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Abstract At early stages in the design of real-time embedded applications, the tim-
ing attributes of the computational activities are often incompletely specified or sub-
ject to changes. Later in the development cycle, schedulability analysis can be used
to check the feasibility of the task set. However, the knowledge of the worst-case
response times of tasks is often not sufficient to precisely determine the actions that
would correct a non-schedulable design. In these situations, sensitivity analysis pro-
vides useful information for changing the implementation, by giving a measure of
those computation times that must be reduced to achieve feasibility, or those that can
be increased in case of a product extension, or providing the range of feasible periods
for selecting the proper task activation rates.

In this work, we exploit the concept of feasibility region to propose a faster and
more concise solution to the sensitivity analysis problem with respect to existing
techniques based on binary search. Furthermore, we show how the formalization of
other problems in the feasibility domain, such as managing overloads through elastic
scheduling, can be extended to the exact analysis.
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1 Introduction

Schedulability theory can be used at design time for checking the timing constraints
of a real-time system, whenever a model of its software architecture is available. In
specific cases, schedulability analysis techniques can significantly shorten the devel-
opment cycle and reduce the time to market. Experiences on real-world applications
show that design time validation of the schedulability properties can save over 50%
of the time needed for the whole design process (Stankovic et al. 2003), by simply
pruning non-feasible solutions from the design space.

In many cases, however, the system is characterized by a high degree of uncer-
tainty on task activations and execution behaviour, which makes the use of schedula-
bility analysis much less profitable. Uncertainty is tackled through a set of simplifica-
tions, typically based on worst-case assumptions, which make the system tractable at
the price of an abundant resource allocation. Most schedulability analysis tools use a
simplified view of the software architecture, which is modeled through a set of tasks,
each characterized by a tuple (Ci, Ti,Di) specifying its worst-case computation time,
period and deadline, respectively. Determining the values of these task parameters is
not trivial, because in real systems, external events and computation times are often
characterized by a high degree of uncertainty.

Based on this model, companies such as TimeSys and TriPacific (among others)
produce tools to be used at design time to check the timing properties of a real-time
application. These tools can act as plug-ins for design environments, such as the IBM
Rational Rose Technical Developer. Other vendors (ARTISAN and ILogix, among
those) feature their own sets of tools/utilities for checking the schedulability of a
real-time design.

In order to handle such a high degree of variability, research efforts have been
devoted to propose models that provide enough expressive power for the definition
of the semantics of task activation, communication and synchronization. Extensions
of the model based on the triple (Ci, Ti,Di) have been proposed to add flexibility
and reduce pessimism. For example, the multi-frame task model proposed by Mok
and Chen (1997) allows the user to specify different execution times for different
task instances, through a sequence of numbers. The generalized multi-frame task
model (Baruah et al. 1999) adds explicit deadlines to the multi-frame model and
allows assigning distinct minimum separation values to the instances inside a multi-
frame cycle. The recurring task model defined by Baruah (2003) allows modeling
restricted forms of conditional real-time code and control flows.

To relax the pessimistic assumptions typically made in the evaluation of the task
set attributes, some authors (Burns et al. 2003; Manolache et al. 2001) proposed a
probabilistic model for task execution times and activations, which can be used to
analyze soft real-time applications. Feasibility tests for these models are derived by
applying stochastic analysis techniques and provide a probability for each task to
meet its deadline.

Besides pessimism and insufficient flexibility, there is at least another problem
with most current analysis methodologies: no informative result is provided to as-
sist the designer in understanding how a change in the task parameters would affect
the feasibility of the system. To be useful, the output of a schedulability analyzer
should highlight the amount of lateness or slack available in each thread to plan for a
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corrective action. Desirable or allowable changes should be precisely expressed and
measurable.

Information on how modifications of the task parameters may affect the system is
indeed provided by sensitivity analysis, which is a generalization of feasibility analy-
sis. In the definition of a new product, sensitivity analysis may be applied to a system
model where computation times are defined with a degree of uncertainty. When a
system implementation already exists, it can be used to define the bounds for pos-
sible function extensions. In both cases, starting from a feasible task set, sensitivity
analysis provides the exact amount of change affordable in task computation times or
periods to keep the task set feasible.

If the task set is not feasible, sensitivity analysis provides a quantitative indication
of the actions required to bring the system back into a feasible state. If a system
is not schedulable, there can be many causes and remedies: insufficient computing
power from the CPU; excessive computational load from one or more real-time tasks,
thereby requesting a faster (hence, often simpler and less accurate) implementation;
excessive usage of shared resources; and, finally, too short periods for the execution
of periodic tasks, which could be increased at the price of a performance degradation.

Being a generalization of feasibility analysis, sensitivity analysis heavily borrows
from existing results. The most popular among them is the Response Time Analysis
(RTA) (Joseph and Pandya 1986; Audsley et al. 1993). Although alternative efficient
techniques have been proposed in the literature (Bini and Buttazzo 2004), RTA is
currently the most adopted technique for deciding upon the schedulability of a task
set, since it provides a necessary and sufficient condition. Efforts have been devoted to
reduce its average complexity (Sjödin and Hansson 1998) and extend its applicability
to more general task models (Palencia and González Harbour 1998). Unfortunately,
as it will be shown in the next section, RTA does not directly provide the amount
of parameter variations admissible for the task set, but it can only be used within a
binary search algorithm.

