Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2010), Macau, China, August 23-25, 2010.

Feasibility Analysis under Fixed Priority Scheduling
with Fixed Preemption Points

Gang Yao, Giorgio Buttazzo and Marko Bertogna

Scuola Superiore Sant’/Anna, Pisa, Itafg.yao, g.buttazzo, m.bertogr@sssup.it

Abstract of processor utilization, and allows better schedulapilit
results.

Limited preemption models have been proposed as a In practice, however, arbitrary preemptions can intro-
viable alternative between the two extreme cases of fullyduce a significant runtime overhead and may cause high
preemptive and non-preemptive scheduling. In particular, fluctuations in task execution times, so degrading system
allowing preemption to occur only at predefined preemp- predictability. In particular, three different types ofste
tion points reduces context switch costs, simplifies theneed to be taken into account at each preemption [13]. A
access to shared resources, and allows more predictablescheduling cost is due to the time taken by the scheduling
estimations of worst-case execution times. Current result algorithm to suspend the running task, insert it into the
related to such a model, however, exhibit two major defi- ready queue, switch the context, and dispatch the new
ciencies: (i) The exact response time analysis has a highincoming task. A Pipeline cost is due to the time taken
computational complexity; (i) The maximum lengths of the to flush the processor pipeline when the task is interrupted
non-preemptive regions was not completely investigated inand the time taken to refill the pipeline when the task is
all possible scenarios. resumed. A cache-related cost is due to the time taken to

In this paper, we address the problem of scheduling reload the cache lines evicted by the preempting task. This
a set of real-time tasks having fixed priorities and fixed time depends on the specific point in which preemption
preemption points. In particular, under specific but not occurs and on the number of preemptions experienced by
restrictive assumptions we simplified the feasibility gnal the task [1], [13].
sis and proposed an efficient feasibility test. Finally, an Moreover, to avoid unbounded priority inversion when
algorithm for computing the maximum length of fixed accessing shared resources, preemptive scheduling re
non-preemptive regions for each task is described, andquires the implementation of specific concurrency control
some simulation experiments are presented to validate theprotocols, such as Priority Inheritance, Priority Ceiling
proposed approach. [24] or Stack Resource Policy [2], which introduce addi-

tional overhead and complexity, whereas non-preemptive
scheduling automatically prevents unbounded priority in-

l. Introduction version.
On the other hand, fully non-preemptive scheduling is

Since the pioneering work of Liu and Layland [20], too inflexible for certain applications and could introduce
a lot of research has been done in the area of real-timelarge blocking times that would prevent guaranteeing the
scheduling to analyze and predict the schedulability of schedulability of the task set.

a task set under different scheduling policies and task To overcome such difficulties, different scheduling ap-
models. Most of the available results have been derivedproaches have been proposed in the literature to avoid ar-
under a fully preemptive model, where every task can be bitrary preemptions and limit the length of non-preemptive
suspended in any point and at any time, in favor of a execution.

task with higher priority. When context switch overhead is 1) Fixed Preemption Points (FPP)According to this
ignored in the analysis, as done in most scheduling papers, model, each task is divided into a number of non-
the fully preemptive model is more efficient in terms preemptive chunks (also called subjobs) by inserting

redefined preemption points in the task code. If a
This work has been partially supported by the European Camityisi P P P P

Seventh Framework Programme FP7/2007-2013 under graeeragnt h'gher priority taSk.arriveS between tWO preemption
no. 216008. points of the running task, preemption is deferred

Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2010), Macau, China, August 23-25, 2010.

until the next preemption point. of time. Hence, the first preemption will take place during
2) Floating Non-Preemptive Regions (NPR3nother the execution of the special chunk. For the same reason,
approach is to define for each taska maximum the second preemption will take place at timer @, very
interval @Q; in which the task can execute non- close to the end of», leaving the final non-preemptive
preemptively. Since the mode switching is triggered region arbitrary small.
by the arrival time of higher priority tasks, which is On the other hand, under the FPP case (see Figure 1(b)),
unknown a priori, in this model, the non-preemptive r, is divided into four non-preemptive regions and the
regions have no fixed start time, and are consideredpreemptions are only allowed at these three preemption
to be “floating” in the task code. points. As showed in the figure, the special code chunk can
3) Preemption ThresholdsA different approach for be incorporated into the third non-preemptive region, thus
limiting preemptions is based on the concept of it will never be preempted during its execution. Moreover,
preemption thresholds, proposed by Wang and Sak-the final non-preemptive region of cannot be arbitrary
sena [27] under fixed priority systems. This method small, but has a fixed length decided at design time. For
allows a task to disable preemption up to a specified this reason, the second job of (arriving at¢;) cannot
priority, which is called preemption threshold. Each preemptr,.
task is assigned a regular priority and a preemption For the reasons explained above, in this paper we
threshold, and the preemption is allowed to take consider a limited preemption model with fixed preemption
place only when the priority of arriving task is higher points (FPP). In this model, the length of the final non-
than the threshold of the running task. This work has preemptive chunk plays a crucial role in reducing the task
been later improved by Regehr in [23]. response time. In fact, all higher priority jobs arriving
From a practical point of view, using fixed preemption during the execution of the final chunk of the running
points allows achieving higher predictability. In fact, by task do not cause a preemption, and their execution is
properly selecting the preemption points in the code, it is postponed at the end of the task.
possible to reduce cache misses and context switch costs, b) Motivating example 2.Let us consider a task set
therefore improving the estimation of preemption overhead consisting of 3 periodic tasks, with relative deadlinesaqu

and worst-case execution times [13]. to periods. The task set is describedlas- {r, 72, 73} =
- {(1,4),(1,6), (4,12)}, where the first number represents
! T T - the task computation time and the second the period.
it o ”
e — 7 — — |
Q] Q] TQT ! [f
(a) Floating non-preemptive region case. TBT | . | | | 1I
7—1 0 12
Tt T 7 > (a) Fully preemptive case.
1 2
O —] T |
> ol em ! e f
(b) Fixed preemption point case. | s ¥
TgT I —

-
-

0

Fig. 1. Floating NPR model vs. FPP model.

