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Abstract—This paper presents a prototype laboratory exper-
iment to be integrated in the education of embedded control
systems engineers. The experiment, a real-time control of a
dynamical system, is designed to drive students to a deeper
understanding and integration of the diverse theoretical con-
cepts that often come from different disciplines such as real-
time systems and control systems. Rather than proposing the
experiment for a particular course within an embedded systems
engineering curriculum, the paper describes how the experiment
can be tailored to the needs and diverse background of both
undergraduate and graduate students education.
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I. I NTRODUCTION

T HE economic importance of embedded systems has
grown exponentially as electronic components are in

everyday use devices. Hence, embedded systems education is
a strategic asset, and university curricula are being adapted
accordingly to cover this domain [1]. Embedded systems
courses are being integrated into existing science and engi-
neering curricula [2], [3], but also specific curricula havebeen
developed to integrate the broad set of concepts into a course
sequence [4]–[7]. In addition, modern teaching practices,such
as problem based learning [8], international project collabora-
tion [9], cooperative learning [10], on-line competitions[11],
educational games [12], or remote laboratories [13], have also
been applied to the embedded system education. To provide
students with in-depth understanding across all the areas and
disciplines involved in embedded systems is a difficult task.
Hence, laboratory activities are crucial to consolidate the
diverse theoretical material [14].

Since many embedded systems are control systems [15],
and considering that there is an increasing trend to adopt real-
time technology for the embedded computing platform [16],
laboratory experiments including topics of real-time and con-
trol systems are becoming more and more important for the
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education of embedded systems engineers. The traditional
teaching approach to real-time systems and to control systems
courses can be quite math-intensive and abstract, thus failing
to introduce students to the realities of embedded control
system implementation. Moreover, the natural interactionand
integration between these two disciplines is often neglected
due to the traditional compartmentalized nature of science
and engineering education. Since control systems are real-
time systems, control engineers must have an understanding
of computers and real-time systems, while computer engineers
must understand control theory.

To overcome such limitations, this paper presents a labora-
tory experiment to be integrated in the education of embedded
control systems engineers that flexibly combines two main dis-
ciplines: real-time systems and control systems. The flexibility
is achieved by describing a set of problems/observations that
provide the spectrum of possible choices that instructors/stu-
dents have and the work that has to be done to complete the
experiment. This permits elaborating diverse assignmentsfor
the laboratory experiment with open problems rather than pro-
viding tight guidelines, while providing the tools for assessing
whether the students design and implementation choices were
correct. Finally, through the experiment, it is shown that the
combination of both disciplines do not rise conflicts. It rather
provides complementary approaches/views that help in the
multidisciplinary learning process required in the embedded
systems education.

The experiment main activity includes the implementation
of a real-time control application, consisting in controlling
a physical plant by a controller implemented as a software
task executing on top of a real-time operating system (RTOS).
Rather than proposing an experiment for a particular course
within an embedded systems engineering curriculum, the paper
describes how the experiment can be tailored to the needs
of both undergraduate and graduate students education, and
to the diverse background of the target audience. A tentative
laboratory program covering the different stages requiredto
carry out the experiment is presented, and its integration into
a master-level students course is also reported.

The rest of the paper is organized as follows. Section II
sets the objectives, competence and learning outcomes for the
designed experiment. Section III discusses the selection of the
controlled plant and processing platform/RTOS. Section IV
introduces the set of problems/observations for carrying out
the activity. Section V presents an outline of the experiment
and its adaptation to a course. Section VI concludes the paper.
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TABLE I
REQUIRED SKILLS

1 Understanding embedded control systems, their importance,
limitations, restrictions, and application areas

2 Analysis and synthesis capabilities
3 Explanation capability for efficient oral and written communication
4 Capability of integrating autonomous learning with team work
5 Capability of analyzing and assessing the economical, social and

environmental impact of the solutions

TABLE II
LEARNING OUTCOMES

1 Identify embedded systems features
2 Identify components, concepts and design methodologies
3 Interpret data-sheets, documentation and specifications
4 Design, build and troubleshoot an embedded control system
5 Practice on modelling, analysis and design of control systems
6 Practice on real-time programming and operating systems
7 Evaluate system performance

II. OBJECTIVES, COMPETENCE AND LEARNING OUTCOMES

The experiment objectives are twofold. First, the positive
benefits of experimental learning are well known in education
and professional activities. Students confidence and enthusi-
asm in experiments grow as they practice in problem solving,
team work, design skills, etc. Second, and more specifically,
experiments should educate students in embedded control
systems, providing additional knowledge they cannot acquire
from theory.