1.1 A motivating example

In the following, we illustrate a simple example that highlights the main problem of
RTA. Figure 1(a) shows the schedule generated by the Rate Monotonic algorithm on
four periodic tasks, whose parameters (Ci, Ti) are indicated in the figure (relative
deadlines are equal to periods). We are interested in computing, for example, the
admissible values for the computation time C1 of the highest priority task τ1 such
that the response time R4 of the fourth task τ4 does not exceed its deadline D4, equal
to 32.

The initial estimate for C1 is 1 unit of time, which makes the task set schedulable
and lets the lowest priority task τ4 complete at time t = 24. Unfortunately, the 8 units
of slack of τ4 do not guarantee a robust design against changes in the computation
time and/or period of the other tasks. In fact, even a small increase in the computation
time of any task (suppose, for example C1 = 1.01) leads to a non-feasible schedule,
with the completion time of τ4 equal to at least 34 units of time. Similarly, a small
decrease in the periods of tasks τ1 or τ2 would compromise schedulability.

As shown in Fig. 1(b), the response time of task τ4, denoted by R4, is a discontinu-
ous function of the computation time of the highest priority task, and it is impossible
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Fig. 1 a RM schedule of 4 periodic tasks. b Response time R4 as a function of C1

to analytically invert this relation to compute the exact value of C1 that would allow
R4 to match the deadline of τ4.

Discontinuities in the response time functions for system tasks are the main rea-
son why response-time analysis is ill-fit for sensitivity analysis, except possibly by
applying a binary search algorithm, which requires an estimate of the initial bounds
and the evaluation of the response times of all tasks at each step.

1.2 Related work

Most of the existing solutions to the sensitivity problem have been provided in the
domain of computation times. Early solutions to the sensitivity analysis problem can
be traced back to the evaluation of the breakdown utilization (Lehoczky et al. 1989),
where the critical scaling factor is computed for a fixed-priority scheduled system as
the largest possible scaling value for task execution times still allowing the feasibility
of the set.

The approach was later extended by Vestal (1994), who addressed sensitivity
analysis of fixed priority task sets by introducing slack variables in the exact fea-
sibility equations defined by Lehoczky et al. (1989) and solving the correspond-
ing equality conditions. The approach suffers from the possibly very large num-
ber of conditions to be evaluated, and assumes deadlines equal to periods. Other
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techniques for sensitivity analysis are based on binary search over the schedula-
bility property defined by Lehoczky et al. (1989), or other formulations of the
algorithm for computing the response time of a task (Punnekkat et al. 1997;
Tindell et al. 1994).

In the context of distributed scheduling, a system-level sensitivity analysis of the
task computation times against end-to-end deadlines has been proposed (Racu et al.
2005). The method is based on binary search and has been implemented in a com-
mercial tool by SymTAVision (Hamann et al. 2004). A problem of this method is that
it performs a feasibility test at each iteration of the binary search, making the result-
ing complexity considerably high. Our algorithm does not suffer from this drawback,
because it is as complex as a feasibility test. This greater simplicity comes at the price
of a simpler task model. Other tools offering a built-in sensitivity analysis engine are
RTA-OSEK by ETAS (formerly LiveDevices) and the analysis tool in MAST (Med-
ina Pasaje et al. 2001).

In this paper we present a new type of sensitivity analysis that exploits the con-
cept of feasibility region in the domain of the task variables, as introduced in (Bini
and Buttazzo 2004; Bini and Di Natale 2005). By measuring the distance of a task
configuration, expressed as a point in the space of the task variables, from the region
delimiting the set of the feasible tasks, we can provide the variations that are required
on each design parameter, if taken separately, for bringing the task set back into the
schedulability region or for changing some parameters while preserving feasibility.

Unlike previous work, our sensitivity analysis also applies to the domain of task
periods, providing a theoretical support for those control systems that perform rate
adaptation to cope with overload conditions (Buttazzo et al. 2002, 2004). Moreover,
it addresses very practical design issues, such as finding the fastest execution rate
that can be assigned to one or more critical control loops. Alternatively, when fix-
ing the defects of a non-schedulable configuration, it provides a measure of the re-
quired relaxation in the execution rate of one or more tasks to make the set schedula-
ble.

The rest of the paper is organized as follows: Sect. 2 introduces the terminology
and the system model; Sect. 3 describes the notion of feasibility region; Sects. 4 and 5
describe the sensitivity analysis of the computation times and the periods, respec-
tively; Sect. 6 provides an example of application; Sect. 7 presents some experimental
results aimed at evaluating the proposed approach with respect to a bisection method.
Section 8 discusses the implementation of the proposed techniques in available tools;
and finally, Sect. 9 states our conclusions and future work.

2 Terminology and system model

In this paper, we assume that an application consists of a set T = {τ1, τ2, . . . , τN } of
N real-time tasks running on a uniprocessor system. Each task τi is characterized by
a period Ti , a worst-case execution time Ci and a relative deadline Di . The notion of
normalized deadline δi = Di/Ti and activation rate fi = 1

Ti
are often used throughout

the paper. Moreover, bold letters are used to denote vectors of parameters, such as
T = (T1, . . . , TN), f = (f1, . . . , fN), and C = (C1, . . . ,CN). Note that the task set
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utilization U can be written by the dot product C · f. Finally, the response time (Joseph
and Pandya 1986; Audsley et al. 1993) of task τi is denoted by Ri .