(b) Fixed preemption case: with final subjob long 3.
a) Motivating example 1.:To better explain the

difference between the floating non-preemptive region and Fig. 2. Fully preemptive vs. FPP.
the FPP model, let us consider a simple task set scheduled
by these two policies, as depicted in Figure 1. Tasks areAssuming a synchronous activation of the task set, the
assigned fixed priorities and, has the lowest priority. schedule produced by Rate Monotonic in fully preemptive
The gray part inside, represents a special chunk of code mode is shown in Figure 2(a). As clear from the figure,
in which a preemption would generate a high preemption 73 is preempted twice and has a response time equal to 8
cost. Suppose there are two instances,@rriving at time units of time. However, if the last 3 units of are executed
t; andt,, respectively. non preemptively, the two preemptions do not take place

Under the floating case (Figure 1(a)), whenarrives and the response time reduces to 6, as shown in Figure
at timet;, = will not be preempted immediately, but will 2(b). This simple example clearly shows that the last chunk
switch to non-preemptive mode and continue €runits of a task, when executed in non-preemptive mode, can

Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2010), Macau, China, August 23-25, 2010.

significantly reduce the interference from higher priority sense. George et al. [14] provided comprehensive feasibil-
tasks, thus reducing the task response time. Howeverjty analysis on non-preemptive scheduling, however, the
a long non-preemptive region can cause large blockingauthors assumed either a completely non-preemptive or a
to higher priority tasks, possibly jeopardizing the system fully preemptive model. Davis et al. [10] considered typica
feasibility. applications of non-preemptive fixed priority schedulimg o

¢) Contributions of the paper.This work provides a CAN bus, and presented the analysis to bound worst-case
four main contributions. First, we extend the task model response times of real-time messages.
by considering the length of the longest and last non- Fixed priority scheduling with deferred preemptions,
preemptive region in each task, in order to simplify feasi- allowed only at some predefined points inside the task
bility test of tasks with fixed preemption points. Second, code, has been proposed and investigated by Burns [8],
we identify the conditions under which the feasibility who however did not address the problem of computing
check of a fixed-priority task set can be limited only to the maximum length of non-preemptive chunks.
the first instance of each task (instead of checking multiple ynder the floating model, Baruah [3] computed the
instances within a certain period, as proved by Bril et |ongest non-preemptive interval for each task that dose not
al. [7]). Third, based on this result, we present an efficient jegpardize the schedulability of the task set under EDF,
test to verify the feasibility of fixed priority tasks with jith respect to the fully preemptive case. Yao et al. [28]
fixed non-preemptive regions, and finally, we present an agddressed the same problem, but under fixed priorities.
algorithm for computing a bound on the length of non- gy et al. [7] further improved the response time
preemptive chunks for each task, discussing how such ayna\ysis under this model. The authors identified a critical
bound varies as a function of the length of the final subjob. gji,ation that may occur in the presence of non-preemptive

d) Paper Organization.:The rest of the paper iS (egions, deriving the analysis to take such a phenomenon
organized as follows. Section Il presents some relatedini account. In particular, in certain situations, the -exe
work. Section Il introduces the new task model and the . tion of the last non-preemptive chunk of a taskcan

methodology used in the paper. Section IV determines yg |5y the execution of one or some higher priority tasks,
the conditions under which the response time analysis,yhich can later interfere with the subsequent invocations
for the FPP model can be simplified. Section V presents ¢ .. |dentifying such a situation, later referred tosaf-
the feasibility test for fixed priority tasks with given ,shingphenomenon, requires a more complex test, since
subjob division. Section VI illustrates the algorithm for ihe analysis cannot be limited to the first job of each task,
computing the maximum length of subjobs for each task ¢ it must be performed on multiple task instances within
without violating the system feasibility. Section VIIre® 5 certain period. Furthermore, their work dose not address
some simulation results. Finally, Section VIl states our ihe problem of how to compute the maximum length of
conclusions and future work. each chunk.
When taking preemption costs into account, the schedu-
Il. Related Work lability analysis becomes rather complex, because cache-
_)) related preemption delays (CRPDs) significantly increase
Most work on non-preemptive scheduling has typically \yorst-case execution times [17], [26], which in turn affect
focused on single-job models, where tasks have precedencge total number of preemptions [22]. Under the FPP
relations, are invoked only once, and must be completedmogel, however, the negative influence of CRPDs can be
before a deadline [11], [12]. Non-preemptive tasks were gjleviated by appropriately selecting the potential preem
considered in the Spring Kernel [25], where a heuristic tjon points, and the total number of preemptions a task can
algorithm was used to find a feasible schedule or reducegffer is bounded by the number of preemption points.
the number of deadline misses. o The research presented in this paper is motivated by
A more _genera_l characterization _Of periodic tasks has e neeqd of limiting both the number and the position of
been c0n5|de_red in [16], [19]. In this model, tasks may preemptions to better estimate the preemption overhead,
have a deatjlme smaller than or equal to the next releasgeqq e the worst-case execution times, and improve the
time. For this more general model, Mok [21] has shown gy giem design. Compared to previous related results [3],
that the problem of deciding schedulability of a set of 5g this work assumes fixed preemption points instead
periodic tasks with mutually exclusive sections of code ¢ arbitrary positions (as illustrated in Figure 1), which

is NP-hard.) allows enhancing the schedulability analysis. Moreover, i
Jeffay et al. [15] showed that non-preemptive schedul- provides a method for computing the maximum length of

ing of concrete periodic taskds NP-hard in the strong non-preemptive regions. However, the exact estimation of

LA concrete periodic task is a periodic task that comes withssigned ~ Preéemption cost isiot within the scope of this paper, and
initial activation. will be investigated in a future work.

Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2010), Macau, China, August 23-25, 2010.

lll. Task Model and Methodology

In this section, we present the task model and the
terminology used throughout the paper.

A. Task model

We consider a sef = {7y, 72,..., 7} of n periodic or
sporadic tasks that have to be executed on a uniprocess
under fixed priority scheduling. Each taskis character-
ized by a worst-case execution time (WCHKT,) a relative
deadlineD;, and a period (or minimum inter-arrival time)

this paper, any time valugs assumed to be a non-negative
integer value representing the interyiali + 1). Tasks may
access shared resources, provided that each criticabsecti
is confined within one subjob. Preemption cost is ignored
in the schedulability analysis, however, it is worth paugti

out that by appropriately selecting the preemption points,
preemption cost can be reduced and estimated with higher

Ogrecision compared to arbitrary preemptions.

B. Critical instant

The feasibility check to determine whether a given task

T; between two consecutive releases. Each task consists; is schedulable under a certain scheduling policy is done

of an infinite sequence of jobs ; (kK = 1,2,...) with
arrival time r; ;, and absolute deadling , = r; » + D;.

under the worst-case scenario that leads to the largest
possible response time. The activation times of the tasks

Tasks can be scheduled by any fixed-priority assignmentcausing the worst-case response timerofs defined as

and are indexed by decreasing priority, meaning that
is the highest priority task. In particular, the following
notation is used in the paper:

hp(i) = {r] j < i}
hep(i) = {m;| j < i}
Ip(i) = {7l j > i}
We assume that every task consists ofm; non-
preemptive chunks (subjobs), obtained by inserting- 1

the critical instant forr; [20].

When tasks have non-preemptive regions, Bril [6]
showed that the critical instant af occurs when it is
released simultaneously with all higher priority tasksg an
the longest non-preemptive subjob of lower priority tasks
starts an infinitesimal time before the releaser,of

Bril et al. [7] also showed that, when tasks have non-
preemptive regions at the end of their code, the worst-case
response time may not occur in the first job. Hence, the

preemption points in the code. Thus, preemptions can onlyfeasibility of a task set cannot be checked by analyzing

occur at the subjobs boundaries. Th& subjob has a
worst-case execution timg x, henceC; = >~/ ¢ k. In
particular, the last subjob of joh j is denoted a¥; j.

To simplify the schedulability analysis, two additional
parametersge® and ¢!*** are introduced in the task
model: {

max
q;
last

4q;

= max;”) {q;x}

= Gi,m;

1)

The reasons for choosing these two values can be

summarized as follows:

1) Non-preemptive execution can possibly cause block-
ing to higher priority tasks and the feasibility of a
task 7, is affected by the sizg/*** of the longest
subjob of each lower priority task € ip(k).

For taskr;, the lengthglest of the final subjob
directly affects its response time. In fact, all higher
priority jobs arriving during the execution of;’s
final subjob do not cause a preemption, since their
execution is postponed at the end «nf (see the
examples in Figures 1(b) and 2(b)).

2)

only the first job of each task, as done in fully preemptive
systems, but it must be checked for multiple jobs within a
certain time interval, which introduces significant compu-
tation complexity.

C. Request bound function

Schedulability analysis is performed using tieguest

bound functiorrBF(7;, t), defined as the maximum cumu-
lative execution request that can be generated by jobs of
7; within an interval of lengtht from the critical instant.
In [18], it has been shown that
t
RBF(7;,) [TJ C;. (2)

The cumulative execution request of a taskand all
higher priority tasks over an interval of lengtls therefore
bounded by:

Wi(t) =Ci+ > RBF(7;,1). 3)
75 €hp(i)

A necessary and sufficient schedulability test for fixed

Therefore, we consider each task to be characterized bypriority preemptive tasks was derived by Lehoczky et

the following 5-tuple:
{Ci, Di, Ti, g 4"}

al. [18], by checking whether for every taskthere exists
a valuet < D, such thatiW;(¢) < ¢. This is stated in the

following lemma [18].

The advantage of such a model will be shown through- Lemma 1. A fixed-priority task set is feasible under fully
out the paper. In the following, the superscript P and FPP preemptive scheduling if and only ¥, € 7,3t < Dy,
will be used to denote that a specific parameter or functionsuch that
refers to the preemptive and FPP model, respectively. In

Wi(t) <t. 4

Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2010), Macau, China, August 23-25, 2010.

whereW;(t) is defined in Equatior3). A. Properties of the self-pushing scenario
If ¢t* is the smallest value that satisfies Equation (4), o i o]
then it corresponds to the worst-case response time. Definition 1. Under fixed-priority scheduling, aself-

pushingphenomenon on a task is defined as the con-

dition in which there exists a joby; ,, with & > 1, such

that its response time is larger than the first job under the
As shown by Bril [7], the worst-case response time critical instant, that is:

of a job can be computed by considering therst-case 3k >1, REPP>RITE. (7)

occupied timéV O, (C), which is the longest possible span i rpp . i

of time from the job release till the time at which the ~ Notice thatR;;* denotes the generic response time

job starts or resumes its execution after the completion of©f one job whileRf{"" is the one under critical instance.