Looking at the ECTS (European Credit Transfer System),
program objectives are preferably specified in terms of the
learning outcomes and competence to be acquired. Although
the proposed experiment is not tailored to a specific program,
nor to any specific level of study (undergraduate, graduate),
the main skills to be acquired by students are listed in TableI.
Skills 1-2 relate to technical aspects and theoretical knowledge
on embedded control systems, skills 3-4 relate to practical
issues and experimental learning, whereas skill 5 refers to
sustainability issues. The multidisciplinary nature of embedded
systems requires more background and transversal knowledge
in different fields, combined with the capability of integrating
different skills for a system wide objective. The learning
outcomes are more specific because they state what is expected
from a student as a result of the learning process.

The learning outcomes are listed in Table II. The first
three outcomes are related to understanding embedded control
systems, from a technical point of view, taking into account
the multidisciplinary nature of the field. In this process, it is
also crucial for students to be able to read, understand, anduse
existing documentation, like data-sheets, application program-
ming interface (API) reference manuals, etc. Outcomes 4 to 6
are related to implementation issues, which are essential for
reproducing an experiment. Finally, the evaluation of system
performance is crucial to assess if the specifications are met.

The required background for students to carry out the
experiments is a basic knowledge on control systems theory
and real-time programming using an operating system.

III. SELECTION OF THE CONTROLLED PLANT AND

PROCESSING PLATFORM

The controlled plant and processing platform (hardware and
real-time operating system) have been carefully selected to
have a friendly, flexible, and powerful experimental set-up.
Both must be simple to avoid discouraging those students with
strong control systems background but weak real-time systems
background when facing the programming part, or vice-versa,
to avoid discouraging those students with strong real-time
systems background but weak control systems background
when facing the controller design stage.

A. Plant

Many standard basic and advanced controller design meth-
ods rely on the accuracy of the plant mathematical model. The
more accurate the model, the more realistic the simulations,
and the better the observation of the effects of the controller on
the plant. Hence, the plant was selected among those for which
an accurate mathematical model could easily be derived.

Plants such as an inverted pendulum or a direct current
motor are the defacto plants for benchmark problems in
control engineering [17]. However, their modelling is not
trivial and the resulting model is often not accurate. This
leads to a first controller design that has to be adjusted by
”engineering experience”, thus requiring knowledge that is
difficult to formalize and transmit to the students. To avoid
such a kind of drawbacks, a simple electronic circuit in the
form of anRCRC (Figure 1a) was selected. The simplicity of
its components and their simple and intuitive physical behavior
have been the main reasons for its selection. Note however that
experiments using other plants can be complementary to the
approach presented here, e.g. [15], [18]–[20]. Indeed, Lim[19]
also proposes electronic circuits. However, they are slightly
more sophisticated because they include operational ampli-
fiers. Although richer dynamics can be achieved, the intuitive
behavior and thus the modeling of operational amplifiers is
not straightforward.

The selection of an electronic circuit as a plant has also
another important advantage: depending on the specific circuit,
it can be directly plugged into a micro-controller without using
intermediate electronic components, as shown in Figure 1b,
where thezohbox (zero order hold) represents the actuator and
the box above represents the sampler. That is, the transistor-
transistor logic (TTL) level signals provided by the micro-
controller can be enough to carry out the control. Note
that this is not the case, for example, for many mechanical
systems. Such a simplification in terms of hardware reduces
the modelling effort to study the plant and no models for
actuators or sensors are required. Additional benefits of these
types of plants are that systems can be easily built, are cheap,
have light weight, and can be easily transported and powered.

The control objective would be to have the circuit output
voltageVout (controlled variable) to track a reference signal or
to settle to a constant value while meeting for example given
transient response specifications, which mandates to use track-
ing structures. The control will be achieved by samplingVout,
executing the control algorithm and applying the calculated
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(a) RCRC circuit

(b) Control setup

Fig. 1. Plant and control setup.

control signal to the circuit via varying the circuit input voltage
Vin (manipulated variable). Disturbances can be injected by a
variable load voltage placed in parallel to the output voltage.

B. Processing platform

The processing platform consists of the hardware platform
and the real-time operating system. As hardware platform,
a micro-controller based architecture was selected because
embedded systems are typically implemented using this type
of hardware. Note, however, that too small micro-controllers
may not be powerful enough for running an RTOS, as dis-
cussed in [22]. Among the several possibilities available on
the market [23], it was decided to adopt the Flex board [24].

The Flex board (in its full version) represents a good com-
promise between cost, processing power, and programming
flexibility. It was produced as a development board for building
and testing real-time applications using standard components
and open source software. The board includes a Microchip
dsPIC DSC micro-controller dsPIC33FJ256MC710, a socket
for the 100 pin Plug-In Module (PIM), an ICD2 (in-circuit de-
bugger) programmer connector, a USB (Universal Serial Bus)
connector for direct programming, power supply connectors,
a set of leds for monitoring the board, an on-board Microchip
PIC18F2550 micro-controller for integrated programming,and
a set of connectors for daughter boards piggybacking.