Tasks are scheduled by a fixed priority scheduler (not necessarily Rate Monotonic)
and they are ordered by decreasing priorities, meaning that τ1 has the highest prior-
ity, and τN the lowest one. The set of the first i higher priority tasks is denoted by
Ti = {τ1, . . . , τi}, and the corresponding vectors of computation times, periods, and
rates are denoted by Ci , Ti , and fi , respectively. Please notice that, while Ci is the
computation time of τi , Ci = (C1,C2, . . . ,Ci) is the vector of the computation times
of the i highest priority tasks. Finally, although the proposed approach can be applied
for arbitrary deadlines by extending the analysis to the future jobs within the busy
period (Lehoczky 1990), in this paper we consider the case of deadlines less than
or equal to periods, meaning that 0 < δi ≤ 1 to reduce the time complexity of the
analysis.

Each periodic task τi is considered as an infinite sequence of jobs τi,j , where each
job τi,j is activated at time ai,j = (j − 1)Ti and must be completed by its absolute
deadline di,j = ai,j + Di .

Task execution is modeled by the linear compute time model introduced by Vestal
(1994) because of its generality and its aptness at representing real-world applica-
tions. Within this framework, the computation time of each task consists of a set of
software modules (or procedures) that are called by the task to perform its computa-
tions. If there is a set of M software modules in the system M = {μ1,μ2, . . . ,μM},
and each module μj is characterized by a worst-case computation time mj , the exe-
cution time of each task can be expressed as a linear combination of the mj values:

⎡
⎢⎢⎣

C1
C2
...

CN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1,1 a1,2 · · · a1,M

a2,1 a2,2 · · · a2,M

...
. . .

...

aN,1 aN,2 · · · aN,M

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

m1
m2
...

mM

⎤
⎥⎥⎥⎦

or, in a more compact expression,

C = A · m (1)

where A is the N × M array of the ai,j coefficients. Notice that the computation
model expressed in (1) is a generalization of the classical “Ci ’s” model, obtainable
by simply setting A equal to the identity. Each ai,j can be conveniently thought as
the product of an integer term xi,j , expressing the number of times module mj is
invoked by τi , and a real part αi,j expressing other architecture-related parameters.
For example, the model is suited for power-aware speed scaling if the αi,j terms in a
given row represent the reciprocal of the processor speed selected for τi .

Finally, whenever some variation is applied to the task set T , the altered task
set will be denoted by T ′. For example, if computation times are modified by an
amount �C, then the new computation times of the modified set T ′ are denoted as
C′ = C + �C.
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3 Feasibility region

The options available for sensitivity analysis can be better understood in the context
of a new representation of the feasibility condition as a region defined in the space of
those task attributes X considered as design variables. More formally, the feasibility
region can be defined as follows.

Definition 1 Let X be the set of design variables for a task set T . Then, the feasibility
region in the X-space is the set of values of X such that T is feasible.

In this work, the schedulability region will be defined in the space of the worst-
case computation times (X = C), referred to as the C-space, and in the space of the
task rates (X = f), referred to as the f -space.

This paper provides theory and algorithms for measuring the distance of a schedul-
ing solution from the boundary of the feasibility region, when a fixed priority sched-
uler is adopted. Such a distance, expressed in the C-space or in the f -space, is an
exact measure of the available slack or, conversely, of the correcting actions that
must be taken on the computation times or on the activation rates to make the system
schedulable.

For models that can be analyzed by a simple utilization-based test, the feasibility
region is defined by the well known bound (Liu and Layland 1973)

C · f ≤ UA
lub

where UA
lub is the least upper bound of the algorithm A considered for scheduling the

set of tasks.
As shown in the following, the feasibility region in both the C-space and the f -

space is delimited by hyperplanes and the positive quadrant.

3.1 Feasibility region in the C-space

When working in the C-space, we assume that the design variables are only the task
computation times, whereas the periods and the deadlines are fixed.

The schedulability condition formulated by Bini and Buttazzo (2004) (originally
proposed by Lehoczky et al. (1989)), can be conveniently used to establish a relation-
ship between the task set parameters, from which the feasible values of computation
times Ci can be inferred.

Theorem 1 (Bini and Buttazzo 2004) A periodic task set T is schedulable under
fixed priorities if and only if

∀i = 1, . . . ,N ∃t ∈ schedPi Ci +
i−1∑
j=1

⌈
t

Tj

⌉
Cj ≤ t (2)
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where schedPi is a set of scheduling points defined as schedPi = Pi−1(Di), and
Pi (t) is defined as follows

⎧⎪⎨
⎪⎩

P0(t) = {t},

Pi (t) = Pi−1

(⌊
t

Ti

⌋
Ti

)
∪Pi−1(t).

(3)

By using the more compact vectorial notation and some logical operators, (2) can
be rewritten as ∧

i=1,...,N

∨
t∈schedPi

ni · Ci ≤ t (4)

where ni = (� t
T1

	, � t
T2

	, . . . , � t
Ti−1

	,1).
Equation (4) represents the feasibility region in the C-space. Notice that the com-

putation times C are subject to a combination of linear constraints.
An example of the feasibility region for two tasks in the C-space is shown later in

Sect. 4, where we will show how the feasibility region can be exploited to perform
sensitivity analysis.

3.2 Feasibility region in the f -space

When reasoning in the f -space the design variables are the task frequencies f,
whereas the computation times C and the normalized deadlines are fixed.