C' units of computation time. Then, he showed that the NOW, assume that there exists a self-pushing phenomenon

worst-case response tim&R; of a task can be expressed |nFtask 7 and letr; ,, k > 1 be the first job such that

in terms of worst-case occupied tiMi&0; by taking the Ei,lfp >_R51PP- Let s ands; 1 be the start times of
following limit from the left-hand side: final subjobF; ; andF; ;_1, respectively. Such a scenario

_ 5 is illustrated in Figure 3, where the final subjobs are
WER;(C) = s WO;(z). (5) depicted in gray. The following properties can be derived
on time interval[s; x—1, Si.k)-

D. Worst-case occupied time

whereWO;(z) is the smallest € R* that satisfies

t=x + Z <{TLJ + 1> C;. (6) Ti,k—1 Ti,k
e LT e e —

Notice that, in Equation (6), the only difference with < T < T g

respect to the worst-case response time is that the ceiIingT_ T T

function is replaced by the floor plus one. This essential " 1 1]]]

difference indicates that the response time is computed ' % Tik

when the job finishes its execution, regardless of whether

other higher priority tasks are released at the end, whereas

the occupied time also accounts for the higher priority jobs

arriving at the end of the current job’s execution.] o)
For example, in the schedule illustrated in Figure 2, the Property 1. The start times; ., cannot coincide with

worst-case response time of is 8 in Figure 2(a) and 6 the arrival time of tasks fromp(i).

in Figure 2(b), whereas its worst-case occupied time is 9 Proof: Since F; -1 cannot be preempted during its
in both cases. execution, let us consider the start timg,_; of F; ;1. If

a higher priority job arrives when the final subjéb;_,
) . .. is about to start, then preemption will take place before
IV. Simplifying Conditions the execution of; ,_,; that is, F; ,_; will start executing

after that higher priority job. Hence, the property holds.
In this section, we prove that, under the FPP model, the property 2. The interval[s; ,_1, s 1] is larger tharfl},

feasibility test can be restricted to the first job of eacktas that is

>t

Si k-1 Sik

Fig. 3. The self-pushing phenomenon.

activated at its critical instant, if the following conditis Sik — Sik—1 > 1.

hold: . . .
Al. (Constrained deadlined); <7; . haveProof. According to the definition of self-pushing, we
A2. (Preemptive feasibility) The task set is feasible Rf,fp = sip+ glast — rig > Rflpp- 8)

under a fully preemptive model.

Notice that these conditions are not restrictive an
are verified for most real-time applications. Burns and 7ék—1 we have
Wellings also recognize their relevance in the analysis of R =sip1+ ™" =i <RI (9)
non-preemptive tasks [9], although not formally used to Combining Equations (8) and (9), and noticing that >
derive the results. In this paper, we formally prove that riv_1 4+ T, we have T
conditions Al and A2 allow to simplify the feasibility test
by restricting the analysis to the first job of each task under
the critical instant. We first introduce the conceptS#lf- which proves the property. []
Pushingphenomenon and derive a number of properties Property 3. The processor is always executing jobs
under such a condition, then we prove the main theorem.from hep(i) in [s; k-1, i k|-

d Since 7, is the first job experiencing self-pushing, for

Sik — Sik—1 > Tik — Tik—1 = 1j

Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2010), Macau, China, August 23-25, 2010.

Proof: This can be proved by contradiction. Lgtc
[si,k—1, si,k] be the first time instant in which the processor
is not executing tasks fromep(i). Clearly,t’ cannot be
in [sik_1,8ik-1 + ¢'*], since F, ,_, starts executing
non-preemptively ak; ,_1. Also, since in[r; x, si.k] Tik
has remaining execution to be completédcannot be in
[rix, si.k]. Hencet’ must be within(s; ;1 + ¢****, 7 1).

All tasks from hp(i) arriving beforet’ must get finished
before that time, by definition of’. If at or after time

instantt’, some tasks fromhp(i) andip(:) are activated

or the processor becomes idle, the overall interference

(including blocking) will certainly be no greater than the

total delay experienced by the first job (which is activated

at the critical instant). HenceR!\"” < RT'F, which

contradicts the self-pushing assumption and proves the

property. []
B. Simplified feasibility analysis

The following lemma uses the previous properties to

And since, from Property 3, ifs; x—1, ;1] the processor
is executing only tasks fromhep(i), job 77, suffers no
blocking fromip(¢). Therefore, the occupied time for this
job under P and FPP model will be the same, that is:

o (C;) = Of P (Cy). (11)

Now, from Property 1, we know that; ,_; cannot
coincide with the arrival of tasks fromp(i), hence, the
worst-case for job/, is that all tasks fromhyp(i) arrive at
the same time(c | o) afters; ,_; and functionW Of (z)
is left-continuous at”;. Using Equation (5), we have:

WR[(C;) = WO[(C;) >= 07 (C3). (12)
Now, combining Equations (10), (11) and (12) together:

WRF(C;) > T,.

which means that a job with the same parameters as task
7; Will have response time larger thdp. This contradicts

the assumptions and proves the lemma. []
Using Lemma 2, we can prove the following theorem.

show that no self-pushing can occur when conditions A1 Theorem 1. Given a preemptively feasible task set with

and A2 are verified.

