λ ≥ 0 if the original
task set was schedulable, and λ < 0 if the task set was not
schedulable. Moreover, since the only action examined in
this section is a modification of the computation times, we
assume T′ = T, meaning that the periods are not modified.

A significant case occurs when d = C, which means that
the direction of the action is equal to the computation times,
which is equivalent to scaling all the computation times by
the same factor. Another interesting action is to change only
the ith computation time, leaving the others unchanged. It
corresponds to the direction d = (0, . . . , 0, 1, 0, . . . , 0) of
all zeros and a 1 in the ith position.

Once the direction d is defined by the designer, the
amount λ of admissible change can be found by apply-
ing the necessary and sufficient schedulability condition of
Eq. (2) to the modified task set T ′. If we denote the first i
elements of d by di, then T ′ is schedulable if and only if∧

i=1,...,N

∨
t∈schedPi

ni · C′
i ≤ t

∧
i=1,...,N

∨
t∈schedPi

ni · (Ci + λdi) ≤ t

λ ≤ min
i=1,...,N

max
t∈schedPi

t − ni ·Ci

ni · di
� λmax (8)

which provides the amount of admissible linear alteration
along the generic direction d. As expected, if the origi-
nal task set T is schedulable, then λmax ≥ 0; whereas,
if T is not schedulable, there exists an i such that for all
t ∈ schedPi the numerator is always negative and hence
λmax is negative as well. Relevant applications of Eq. (8)
are discussed in the following.

Distance along the axes Given T , it is interesting to find
the amount of computation time variation that can be added
(when T is schedulable) or subtracted (T not schedulable)
to the computation time of task τk to guarantee the schedu-
lability of the task set. These values can be obtained from
Eq. (8) after deciding the direction d. Suppose we are
changing the computation time Ck of task τk. This means
that the direction of action is d = (0, . . . , 0, 1, 0, . . . , 0),
where the only 1 in the vector is at the kth position. In order
to relate this value to the task τk we refer to it as ΔCk.

When searching for ΔCk , we assume that all the higher
priority tasks in Tk−1 are schedulable. In fact, they are not
affected by any variation of task τk, hence no solution could
be found for ΔCk if T ′

k−1 were unschedulable. This means
that the schedulability must be ensured only for the tasks
from the kth to the N th.

From Eq. (8) we have

ΔCmax
k = min

i=k,...,N
max

t∈schedPi

t − ni · Ci

ni · (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
i elements

)

and computing the dot product in the denominator, we have

ΔCmax
k = min

i=k,...,N
max

t∈schedPi

t − ni ·Ci

�t/Tk	
. (9)

A representation of the sensitivity analysis in the C-
space is shown in Figure 3, in the case of two tasks when
T1 = D1 = 9.5 and D2 = 22 (the same simple exam-
ple will be discussed in Section 6). The figure shows the

9.5

22

6

12

C1

C2

T
λ

max

ΔCmax
2

ΔCmax
1

Figure 3. Sensitivity analysis in the C-space.

geometrical interpretation of the distances to the feasibility
region ΔCmax

k , as well as the scaling factor λmax explained
in the next section.

Scaling the computation times Suppose that all compu-
tation times are scaled proportionally. This situation occurs,
for example, in variable speed processors when we want to
find the minimum speed which makes the task set schedu-
lable. In this scenario, the direction of action is given by
the computation times, meaning that d = C. Hence, from
Eq. (8), we obtain

λmax = min
i=1...n

max
t∈schedPi

t − ni ·Ci

ni · Ci

λmax = min
i=1...n

max
t∈schedPi

t

ni · Ci
− 1 (10)
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Notice again that a positive value of λmax corresponds
to an initially schedulable task set. Conversely, if λmax is
negative, the initial task set T was not schedulable, and the
computation times must be decreased to achieve schedula-
bility.

In the following, we show how an elastic compres-
sion [7] can be used with the exact analysis of fixed priority
systems, by a proper definition of the direction d in Equa-
tion (8).

Linear Transformation The elastic task model [7], orig-
inally developed for a utilization based test, can be gener-
alized to work under an exact condition, thanks to the pro-
posed approach. The basic idea behind this model is that
tasks can be viewed as flexible springs with rigidity coeffi-
cients and minimum length constraints, whose utilizations
can be compressed to comply with a desired workload.