The formal definition of the feasibility region in the f -space can be conveniently
derived from the schedulability condition provided by Seto et al. (1998) and later
explicitly formalized in (Bini and Di Natale 2005).

Theorem 2 (Seto et al. 1998; Bini and Di Natale 2005) A periodic task set T is
schedulable under Fixed Priorities if and only if

∀i = 1, . . . ,N ∃ni−1 ∈ N
i−1 (5)

such that:
⎧⎪⎪⎨
⎪⎪⎩

0 ≤ fi ≤ δi

Ci + ni−1 · Ci−1
,

ni−1 − 1

Ci + ni−1 · Ci−1
≤ fi−1 ≤ ni−1

Ci + ni−1 · Ci−1

(6)

where N
i−1 is the set of i − 1 tuples of positive integers.

For each vector ni−1, each task activation frequency fj has an upper and lower
bound defining an N -dimensional parallelepiped. Hence, the feasibility region in the
f -space is given by the union of the parallelepipeds corresponding to all the possible
tuples ni−1.

To better understand the insight behind Theorem 2, the feasibility region in the
f -space for a set of two tasks is illustrated in Fig. 2. The graph is obtained for C1 = 1
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Fig. 2 Feasibility region in the f -space

and C2 = 2 and deadlines equal to periods. For two tasks, the region is the union of
rectangles given by (6) for each possible value of n1.

The EDF bound is also plotted in the figure (dashed line). In the f -space it is a
linear constraint, which is, as expected, larger than the fixed priority region. Note that
for harmonic frequencies (meaning that f1 = k f2 for some integer k) the boundary
of the f -space coincides with the EDF boundary, as well known from the work by
Kuo and Mok (1991).

The next section explains how the sensitivity analysis can be performed based on
the feasibility region.

4 Sensitivity analysis in the C-space

The knowledge of the range of admissible variations of the computation times can be
very useful in a number of practical situations. For example, the designer can often
select among different implementations for the same functionality, corresponding to
different computation times.

From the model expressed in (1), it follows that altering the module implementa-
tion (so affecting the mj value) results in a linear scaling of the computation times.
More formally, the modified computation times C′ can be expressed as

C′ = C + λd (7)

where d is a non-negative vector setting the direction of action and λ measures the
amount of variation imposed on the original task set. We expect λ ≥ 0 if the original
task set was schedulable, and λ < 0 if the task set was not schedulable. Moreover,
since the only action examined in this section is a modification of the computation
times, we assume T′ = T, meaning that the periods are not changed.

A significant case occurs when d = C, which means that the direction of the ac-
tion is equal to the computation times, which is equivalent to scaling all the com-
putation times by the same factor. Another interesting action is to change only the



14 Real-Time Syst (2008) 39: 5–30

ith computation time, leaving the others unchanged. It corresponds to the direction
d = (0, . . . ,0,1,0, . . . ,0) of all zeros and a 1 in the ith position.

Once the direction d is defined by the designer, the amount λ of admissible change
can be found by applying the necessary and sufficient schedulability condition of (4)
to the modified task set T ′. If we denote the first i elements of d by di , then T ′ is
schedulable if and only if

∧
i=1,...,N

∨
t∈schedPi

ni · C′
i ≤ t,

∧
i=1,...,N

∨
t∈schedPi

ni · (Ci + λdi ) ≤ t,

(8)
∧

i=1,...,N

∨
t∈schedPi

λ ≤ t − ni · Ci

ni · di

,

λ ≤ min
i=1,...,N

max
t∈schedPi

t − ni · Ci

ni · di

� λmax

which provides the amount of admissible linear alteration along the generic direc-
tion d. As expected, if the original task set T is schedulable, then λmax ≥ 0; whereas,
if T is not schedulable, there exists an i such that for all t ∈ schedPi the numerator is
always negative and hence λmax is negative as well. Relevant applications of (8) are
discussed in the following.

Distance along the axes Given T , it is interesting to find the amount of computa-
tion time variation that can be added (when T is schedulable) or subtracted (T not
schedulable) to the computation time of task τk to guarantee the schedulability of
the task set. These values can be obtained from (8) after the definition of the direc-
tion d. Suppose we are changing the computation time Ck of task τk . This means that
the direction of action is d = (0, . . . ,0,1,0, . . . ,0), where the only 1 is at the kth
component in the vector. In order to relate this value to the task τk we refer to it as
�Ck .

When searching for �Ck , we assume that all the higher priority tasks in Tk−1 are
schedulable. In fact, they are not affected by any variation of task τk , hence no solu-
tion could be found for �Ck if T ′

k−1 were unschedulable. This means that the schedu-
lability condition must be guaranteed only for the tasks from the kth to the N th.

From (8) we have

�Cmax
k = min

i=k,...,N
max

t∈schedPi

t − ni · Ci

ni · (0, . . . ,0,1,0, . . . ,0︸ ︷︷ ︸
i elements

)

and, computing the dot product in the denominator, we have

�Cmax
k = min

i=k,...,N
max

t∈schedPi

t − ni · Ci

�t/Tk	 . (9)
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Fig. 3 Sensitivity analysis in the C-space

A representation of the sensitivity analysis in the C-space is shown in Fig. 3, in
the case of two tasks when T1 = D1 = 9.5 and D2 = 22 (the same simple example
will be discussed in Sect. 6). The figure shows the geometrical interpretation of the
distances to the feasibility region �Cmax

k , as well as the scaling factor λmax explained
in the next section.