constrained deadlines, the task set is feasible under fixed

Lemma 2. If the task set has constrained deadlines (A1) priority scheduling with FPP, if the first job of each task
and is preemptively feasible (A2), then no self-pushing phe is feasible under the critical instant.

nomenon can occur under the fixed-priority FPP model.
Proof: By contradiction. Assumer; experiences a
self-pushing and let; ;, (k > 1) be the first job with
RIFP > RIFP. We show that this contradicts the pre-
erﬁptive feasibility or the constrained deadline assumptio
Consider a “synthetic” jobr;,, consisting of the final
subjob F; ;1 and jobT; ; excluding its final subjold; x,
e, 7'y = Fir-1U (Tie — Fi k). Obviously, 7/, has the
same execution tim€’;. Job 7} is illustrated in Figure
4. We assume this job arrives at tirag,_;. Since at this
time all tasks fromhp(i) are finished and subjob; i
can start, the synthetic job will also start upon arrival.

.
! T!—\ o I | T!—\ - - Lt
Tik—1 , Tik ,
1 [s
SM,H—FE
T,

1,8

Fig. 4. Synthetic task instance 7.

From Property 2, the occupied time of this job, denoted Wheredqél’?fﬁ

asOFPP(C;), can be expressed:
OFFP(Cy) = 84 — sij—1 > T (10)

Under the FPP model, high-priority tasks arriving dur-

Proof: From Lemma 2, we know that there is no self-
pushing phenomenon when tasks are preemptively feasible
and have constrained deadlines. Hence, for eachtgsk
the response time of any jah ;. will be no greater than the
one of the first job at the critical instant. That B} """ <
RITP. Hence, if the first job of each task under the critical
instant is feasible, then all the forthcoming jobs will also
be feasible. The theorem follows. [|

It is worth pointing out that in the proof of Theorem 1
the value ofglet is never used, meaning that the theorem
holds independently of the valug®st.

V. Feasibility Analysis for the FPP Model

In this section, the result stated in Theorem 1 is used to
derive a test for checking the feasibility of a set of fixed
priority tasks under the FPP model.

Definition 2. For each taskr;, the subjob allowancey; is
the length of the longest subjob belonging to lower priority
tasks inip(i). That is,

max
Q; = .

max ¢
T ElP(3) k

(13)

= 0 for completeness.
Un xed priority scheduling with FPP, the presence

of non-preemptive subjobs causes the following effects:
On one hand, the non-preemptive execution of any
subjob may cause a blocking time to higher priority tasks,

ing the execution of the final subjob are deferred to the however, no job will be blocked after it has started and any
end of the running task. Since their start times are alignedjob can be blocked for at most once by subjobs belonging
with the finish time of the current task, the occupied time to lower priority tasks. Therefore, the maximum blocking
under the FPP model takes such interferences into accountime thatr; may experience is:

Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2010), Macau, China, August 23-25, 2010.

B; = lim(a; — €)* (14) liflgWOi(Ci—i—al—e g1t = WR; (Ci+a;—qlt) (19)

elo K

wheree is an arbitrary small number to guarantee that sub- Combining Equations (17), (18) and (19) together:

job from Ip(i) actually starts before;. The downarrow in WO;(C; + B; —
the equation denotes the right-hand limit and the notation
* stands fomax{z, 0}, indicating that the blocking time
cannot be negative.
On the other hand, since the final subjob cannot be pre-
empted by any other tasks, it will continue to completion

last) t*)

Therefore, the final subjob will start @ and finish at
t*+qlest. Sincet* < D;—qglest, the first job ofr; meets its
deadline and, from Theorem 1, we conclude the entire task
is feasible under FPP model. Hence the theorem follows.

: - U u
once started. Hence, checking the feasibility of a job is Condition (16) does not need to be evaluated at every
equivalent to checking whether the final subjob can start, € (0, D; — =], but only at those values dfat which

at leastg!*s* units of time before the deadline.

Taking into account these two effects, the cumula-
tive execution request under the FPP model, denoted asto the
WEFPFE(t), can be represented as:

RBF has a discontinuity, i.e{t € (0,D; — ¢l**!] | t =
, k € NandVT}, 7; € hp(i)}. Moreover, similarly
methods presented in [4], the number of points can

i o be further reduced to the following set:
Wi (t) = (C q;) + GX}L:() RBF(ij t)' (15) 7—8(7_1) - Pz 1(D qfast) (20)
Tj p(T

Notice that the execution requestos final subjob ¢/@st) V\{herePi(t) is defined by the following recurrent expres-
is excluded inW PP (t). The feasibility condition for SiON: Pt = (¢

the task set usingV/"7F(¢) and«; is stated in the next o(t) = {t} . 21)
theorem. _ _ _ Pi(t) = Pia QTJ) UPi—1(t)

Theorem 2. A preemptively feasible task set with con- Theorem 2 allows finding the maximum length that

strained deadlines and given subjob division is schedelabl . L . . L
X LT : X subjobs of tasks ifp(i) can have without jeopardizing the
under fixed priority with FPP, if for each task there exists feasibility of 7;. Thus, from Equation (16), the maximum

_ last
€ (0, Di —q;**] sugf}l;hat possible valuey; for task , denoted abklocking tolerance
Wit +ai <t (16) B;, results:
whereWF PP (t) and a; are defined in Equatio15) and fi= max. {t =Wl (22)
(13), respectively. €T(m)
Proof: We first prove the theorem for tasks with Notice that the lowest priority task, will not be blocked

a; = 0. If a; = 0, e.g., the lowest priority task,, the Dy any other tasks in the system, hence it becomes mean-
blocking time due to lower priority tasks is zero. Since the ingless to calculatg},. However, we keep this parameter

non-preemptive execution of subjobs will only possibly fg th”e realsoré_of Completene?s v feasible task set with
reduce the interference and the blocking time is always orot ary d q |v§|r_1 a pre%mp ve y.f.eaS| b'e bag. S€ Wlth
zero, hence the feasibility can be verified as in the fully constrained deadiines and a Specitic subjob division, the

preemptive case independent of Equation (16). task set is feasible under fixed priority¥f;,i > 1