Each task is characterized by an elastic coefficient Ei,
which represents the flexibility of the task to vary its utiliza-
tion for adapting to a new workload condition. For instance,
more important tasks could be assigned lower elastic coeffi-
cients, so that their rates are not changed very much during
a system adaptation. Although the original model was de-
vised just to perform rate adaptation, the utilization can also
be adjusted by changing the computation times. In general
the utilization can be tuned both in the C-space and in the
f -space, provided that the design variables are in a given
range.

To exploit the elastic model in the framework of sensi-
tivity analysis, the direction of action can be simply set as

d =
(

1
E1

, 1
E2

, . . . , 1
EN

)
, so that the new computation times

C′ resulting from the modification performed according to
the elastic scheme can be derived from Equation (8).

Other feasibility problems defined in the literature can
also be cast within such a framework. As shown in Sec-
tion 2, changing the duration mj of a module μj corre-
sponds to changes in the computation times given by the
jth column aj of the matrix A. Then, setting d = aj , from
Eq. (8) we can find the admissible alteration of the module
length mj . In this case, the linear compute task model [24]
is fully captured by properly setting the direction of action.

5. Sensitivity analysis in the f -space
When performing the sensitivity analysis in the f -space,

the computation times C and the normalized deadlines δi

are fixed.
The solutions of the sensitivity analysis problem in the

C-space exploited the fact that the schedulability condition
could be expressed by combining linear inequalities, as the
ones in Eq. (4). Unfortunately, this is not the case in the
f -space (or T -space), where the desired sensitivity values
cannot be computed in a closed form as in Eq. (8). In fact,
it turns out that the feasibility region in the f -space is de-

limited by an infinite number of hyperplanes, thus an ad-hoc
approach is required for each specific study.

Distance along the axes As done in the C-space, we first
consider the sensitivity analysis when only one period may
change. Let τk be the task whose period Tk is going to be
modified. So in the modified task set T ′ we have T ′

i = Ti

for all i 
= k. Notice that, if the original task set T is
schedulable, increasing Tk will clearly preserve schedula-
bility. Similarly, if T is not schedulable, reducing Tk will
keep T ′ still unschedulable. Let T min

k be the minimum pe-
riod of τk such that T ′ is feasible (see Figure 4). Then, it is
easy to see that

T is schedulable ⇔ T min
k ≤ Tk

T is not schedulable ⇔ T min
k > Tk

Also, any modification of period Tk does not affect the
feasibility of the higher priority tasks. So, we assume that
all the tasks in Tk−1 are schedulable, otherwise no solution
can be found.

Now we address the problem of finding the value of
T min

k . The following theorem proves a very useful property
of the minimum period T min

k .

Theorem 3 Given a task set T , let T min
k be the minimum

period among those T ′
k that make the modified task set T ′

feasible. Then, we have that (a) either T min
k = Rk

δk
, (b) or

there exists some lower priority task τi (with i > k) such
that its response time Ri is an integer multiple of T min

k .

Proof. We prove the theorem by contradiction. Suppose
that there exists a task set T ′ such that

1. T ′ is feasible,

2. the period T ′
k of the task τk cannot be further reduced

without affecting the feasibility, meaning that T ′
k =

T min
k .

Also, by negating the hypothesis, we have

3. T min
k 
= Rk

δk
, and

4. for all lower priority tasks τi, T min
k is not an integer

multiple of Ri.

Since T ′ is feasible it must be have Rk ≤ Dk = δkTk,
thus the third hypothesis becomes

T min
k >

Rk

δk
. (11)

From the last hypothesis, it follows that for all the lower
priority tasks τi we have