Scaling the computation times Suppose that all computation times are scaled pro-
portionally. This situation occurs, for example, in variable speed processors when we
want to find the minimum speed which makes the task set schedulable. In this sce-
nario, the direction of action is given by the computation times, meaning that d = C.
Hence, from (8), we obtain

λmax = min
i=1...n

max
t∈schedPi

t − ni · Ci

ni · Ci

,
(10)

λmax = min
i=1...n

max
t∈schedPi

t

ni · Ci

− 1.

Notice again that a positive value of λmax corresponds to an initially schedulable
task set. Conversely, if λmax is negative, the initial task set T is not schedulable, and
the computation times must be decreased to achieve schedulability.

In the following, we show how an elastic compression (Buttazzo et al. 2002) can
be used with the exact analysis of fixed priority systems, by a proper definition of the
direction d in (8).

Linear transformation The elastic task model (Buttazzo et al. 2002), originally de-
veloped for a utilization based test, can be generalized to work under an exact condi-
tion, thanks to the proposed approach. The basic idea behind this model is that tasks
can be viewed as flexible springs with rigidity coefficients and minimum length con-
straints, whose utilizations can be compressed to comply with a desired workload.

Each task is characterized by an elastic coefficient Ei , which represents the flexi-
bility of the task to vary its utilization for adapting to a new workload condition. For
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instance, more important tasks could be assigned lower elastic coefficients, so that
their rates are changed with greater difficulty during a system adaptation. Although
the original model was devised to perform rate adaptation, the utilization can also be
adjusted by changing the computation times. In general, the utilization can be tuned
both in the C-space and in the f -space, provided that the design variables do not
exceed the given boundaries.

To exploit the elastic model in the framework of sensitivity analysis, the direction
of action can be simply set as d = (E1,E2, . . . ,EN), so that the new computation
times C′ resulting from the modification performed according to the elastic scheme
can be derived from (8). Such a definition for the direction directly follows from the
meaning of the elastic coefficient, which represents the flexibility of the task to a
parameter variation: the higher an elastic coefficient, the higher the variation along
that dimension.

Other feasibility problems defined in the literature can also be cast within such a
framework. As shown in Sect. 2, changing the worst case execution mj of a module
μj corresponds to changes in the computation times given by the j th column aj of
the matrix A. Then, setting d = aj , from (8) we can find the admissible alteration of
the module computation time mj . In this case, the linear compute task model (Vestal
1994) is fully captured by properly setting the direction of action.

5 Sensitivity analysis in the f -space

When performing the sensitivity analysis in the f -space, the computation times C
and the normalized deadlines δi are fixed.

The solutions of the sensitivity analysis problem in the C-space exploited the fact
that the schedulability condition could be expressed by combining linear inequalities,
as the ones in (4). Unfortunately, this is not the case in the f -space (or T -space),
where the desired sensitivity values cannot be computed in a closed form as in (8).
In fact, the feasibility region in the f -space is delimited by an infinite number of
hyperplanes, thus an ad-hoc approach is required for each specific study.

Distance along the axes As done in the C-space, we first consider the sensitivity
analysis when only one period can change. Let τk be the task whose period Tk is
going to be modified. Hence, in the modified task set T ′ we have T ′

i = Ti for all
i �= k. Notice that, if the original task set T is schedulable, an increase of Tk will
clearly preserve schedulability. Similarly, if T is not schedulable, reducing Tk will
keep T ′ still unschedulable. Let T

(i)
k denote the minimum period of τk such that τi is

schedulable. Because of the priority ordering, period T
(i)
k is meaningful only when

i ≥ k. In fact, if i < k then any variation of the lower priority task τk does not affect
the schedulability of the higher priority task τi . For this reason, T

(i)
k is computed

under the assumption that the task subset Tk−1 is schedulable.
If we compute the periods T

(i)
k for all i ≥ k, then it is easy to compute the minimum

period T min
k of τk such that T ′ is feasible (see Fig. 4, where the maximum frequencies

1/T min
k are represented instead). In fact we have

T min
k = max

i≥k
T

(i)
k , (11)
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Fig. 4 Sensitivity analysis in the f -space: when N = 2 (a) and N = 3 (b)

because T min
k must be large enough to guarantee the schedulability of all the tasks

from τk to τN . Since the minimum period T min
k ensures the schedulability of all the

tasks from τk to τN , and the tasks from τ1 to τk−1 are schedulable by hypothesis, then
we have

T is schedulable ⇔ T min
k ≤ Tk,

T is not schedulable ⇔ T min
k > Tk.

Now we address the problem of finding the value of T
(i)
k , when i ≥ k. If i = k

the computation of T
(k)
k is simple. Let Rk be the response time of τk . Then τk is

schedulable if and only if:

Rk ≤ Dk ⇔ Rk ≤ δkTk ⇔ Tk ≥ Rk

δk

⇔ T
(k)
k = Rk

δk

. (12)

The computation T
(i)
k requires some extra effort. For this purpose we need to in-

troduce the following definition, which is quite classical in FP analysis.

Definition 2 Let 0 be the critical instant at which all tasks are simultaneously acti-
vated. Given the subset of tasks S , we define level-S idle time at time t the minimum
amount of time such that no task in S is executed in [0, t]. We denote this amount by
Y(S, t).