Whena; > 0, let t* be the earliest time that satisfies ¢;"* < min {B;}. (23)

Equation (16). Hence, thef®* < D; — ¢/*st and: m€hp ()
quation (16) PP % where 3, is given by Equatiorf22).
w; (") +ai =t". Proof: The corollary can simply be proved through

Using Equation (2) and (15), this can be written as: Theorem 2 and the definition of subjob allowance. Note
* that ¢i** is not used in the test since does not cause
(Ci + i — ¢*") + Z {T-‘ C; =t". blocking to any other task. Far > 1, if ¢** satisfies
riehp(i) | I Equation (23), then from the definition of subjob allowance
which is equivalent to: we know thata;(; € hp(i)) will not exceeds;, hence
WREP(C; + a; — ¢/*t) = t*. (17) the schedulability is guaranteed by Theorem 2. [|
Since in this proof allW R and WO functions refer to the Notice that the schedulability for each taskitself is
preemptive model, we omit the P superscript to simplify Verified by checking the value of7*“(7; € Ip(i)), or
the notation. The start time of the final subjob ofis as the lowest priority task in the system, is automatically

given by WO;(C; + B; — ¢l*st), where B; is the actual guaranteed as the first part of_the proof of '!'_heorem_Z_. Us-
blocking time given by Equation (14). Hence, we have: N9 the value ofg;, we can derive the feasibility condition
last last for each task. The pseudo-code for the feasibility check is
WO (CitBi—g;)_hm WO;(Citai—e—¢;*") (18) presented in Algorithm 1. Line 2 sets the initial value for
According to Equation (5) we have: 71. The for-loop in Line 3 checks the task feasibility one

Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2010), Macau, China, August 23-25, 2010.

by one, in decreasing priority order, using the condition
in Corollary 1. If the algorithm reaches Line 7, then
all the tasks will be feasible and the algorithm returns
true, otherwise, if there is a task with"** exceeding
the maximum possible value (Line 4), it returifalse,
meaning that the task set cannot be guaranteed.

Input: {D;,C;, T;, ™%, ¢lest} for Vr; € T,
preemptively feasible an®; < T;.
Output: Feasibility of the task set under FPP

begin

B1 =Dy —Cy

for i —2tondo
if ¢i"** > ming cppi){B;} then
| return “false”

Calculateg; usingq!*** by Equation (22)

return “true”

end

Algorithm 1: Feasibility test for a given task set under
fixed priority with FPP.

[ee]

VI. Bound of Subjob Length

In this section, we illustrate a method for computing
the maximum subjob length for each task under different

circumstances and we discuss how this length varies de-

pending on the length of the final subjob.

Let @, be the maximum possible length that any subjob
belonging tor; can have, without jeopardizing the system
feasibility under FPP. Notice thaf*** andg¢*** represent
the actual lengths in the task code for a given subjob
division, whereas); is the upper bound for such lengths.
Moreover,Q; is derived without considering the limitation
of the worst-case execution time, hence it cathe> C;.

Corollary 1 already provides a bound for the subjob
length of ;. However, we now derive an efficient way to
computeQ); recursively.

Since taskr; does not cause any blocking to other tasks
and it does not experience any interference, we set:

Q1=
{ p1 = D1 —Ch. (24)

The next lemma shows how to deriv@; for the
remaining tasks in the system.

Lemma 3. Given a preemptively feasible task set with

Proof: From Corollary 1, the subjobs lengthgfmust

satisfy

maT < :
“ = Tkglﬁg(i){ﬁk}

So the upper bound of the subjob lengthmpis given by

Qi = min {0k} (26)
. TR ERP(2)
Noting that
kaél}izf)l(i){ﬁk} = min {@‘—1, o 6%81){51@}}

and thatQ); 1 = min,, expi—1)1 Bk}, Equation (26) can be

rewritten as .
Q; =min{3i_1,Qi—1}

which proves the lemma. []

It is worth pointing out that the value @; for task;
only depends oy (7 € hp(i)), as expressed in Equation
(26). According to Equation (15) and (22), the blocking
tolerances; is a function ofgl®st. Therefore,g!*** does
not directly affect @;, but only the value of3;, which will
be used to comput€);(r; € Ip(i)). Depending on the
knowledge we have on the length of the last subjob, we
can distinguish three cases:

« The value ofg!*s! is not available In this case,
the guarantee has to be performed in the worst-case
scenario in whichr; can be preempted arbitrarily near
the end of its code. This is equivalent of consider-
ing ¢l*** = lim.|o¢, as done in the floating non-
preemptive model. In this case, the upper bound on
the subjob length will be denoted &g,

The value ofg}*** is given as the design parameter
In this case, the upper boun@? is performed as
described above.

The value ofj!*s! is equal tog™?*. In this case, the
upper bound on the subjob length will be the highest
and will be denoted ag);.

The subjob division is a compromise of several con-
straints, e.g. the task structure, application contexichge
the preemption points placement is not only a matter of the
length of each NPR, but also the preemption cost at this
point and other constraints. Chances are that the length of
final NPR is not the longest one, and for the concerning
of system schedulability, botil*s*, ¢"** and other task
parameters must be taken into account, using the methods
presented above.