Ri

T min
k

<

⌈
Ri

T min
k

⌉
=⇒ T min

k >
Ri⌈

Ri/T min
k

⌉ . (12)
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T
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ΔT1
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Figure 4. Sensitivity analysis in the f -space: when N = 2 (a) and N = 3 (b).
Notice that in Eq. (12) the equal sign does not hold. For this
reason, the period T min

k can be decreased until one of the
Equations (11) or (12) holds with the equal sign (notice that
Eq. (12) consists of N − k equations). This contradicts the
second hypothesis that T min

k is the minimum feasible value,
hence the theorem follows. �

It is now possible to devise an algorithm that computes
the distance to the schedulability boundary along each fre-
quency axis by computing the minimum feasible period
T min

k for each task τk.
First, notice that the response time of τk does not depend

upon its period T ′
k. It follows that any feasible period T ′

k

must satisfy the constraint

Rk ≤ Dk =⇒ T ′
k ≥ Rk

δk
. (13)

Next, we investigate how the schedulability condition of all
the lower priority tasks τi (with i > k) influences the bound
of the period of the task τk.

From Theorem 3, we know that if Eq. (13) does not hold
with the equal sign, then there exists a lower priority task τi

whose response time Ri is an integer multiple of T min
k , that

is
Ri = nk T min

k . (14)

Moreover, from the response time definition [11, 1], we
must also have

Rk
i (nk) = Ci + nk Ck +

i−1∑
j=1
j �=k

⌈
Ri

Tj

⌉
Cj (15)

where Rk
i (nk) is the response time of τi assuming that τk

interferes exactly nk times. Unfortunately, the number of
interferences of τk in Ri is not known in advance. Hence,
all the possible values for nk must be checked.

The algorithm to search for T min
k proceeds by computing

Rk
i (1) from Eq. (15), for all the lower priority tasks τi. If

the fixed point equation returns a value greater than dead-
line Di, then there is no value of T ′

k that can possibly make
the set schedulable, because τi cannot tolerate even a sin-
gle interference from the higher priority task τk. However,

if there is a first feasible value of Rk
i (1), the algorithm in-

crements the number of interferences nk and computes all
the response times Rk

i (nk) until for some n∗
k, the task τi

becomes unschedulable. In this case, up to n∗
k interferences

may occur, depending on the value of period T ′
k. It follows

from Eq. (14) that the periods T ′
k that can feasibly schedule

τi are such that

T ′
k ≥ min

nk

Rk
i (nk)
nk

. (16)

Since the period T ′
k must ensure the schedulability of all

the lower priority tasks and, being larger than the bound
of Eq. (13), the schedulability of τk itself, the minimum
feasible period T min

k is

T min
k = max

{
Rk

δk
, max
i=k+1,...,N

min
nk

Rk
i (nk)
nk

}
. (17)

Computing the fixed point Equation (15) for each possi-
ble value of nk is not as complex as it seems, since the com-
putation of the candidate solution Rk

i (nk) can start from the
previous solution Rk

i (nk − 1). The resulting complexity is,
in the worst case, the same as the classical response time
analysis [11, 1], performed for each task.

Scaling the Rates Compared with the algorithm for find-
ing the distance to the feasibility region along each com-
ponent of f , finding the maximum value of λ such that the
frequencies λ f result in an FPS schedulable task set is rel-
atively easy.

A previous result (please refer to [5] for its proof) estab-
lishes a relationship between the scaling operations in the
C-space and in the f -space.

Theorem 4 (from [5]) Given a task set T =
{τ1, τ2, . . . , τN}, let T C be the task set where task
computation times are scaled by λ and let T T be the task
set where task periods are scaled by 1/λ. Then, the task
set T C is schedulable if and only if the task set T T is
schedulable.

From Theorem 4, we have that the scaling factor in the
C-space is exactly the same as in the f -space. Hence, we
can apply the same Equation (10), used for computing the
maximum scaling factor λmax in the C-space, to find exactly
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the same scaling factor that allows finding the solution onto
the boundary of the feasibility region in the f -space.

Linear transformation In the f -space, a non schedulable
set is represented by a point outside the feasibility region,
and a set of constants (for example, representing the elastic
coefficients) defines a direction vector in the N -dimensional
space showing the preferred direction for reducing the rates
until the set becomes schedulable. The compression of the
tasks can be viewed in the f -space as a trajectory from an
initial position P0 (corresponding to the initial rate config-
uration) along a vector characterized by the coefficients of
all tasks.

f
1f

1 min
f
1 min

2 minf

2 minf

{e  , e  }
1 2

P0

2{0, e  }

Figure 5. Modification of the tasks’ rates (pe-
riods) according to the elastic model

Figure 5 illustrates an example where two elastic tasks
are compressed (i.e., their rates are reduced) until the task
set is schedulable. Notice that during compression, the rate
of task τ1 reaches its lower bound, so the compression con-
tinues by reducing the rate of τ2 only.