Although the interpretation of Y(S, t) may seem quite cryptic, this amount is tightly
related to the notion of level-i busy period introduced by Lehoczky et al. (1989). For
example, it is possible to assert that Y({τ1}, T1) = T1 − C1, which represents the idle
left by the first task at time T1. Another trivial property of Y(S, t) is that Y(∅, t) = t ,
where ∅ denotes the empty set.

In order to find the value of T
(i)
k it is necessary to evaluate Y(Ti \ {τk},Di). In

fact, this is the amount of idle before the deadline of τi which can accommodate jobs
of τk . The smallest possible period Tk corresponds to the highest possible number of
τk jobs. If Y(Ti \ {τk},Di) < Ck , then the execution of one single job of τk will push
the execution of τi beyond its deadline Di .

Notice that, thanks to previous results (Bini and Buttazzo 2004), it is possible to
determine the exact amount of Y(Ti \ {τk},Di) with the complexity of a schedulabil-
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ity test. In fact we have:

Y(Ti \ {τk},Di) = max
t∈schedP∗

i

t − Ci −
i−1∑
j=i
j �=k

⌈
t

Tj

⌉
Cj . (13)

Note that in the previous expression the set of schedulability points schedP∗
i must be

computed from (3) by considering the task set Ti without τk .
The maximum number of jobs of τk , which can interfere in the response time of

the task τi is determined by the following lemma.

Lemma 1 The maximum number n
(i)
k of τk jobs that can interfere on τi , such that τi

is schedulable, is equal to

n
(i)
k =

⌊
Y(Ti \ {τk},Di)

Ck

⌋
. (14)

Proof If n
(i)
k jobs of τk interfere with τi , then the amount of level-Ti idle time at Di

is

Y(Ti ,Di) = Y(Ti \ {τk},Di) −
⌊

Y(Ti \ {τk},Di)

Ck

⌋
Ck

which is greater than or equal to 0. Hence, τi is schedulable because it admits some
non negative idle time in [0,Di].

If the number of interfering jobs is n
(i)
k + 1, then at the end of the n

(i)
k + 1 job of

τk it will happen simultaneously that:

– the task τi has not finished yet, because of the interference of n
(i)
k + 1 jobs of τk ;

– no more idle time is available in [0,Di], because τk has consumed more than
Y(Ti \ {τk},Di).

Hence, τi will miss its deadline and the maximum number of τk jobs interfering with
τi is n

(i)
k , as given by (14). �

Once the maximum number of jobs n
(i)
k is found, the minimum period T

(i)
k can

be determined as follows. We first compute the response time Ri from the following
fixed point equation:

Ri = Ci + n
(i)
k Ck +

i−1∑
j=1
j �=k

⌈
Ri

Tj

⌉
Cj (15)

which assumes that exactly n
(i)
k interferences of τk occur. The period T

(i)
k is the min-

imum period such that

n
(i)
k =

⌈
Ri

Tk

⌉
⇒ T

(i)
k = Ri

n
(i)
k

. (16)
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Equation (12) allows us to compute the value of T
(k)
k that can schedule the task τk .

Moreover, the period of τk can be computed by (16), which guarantees the schedula-
bility of all the lower priority tasks τi . Hence, from (11), we have that the minimum
period which guarantees the schedulability of the entire task set is

T min
k = max

{
Rk

δk

,
Rk+1

n
(k+1)
k

, . . . ,
RN

n
(N)
k

}
. (17)

Scaling the rates Compared with the algorithm for finding the distance to the fea-
sibility region along each component of f, finding the maximum value of λ such that
the frequencies λ f result in an FP schedulable task set is relatively easy.

A previous result (please refer to Bini and Di Natale 2005 for its proof) establishes
a relationship between the scaling operations in the C-space and in the f -space.

Theorem 3 (Bini and Di Natale 2005) Given a task set T = {τ1, τ2, . . . , τN }, let T C

be the task set where task computation times are scaled by λ and let T T be the task
set where task periods are scaled by 1/λ. Formally:

T C = {(λC1, T1), . . . , (λCn,Tn)},
T T = {(C1, T1/λ), . . . , (Cn,Tn/λ)}.

Then, task set T C is schedulable if and only if task set T T is schedulable.

From Theorem 3, we have that the scaling factor in the C-space is exactly the same
as in the f -space. Hence, we can apply the same equation (10), used for computing
the maximum scaling factor λmax in the C-space, to find exactly the same scaling
factor that allows finding the solution onto the boundary of the feasibility region in
the f -space.

Linear transformation In the f -space, a non-schedulable set is represented by a
point outside the feasibility region, and a set of constants (for example, represent-
ing the elastic coefficients) defines a direction vector in the N -dimensional space
showing the preferred direction for reducing the rates until the set becomes schedu-
lable. The compression of the tasks can be viewed in the f -space as a trajectory from
an initial position P0 (corresponding to the initial rate configuration) along a vector
characterized by the coefficients of all tasks.

Figure 5 illustrates an example where two elastic tasks are compressed (i.e., their
rates are reduced) until the task set is schedulable. Notice that during compression,
the rate of task τ1 reaches its lower bound, so the compression continues by reducing
the rate of τ2 only.