The computation ofQ} is done in a similar way as
presented in Lemma 3, one task at a time in decreasing
priority order. The crucial factor now is the value gf**,

constrained deadlines, the maximum length of subjob fromyynich is set to the maximum possible value (equal to

task ;,2 < 7 < n that guarantees feasibility under FPP
is given b .
g Y Qi = min{B;_1,Qi1} (25)

where 8;_1 can be computed by Equatid@22) and the
initial value for r; is given in Equation(24).

min{C;, QF}) to compute the blocking tolerance, which

will be used to calculate the bound of NPR length of lower

priority tasks.
Observation 1. Given a preemptively feasible task set with

constrained deadlines, in the FPP model we have that

Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2010), Macau, China, August 23-25, 2010.

Q; > Q7 > Q" > 0.

Proof: This can be proved by considering the length
of the final subjob. For the case @}, ¢!**' has the
largest possible value. On the contrary, fof'***, glast
is an arbitrary small number, while fap?, ¢!*s* has an
intermediate value between the two cases.

Now, a larger final subjob reduces the interference from
higher priority tasks, allowing a larger blocking time from
lower priority tasks. Since the maximum subjob length is
equal to the minimum blocking tolerance frolm(s), the
observation follows.

VII. Simulation Results

under different workloads, however, all the three values
resulted to be very similar for low utilizations. Since all
three values forr; were set to infinity, the curves start
from i=2. The value of@QY was computed by Lemma 3
settingq!*s! equal tomin{C;/2, min;<;{3;}}.

This result shows that the subjob bound is affected
by the length of the final subjob. As expecte@; is
the maximum of all these three values aRd'**’ is the
smallest. Note that the difference becomes larger for tasks
with lower priorities. This is because the lower priority
tasks have a larger chance to be preempted by high priority
tasks, therefore, the length of the final subjob becomes
more crucial: a larger value afi*s* will lead to larger
blocking tolerance and consequently larggr

This section presents some experimental results per-
formed on synthetic task sets to compare the maximumB. Exp. 2: average preemption number

subjob length and the average number of preemptions

under different situations.

The task set parameters used in the simulations were

randomly generated as follows: The UUniFast algorithm
[5] was used to generate a set of tasks with total
utilization equal toU,,;. Each computation timé&’; was
generated as a random integer uniformly distributed in
a given interval §,50], and thenT; was computed as
T, = C;/U;. The relative deadlind; was generated as
a random integer in{; + 0.5 - (T; — C;), T;] and the

unfeasible task sets under fully preemptive mode were

the average value over 1000 randomly generated task set

A. Exp. 1: different Q length

In a first experiment, we considered a set of 10 tasks,
monitoring the maximum subjob length for each task under
different circumstances.

25

- % -0 =Max

—=—q

last
1

:as‘ = Given

15

Average Value of Q over C

051

. .
5 6
Task Index

10

Fig. 5. Average value of Q;/C;.
Figure 5 plots the average rat@,/C; for each task
when Uy, is equal to 0.9. Simulations were performed

In a second experiment, we monitored the average
number of preemptions produced in a run (lasting 1 million
units of time) as a function of;,;, under different
scenarios. Heré#,,; was varied from 0.5 to 0.95 with step
0.05 andn = 15.

Under the floating condition task; switches to non-
preemptive mode fof)/"**" units of time when a higher
priority task arrives [28]. Under th&); condition, task
7; executes non-preemptively i€; < QF, otherwise,
preemption points are inserted from the end of task code to
the beginning, withQ)} length interval, i.e., all the subjobs,

Sexcept the first one, have length equalp. For the sake
of comparison, in the case @}, we assume preemption

points are inserted in the same way as in the cagg pbut

with interval length equal t@)/"*** (Q? = Q/'***). Figure

6 reports the ratios of average number of preemptions
under the different limited preemptive model with respect
to the fully preemptive model, as a function of the system
utilization Uy,;.

As clearly showed in the figure, the size of the last
subjob is not a crucial parameter for reducing the number
of preemptions when the task set utilization is low, whereas
its influence becomes more relevant for higher workloads.
In this condition, settingg!?*! to the maximum value
achieves the least number of preemptions.

It is interesting to point out the subtle differences be-
tween@? andQ/"***. UnderQ/"*** case, each preemption
is deferred@/'*" units of time unless the running task
remaining execution time is less the{'°*". While under
QY case, the preemption points are inserted at fixed interval
of @Y, hence, each preemption is deferred to the next point
and the average deferred time is only aro@ity2. Since
task computation time is fixed an@? = Q/"***, QY
case should generate more preemptions thaanll at
case, which is validated through simulation results. A fair
comparison can only be done when the preemption cost is
also taken into account, which will be a future work.

Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2010), Macau, China, August 23-25, 2010.

(7]

0.35 T

—a—- ' = Given
1

0.3} A [8]

o q:a‘sI =Min

[%2)

c

2 0.25[

£ [9]

¢

& o2

o

5 [10]

E 0.a5f

=z

5

° [11]

2 o1}

o

0.05 [12]

& ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
05 055 06 065 07 075 08 08 09 095 [13]

Total Utilization
Fig. 6. Ratio of number of preemptions with [14]
respect to the fully preemptive case.