In general, computing the sensitivity along a generic lin-
ear direction d in the f -space is very challenging and, at
present, no efficient solutions have been proposed. How-
ever the problem can still be approached by setting up a
binary search procedure between two values λA, λB > 0
defining two task sets, TA and TB , where TA is outside and
TB is inside the the feasibility region (λA < λB), as shown
in Figure 6.

6. An Example
To explain all the possibilities offered by the sensitivity

analysis, we propose a simple illustrative example of a two
tasks set. The task parameters are reported in Table 1, which
also shows the task utilizations Ui and the set of schedula-
bility points schedPi for each task.

As the reader can quickly realize, the task set is not
schedulable, because the total utilization exceeds 1. We are
now going to evaluate all the possible actions which can

0.1

T(f  ,f  )

T(f  ,f  )

interval that needs to be 
searched for the intersection

exact bound

direction of action

edf bound

FP utilization bound

sufficient bound

f1

1 2

1 2

A

B

B

A

B’

λ

Figure 6. Finding the solution T ′ according to
the elastic model.

i Ci Ti Di δi Ui schedPi

1 6 9.5 9.5 1.000 0.632 {9.5}
2 12 24 22 0.917 0.500 {22, 19}

Table 1. Task set parameters.

make the task set feasible. First, we consider modifying
the individual components of the computation times vec-
tor, previously denoted by ΔCmax

k . Since the task set is not
schedulable, we expect that ΔCmax

k < 0, meaning that only
a reduction of the computation time can bring the task set in
the feasibility region. From Eq. (9), we have

ΔCmax
1 = min

i=1,2
max

t∈schedPi

t − ni · Ci

�t/T1	
ΔCmax

1 = min
{

(9.5 − 6), max
t∈schedP2

t − n2 ·C
�t/T1	

}
ΔCmax

1 = min
{

3.5, max
{
−8

3
,−5

2

}}
ΔCmax

1 = −2.5 (18)

and

ΔCmax
2 = max

t∈schedP2

t − n2 · C
�t/T2	

ΔCmax
2 = max {(22 − 30), (19 − 24)}

ΔCmax
2 = −5. (19)

As expected, both ΔCmax
1 and ΔCmax

2 are negative. The two
values are depicted in Figure 3.

The amount of scaling factor λmax of the computation
times can also be computed from Eq. (10). We have

λmax = min
i=1,2

max
t∈schedPi

t

ni ·Ci
− 1

λmax = max
t∈schedP2

t

n2 ·C
− 1

λmax = max
{

22
30

,
19
24

}
− 1

λmax = −0.20833 (20)
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which is also represented in Figure 3.
It is now interesting to evaluate the variations that can be

performed in the f -space to make the task set feasible. First,
we evaluate the modification to apply to the individual task
periods to reach feasibility. For this reason, we compute
T min

1 and T min
2 from Eq. (17). We have

T min
1 = max

{
R1

δ1
, min

n1

R1
2(n1)
n1

}
T min

1 = max
{

C1, min
{

R1
2(1)
1

,
R1

2(2)
2

, . . .

}}
T min

1 = max {6, min {18, 24, . . .}} = 18 (21)

which is the minimum value of T1 which can schedule the
task set. Notice that we stop computing the sequence of
response times R1

2(n1) as the value exceeds the deadline
D2 = 22. In a simpler way we proceed for the period of the
second task, which amounts to

T min
2 =

R2

δ2
=

36
0.917

= 39.27. (22)

The geometrical representation of the results is shown in
Figure 4.