In general, computing the sensitivity along a generic linear direction d in the f -
space is very challenging and, at present, no efficient solutions have been proposed.
However the problem can still be approached by setting up a binary search proce-
dure between two values λA,λB > 0 defining two task sets, TA and TB , where TA is
outside and TB is inside the feasibility region (λA < λB ), as shown in Fig. 6.
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Fig. 5 Modification of the tasks’ rates (periods) according to the elastic model

Fig. 6 Finding the solution T ′ according to the elastic model
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Table 1 Task set parameters

i Ci Ti Di δi Ui schedPi

1 6 9.5 9.5 1.000 0.632 {9.5}
2 12 24 22 0.917 0.500 {22,19}

6 An example

To explain all the possibilities offered by the sensitivity analysis, we propose a simple
illustrative example of a two tasks set. The task parameters are reported in Table 1,
which also shows the task utilizations Ui and the set of scheduling points schedPi

for each task.
As the reader can quickly realize, the task set is not schedulable, because the total

utilization exceeds 1. We are now going to evaluate all the possible actions which can
make the task set feasible. First, we consider modifying the individual components
of the computation times vector, previously denoted by �Ct

kmax. Since the task set
is not schedulable, we expect that �Cmax

k < 0, meaning that only a reduction of the
computation time can bring the task set in the feasibility region. From (9), we have

�Cmax
1 = min

i=1,2
max

t∈schedPi

t − ni · Ci

�t/T1	 ,

�Cmax
1 = min

{
(9.5 − 6), max

t∈schedP2

t − n2 · C
�t/T1	

}
,

�Cmax
1 = min

{
3.5,max

{
22 − 30

3
,

19 − 24

2

}}
, (18)

�Cmax
1 = min

{
3.5,max

{
−8

3
,−5

2

}}
,

�Cmax
1 = −2.5,

and

�Cmax
2 = max

t∈schedP2

t − n2 · C
�t/T2	 ,

�Cmax
2 = max{(22 − 30), (19 − 24)}, (19)

�Cmax
2 = −5.

As expected, both �Cmax
1 and �Cmax

2 are negative. The two values are depicted in
Fig. 3.

The amount of scaling factor λmax of the computation times can also be computed
from (10). We have

λmax = min
i=1,2

max
t∈schedPi

t

ni · Ci

− 1,
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λmax = max
t∈schedP2

t

n2 · C
− 1,

λmax = max

{
22

30
,

19

24

}
− 1,

λmax = −0.20833 (20)

which is also represented in Fig. 3.
It is now interesting to compute the variations that can be performed in the f -

space to make the task set feasible. First, we evaluate the modification to each task
period to reach feasibility. To do that, we compute T min

1 and T min
2 from (17). T

(1)
1 is

equal to R1/δ1 = C1 = 6. In order to compute T
(2)
1 , which is the minimum period of

τ1 that ensures the schedulability of τ2, we compute n
(2)
1 . The amount of available

idle time in [0,D2] is simply D2 − C2 = 10. Hence, the maximum number of τ1

jobs that interfere with τ2 is n
(2)
1 = � 10

6 � = 1 and the response time of τ2 is R2 =
n

(2)
1 C1 + C2 = 18. Hence, we have that T

(2)
1 = R2

n2
1

= 18. Finally, by applying (17),

we find that

T min
1 = max

{
R1

δ1
,

R2

n
(2)
1

}
, (21)

T min
1 = max{6,18} = 18 (22)

which is the minimum value of T1 for which the task set is schedulable. The period
of the second task is computed in a similar way and results to be

T min
2 = R2

δ2
= 36

0.917
= 39.27. (23)

A geometrical representation of the results is shown in Fig. 4.
We conclude this section by illustrating an application of the linear compute task

model in the sensitivity analysis as expressed by (1). For this purpose, suppose task
computation times are expressed as

[
C1
C2

]
=

[
2 2 0
1 4 3

]⎡
⎣

m1
m2
m3

⎤
⎦ (24)

where the mi ’s are the lengths of software modules, as it is expressed in (1). Suppose
m1 = 2, m2 = 1 and m3 = 2. From these values, task computation times become
C1 = 6 and C2 = 12, which lead to a non-schedulable task set, as shown before.
Now, we evaluate the variation �mi to the module length mi which can make the
task set feasible. As explained in Sect. 4, this is possible by setting the direction d
equal to the ith column of the matrix in (24). By setting d = (2,1) and computing
(8), we find

�m1 = min
i=1,2

max
t∈schedPi

t − ni · Ci

ni · (2,1)
,
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�m1 = max

{
22 − 30

(3,1) · (2,1)
,

19 − 24

(2,1) · (2,1)

}
, (25)

�m1 = max

{
−8

7
,−5

5

}
= −1.

This means that feasibility can be achieved by reducing the module length m1 by one
unit of time. Similarly, the length of the other modules m2 and m3 can be individually
reduced to achieve feasibility. Using the same approach, the resulting amounts of
reduction are �m2 = −0.625 and �m3 = −5/3.

7 Experiments

In order to evaluate the complexity of the proposed method with respect to the sensi-
tivity analysis based on bisection (using the response time analysis as the inner for-
mula) (Racu et al. 2005; Punnekkat et al. 1997), three sets of experiments have been
performed. In the first set, the periods of the tasks have been randomly selected from
the set {1,2,5,10,100,200,500,1000} representing a low rate and a high rate clus-
ter. The second set consists of three pseudo-harmonic subgroups, with possible pe-
riods {1,2,5,10}, {50,100,250,500} and {1000,2000,5000,10 000}, respectively.
The third set is constructed from the specifications of an automotive application.