VIII. Conclusions el
. . .
In this paper, we considered the problem of analyzing
the feasibility of a task set with fixed preemption points
under fixed priority scheduling. The feasibility analysis u
der limited preemptions has been simplified with respect to
the existing literature, proving that, under given corais,
guaranteeing the first job of each task is sufficient for (18]
the entire task set. Based on this, an efficient feasibility
test under specific but not restrictive assumptions was
introduced. We also presented an algorithm for computing [t
the maximum subjob length for each task, and discussed
how such a value changes as a function of the final subjob(20]
length. Finally, simulations were performed on randomly
generated task sets to validate the proposed approach.
As a future work, we plan to exploit the exact preemp-
tion position to better estimate the cost of each preemption[zz]
and task worst-case execution time, thus making the sys-
tem design more predictable. [23]

[21]

References [24]

[1] S. Altmeyer and G. Gebhard. Wecet analysis for preemptive [25]
scheduling. In8th Int. Workshop on Worst-Case Execution Time
Analysis pages 105-112, Prague, Czech, July 2008.

[2] T. P. Baker. Stack-based scheduling of real-time preessReal-
Time Systems3(1):67-100, March 1991.

[3] S. Baruah. The limited-preemption uniprocessor sclieguof

sporadic systems. IECRTS '05: Proc. of Euromicro Conf. on

Real-Time Systempages 137-144, July 2005.

E. Bini and G. C. Buttazzo. Schedulability analysis ofripdic

fixed priority systems.|[EEE Trans. on Computer$3(11):1462—

1473, 2004.

E. Bini and G. C. Buttazzo. Measuring the performance of

schedulability testsReal-Time Systen80(1-2):129-154, 2005.

R. Bril. Specification and Compositional Verification of Real-Time

Systems PhD thesis, Technische UniversiteitEindhoven (TU/e),

2004.

[26]
[27]
(4]

(28]

(5]
(6]

R. Bril, J. Lukkien, and W. Verhaegh. Worst-case resjgotise
analysis of real-time tasks under fixed-priority scheduliwith
deferred preemptionReal-Time Systen#2(1-3):63-119, 2009.

A. Burns. Preemptive priority based scheduling: An appiate
engineering approach. S. Son, editor, Advances in Real-Time
Systemspages 225-248, 1994.

A. Burns and A. Wellings. Real-Time Systems and Programming
Languages: Ada, Real-Time Java and C/Real-Time POSIX {frour
Edition). Addison Wesley Longmain, 2009.

R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Caiker
area network (can) schedulability analysis: Refuted,sitad and
revised. Real-Time Systen35(3):239-272, 2007.

G. Frederickson. Scheduling unit-time tasks with gete release
times and deadlines.Information Processing Lettersl6(4):171—
173, May 1983.

M. Garey, D. Johnson, B. Simons, and R. Tarjan. Schedulinit-
time tasks with arbitrary release times and deadlii®8M Journal

of Computing 10(2):256—269, 1981.

G. Gebhard and S. Altmeyer. Optimal task placement tprave
cache performance. Ifroc. of the ACM-IEEE Int. Conf. on
Embedded Softwar@pages 259-268, Salzburg, Austria, 2007.

L. George, N. Rivierre, and M. Spuri. Preemptive and -non
preemptive real-time uniprocessor scheduling. ReseaggloRRR-
2966, INRIA, France, 1996.

K. Jeffay, D. Stanat, and C. Martel. On non-preemptigkesluling

of period and sporadic tasks. IRroc. of Real-Time Systems
Symposium.pages 129-139, Dec 1991.

] E. Lawler and C. Martel. Scheduling periodically oatng tasks

on multiple processordnformation Processing Letterd2(1):9-12,
1981.

1 C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong,C.

Park, M. Lee, and C. S. Kim. Analysis of cache-related pra&mp
delay in fixed-priority preemptive schedulinglEEE Trans. on
Computers 47(6):700-713, 1998.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic deciiag
algorithm: Exact characterization and average case bahavn
Proc. of the Real-Time Systems Symposipages 166 — 171, CA,
USA, Dec 1989.

] J. Leung and J. Whitehead. On the complexity of fixeansi

scheduling of periodic real-time tasksPerformance Evaluatign
2(4):237-250, 1982.

C. L. Liu and J. W. Layland. Scheduling algorithms for Itipro-
gramming in a hard-real-time environmedburnal ACM 20(1):46—
61, 1973.

A.-L. Mok. Fundamental Design Problems of Distributed Systems
for the Hard Real-Time EnvironmenPhD thesis, MIT, USA, 1983.
H. Ramaprasad and F. Mueller. Tightening the boundseasible
preemption points. IlRTSS '06. Proc. of 27th Real-Time Systems
Symposiumpages 212-222, Dec. 2006.

J. Regehr. Scheduling tasks with mixed preemptionticela for
robustness to timing faults. IRroc. of the 23rd IEEE Real-Time
Systems Symposiumages 315-326, 2002.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority interce
protocols: An approach to real-time synchronizatioBEE Trans.

on Computers39(9):1175-1185, 1990.

J. A. Stankovic and K. Ramamritham. The spring kernelnéw
paradigm for real-time system#$EEE Softw, 8(3):62—72, 1991.

J. Staschulat and R. Ernst. Multiple process executibcache
related preemption delay analysis. Pmoc. of ACM Int. Conf. on
Embedded softwargages 278-286, Pisa, Italy, 2004.

Y. Wang and M. Saksena. Scheduling fixed-priority taskh
preemption threshold. IRroc. of Conf. on Embedded and Real-
Time Computing Systems and Applicatiopages 328-335, 1999.
G. Yao, G. Buttazzo, and M. Bertogna. Bounding the maxim
length of non-preemptive regions under fixed priority schied.

In Proc. of Conf. on Embedded and Real-Time Computing Systems
and Applications pages 351-360, China, 2009.