We conclude this section by illustrating an application
of the linear compute task model in the sensitivity analy-
sis. For this purpose, suppose task computation times are
expressed as[

C1

C2

]
=
[

2 2 0
1 4 3

]⎡⎣ m1

m2

m3

⎤
⎦ (23)

where the mi’s are the length of software modules, as it
is expressed in Eq. (1). Suppose m1 = 2, m2 = 1
and m3 = 2. From these values, task computation times
become C1 = 6 and C2 = 12, which lead to a non-
schedulable task set, as shown before. Now, we want to
evaluate the variation Δmi to the module length mi which
can make the task set feasible. As explained in Section 4,
this is possible by setting the direction d equal to the ith

column of the matrix in Eq. (23). By setting d = (2, 1) and
computing Eq. (8), we find

Δm1 = min
i=1,2

max
t∈schedPi

t − ni ·Ci

ni · (2, 1)

Δm1 = max
{

22 − 30
(3, 1) · (2, 1)

,
19 − 24

(2, 1) · (2, 1)

}
Δm1 = max

{
−8

7
,−5

5

}
= −1. (24)

This means that feasibility can be achieved by reducing the
module length m1 by one unit of time. Similarly, the length
of the other modules m2 and m3 can be individually re-
duced to achieve feasibility. Using the same approach, the
resulting amounts of reduction are Δm2 = −0.625 and
Δm3 = −5/3.

7. Support for design cycles

The sensitivity analysis techniques discussed in this pa-
per have been implemented in the RT-Druid toolset [9]: a
design and analysis tool developed for supporting the timing
evaluation against uncertainties in the development cycle of
embedded real-time applications. RT-Druid has been de-
veloped as the result of a cooperation with Magneti Marelli
Powertrain and it is currently used to validate the scheduling
properties of automotive real-time applications. The tool is
adopted in a context where achieving the performance/cost
trade-offs requires to setup a cyclic design process where
control and software engineers work together providing the
best possible quality and the best possible accuracy to sys-
tem functions within the timing constraints and/or the per-
formance target.

Software engineers map the functions/components de-
veloped in the functional stage (typically as Simulink or
Ascet diagrams) into real-time threads, select the scheduler
and the resource managers by exploiting the services of a
Real-Time Operating System (RTOS), and ultimately per-
form schedulability and sensitivity analysis of the timing
requirements upon the target (HW) architecture.

The variations of the computation times compatible with
the schedulability constraints are used in the development
of new products to avoid excessive iterations between map-
ping and schedulability analysis, when only imprecise spec-
ifications are available.

When extending the functionality of an existing product,
sensitivity information is exploited by project managers to
estimate very early in the design flow, whether such an ex-
tension might have critical timing impacts, drastically re-
ducing the risk of adopting variation of the design.

The RT-Druid design environment has been imple-
mented in Java, and it is integrated (as a set of additional
plugin modules) into the Eclipse open development frame-
work. The entire design model is formally defined and
represented by an XML schema, which defines the ele-
ments of the functional and architecture level design, the
mapping relationships, the annotations adding timing at-
tributes to the design objects and the schedulability-related
information. The design environment supports models im-
ported from Simulink, ASCET-SD and UML 2.0 object and
component specifications. Furthermore, it fully supports
the OSEK/VDX OIL specification, allowing the import of
OIL architectural descriptions, and the export of the OIL
application definitions compatible with third party OSEK
RTOSs. RT-Druid also supports code generation from a
software architecture (specified using OIL or using the in-
ternal RT-Druid graphical editor) to an OSEK/VDX RTOS.
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8. Conclusions
In this paper we presented a theoretical approach for per-

forming sensitivity analysis of real-time systems consisting
of a set of periodic tasks. The proposed method allows a
designer not only to verify the feasibility of an application,
but also to decide the specific actions to be done on the de-
sign variables to reach feasibility when the task set is not
schedulable, or to improve resource usage when the task set
is schedulable.

The analysis has been presented both in the C-space,
where the design variables are the computation times, and in
the f -space, where the design variables are the task rates. In
both cases, the method allows computing the exact amount
each variable can be varied to keep the task set in the feasi-
bility region.

We also showed how the proposed framework can be
conveniently adopted to generalize overload management
methods, as the elastic scheduling approach [7], which can
be effectively extended to work with the exact analysis of
fixed priority systems.

Finally, we presented an example illustrating how sensi-
tivity analysis can be fruitfully integrated in a typical design
cycle. We believe this approach can reduce the distance be-
tween the theory of feasibility analysis and the practice of
real-time systems design.
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