In the first two experiments, a number N of tasks (N between 45 and 400) with
a total utilization U = 1.0 have been generated in such a way that the computation
times are uniformly distributed (Bini and Buttazzo 2005). For each set and for each
value of N , two sensitivity analysis algorithms have been tried to find the reduction of
the computation time for each task that would make the set schedulable (if possible).
The first algorithm is the bisection procedure, the other is the procedure presented
in this paper. Similarly, for each set and each value of N , the sensitivity analysis on
the periods has been evaluated for each task in the set to make the system feasible
according to the two competing strategies. When computing the response times inside
the bisection procedure, we adopted the improved algorithm proposed by Sjödin and
Hansson (1998) to speed up the computation.

Our method resulted in much shorter times for all the experimental sets, both in the
domain of the computation times and in the domain of the periods. Figure 7 shows the
execution times for the first set when computing the sensitivity in the domain of the
computation times. Figure 8 shows the results for the computation of the sensitivity
in the domain of the periods. The higher efficiency of the proposed method can easily
be explained by recalling that the sensitivity analysis methods presented in this paper
leverage the definition of the points schedPi and require one processing step for any
such point in the set. In the case of groups of tasks with harmonic periods, the most
interesting for most practical purposes, the number of points in the set schedPi is
much smaller, hence, the better performance of the method. The advantage of the
proposed approach for the sensitivity analysis is also demonstrated for the second
and third sets of experiments. For the second set, Fig. 9 shows the execution times for
the sensitivity in the domain of the computation times and Fig. 10 shows the results
for the periods domain.
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Fig. 7 Execution times required for the sensitivity analysis of computation times (first experiment)

Fig. 8 Execution times required for the sensitivity analysis of periods (first experiment)



Real-Time Syst (2008) 39: 5–30 25

Fig. 9 Execution times required for the sensitivity analysis of computation times (second experiment)

Fig. 10 Execution times required for the sensitivity analysis of periods (second experiment)
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Fig. 11 Execution times required for the sensitivity analysis of computation times (third experiment)

Fig. 12 Execution times required for the sensitivity analysis of periods (third experiment)
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The task set of the third experiment has been derived from an distributed automo-
tive application containing 90 tasks with execution periods ranging from 5 to 1000
milliseconds and belonging to two harmonic groups. The computation times have
been scaled to obtain a total utilization U = 1.0. The results illustrated in Figs. 11
and 12 show a more clear advantage for the proposed method with respect to bisec-
tion.

8 Support for design cycles

The sensitivity analysis techniques discussed in this paper have been implemented
in the RT-Druid toolset (Evidence s.r.l. 2004): a design and analysis tool developed
for supporting the timing evaluation against uncertainties in the development cycle
of embedded real-time applications. RT-Druid has been developed as a result of a
cooperation with Magneti Marelli Powertrain and it is currently used to validate the
scheduling properties of automotive real-time applications.

The tool is adopted in the context of a development process where software en-
gineers map the functions/components developed in the functional stage (typically
as Simulink or Ascet diagrams) into real-time threads, select the scheduler and
the resource managers by exploiting the services of a Real-Time Operating System
(RTOS), and ultimately perform schedulability and sensitivity analysis of the timing
requirements upon the target (HW) architecture.

The variations of the computation times compatible with the schedulability con-
straints are used in the development of new products to avoid excessive iterations
between mapping and schedulability analysis, when only imprecise specifications
are available.

When extending the functionality of an existing product, sensitivity information
is exploited by project managers to estimate, very early in the design flow, whether
such an extension might have critical timing impacts, drastically reducing the risk of
adopting a variation of the design.

The RT-Druid design environment has been implemented in Java, and it is inte-
grated (as a set of additional plug-in modules) into the Eclipse open development
framework. The entire design model is formally defined and represented by an XML
schema, which defines the elements of the functional and architecture level design,
the mapping relationships, the annotations adding timing attributes to the design ob-
jects and the schedulability-related information.

There are many possible ways in which the current work could be extended. The
first immediate next step could be to allow fast sensitivity evaluation in the case of
tasks sharing resources with predictable worst-case blocking times, as in the case of
resources protected by priority ceiling semaphores. However, the most relevant ex-
tension for practical purposes would be to target distributed real-time applications
and the case of deadlines larger than periods. In this case, unfortunately, the formula-
tion of the feasibility region changes and the results in (Bini and Buttazzo 2004) are
not valid and cannot be exploited for faster results with respect to bisection.
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9 Conclusions

In this paper we presented a theoretical approach for performing sensitivity analysis
of real-time systems consisting of a set of periodic tasks. The proposed method allows
a designer not only to verify the feasibility of an application, but also to decide the
specific actions to be done on the design variables to reach feasibility when the task
set is not schedulable, or to improve resource usage when the task set is schedulable.

The analysis has been presented both in the C-space, where the design variables
are the computation times, and in the f -space, where the design variables are the task
rates. In both cases, the method allows computing the exact amount each variable can
be varied to keep the task set in the feasibility region. We showed how the proposed
framework can be conveniently adopted to generalize overload management methods,
as the elastic scheduling approach (Buttazzo et al. 2002), which can be effectively
extended to work with the exact analysis of fixed priority systems.

Simulation experiments showed that our approach is much more efficient that a
classical bisection method, both in the domain of computation times and in that of
periods. Finally, we presented an example illustrating how sensitivity analysis can be
fruitfully integrated in a typical design cycle. We believe this approach can reduce
the distance between the theory of feasibility analysis and the practice of real-time
systems design.
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