The board has several key benefits that make it suitable to
be used for educational purposes. First has a robust electronic
design, which is an important feature when it is employed
by non skilled users. Second, it has a modular architecture,
which allows users to easily develop home-made daughter
boards using standards components. A set of daughter boards
can be added to the Flex board for easy development, such
as a multi-bus board equipped with CAN (Controller Area
Network), Ethernet, I2C (Inter-Integrated Circuit), and other
communication protocols. On one hand, the availability of
CAN or Ethernet permits to build and experiment with net-
worked control applications. On the other hand, the available
networks can be used for debugging purposes or for extracting

data from the board, which is a difficult task when dealing with
embedded systems.

As far as the real-time kernel is concerned, different pos-
sibilities were considered. First, many well-known real-time
operating systems, such as real-time Linux [25], target proces-
sors that may be too powerful for embedded applications. But
more important, their internal structure is often too complex
for those students with a low profile in (real-time) operating
systems. Hence, it looks more desirable to work with small
real-time kernels (see e.g. [26]–[31] for small real-time kernels
targeting small architectures) whose internals are accessible,
easy to understand and modify, in order to tailor them to the
specific application needs. On the other hand, from a user
point of view, programming and configuring the kernel (in-
cluding creating tasks, assigning priorities/periods/deadlines,
and setting the scheduling policy) should be friendly enough
to attract non-skilled programmers.

From the considerations mentioned above, Erika Enterprise
real-time kernel [24] was selected. Erika provides full support
to the Flex board in terms of drivers, libraries, programming
facilities, and sample applications. The kernel, available under
the General Public License and OSEK (Open Systems and
their Interfaces for the Electronics in Motor Vehicles, [32])
compliant, is a RTOS for small micro-controllers based on an
API similar to those proposed by the OSEK consortium. The
kernel gives support for preemptive and non-preemptive mul-
titasking, and implements several scheduling algorithms [33].
The API provides support for tasks, events, alarms, resources,
application modes, semaphores, and error handling. All these
features permits to enforce real-time constraints to application
tasks to show students the effects of sampling periods, delays
and jitter on control performance.

The development environment for Erika Enterprise is based
on cross-compilation, avoiding typical students misconcep-
tions when the development platform and the target share
the same hardware. A tool, named RT-Druid [24] (based on
Eclipse [34]), can be used as a default development platform
to program in C, with support from Microchip for the com-
piler and for the programming development kit. The latter
is important because Microchip web-pages [35] are always a
good place where to share experiments experiences and code:
a good place for instructors and students to visit. RT-Druidim-
plements an OIL (OSEK Implementation Language) language
compiler, which is able to generate the kernel configuration
from an OIL specification. Apart from programming in C, the
Flex board can also be programmed automatically using the
Scilab/Scicos [36] code generator (similar to what can be done
with MATLAB/Simulink [37] and its Real-Time Workshop, as
used for example in [38] for rapid control prototyping). This
is an important benefit for non-skilled C programmers.

From an education point of view, it is also important to note
that there is the possibility to build a community around this
processing platform to create a repository of control software
for education. In fact, a set ofapplication notesthat describe a
set of control experiments (inverted pendulum, ball and plate,
etc.) developed with Erika on Flex can be found in [24].

Finally, it must be stressed that the price of the Flex board
lies in the lower bound of evaluation board prices, and that
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the Erika kernel and the associated development tools are
open source, available for free, or available for free in student
edition format. Hence, it is an economically atractive option.

IV. EXAMPLE OF THE LAB EXPERIMENT

This section presents some of the activities in the form of
problems and solutions (and observations) required to carry
out the lab experience, which are later ordered in the work
plan. The emphasis is in the control analysis and design part.

A. Problem 1. Plant modelling

If qi represents the charge on capacitorCi, the differential
equations of the circuit, in terms of the currentsq̇i at eachRi,
are given by

q̇1R1 + (q1 − q2)
1

C1

= Vin

q̇2R2 + (q2 − q1)
1

C1

+ q2

1

C2

= 0 (1)

q2

1

C2

= Vout,

For example, using state-space formalism, a state-space
form is given by

ẋ(t) =

[

0 1
−1

R1R2C1C2

−
R1C1+R2C2+R1C2

R1R2C1C2

]

x(t)

+

[

0
1

R1R2C1C2

]

u(t)

y(t) =
[

1 0
]

x(t)

(2)

whereu(t) is the control signal,y(t) is the plant output, and
x(t) = [ x1 x2 ] is the state vector, wherex1 corresponds
to the output voltageVout, andx2 is q̇2/C2.

Observation 1:The modelling of the plant could have been
also done in terms of a transfer function (see [39] for the
analysis). Even obtaining the differential equations is a good
exercise. Adopting the state space formalism may add another
benefit if using model (2). Since only the output voltagex1 can
be physically measured, the control algorithm requires theuse
of observers for predictingx2. This opens the door to experi-
ment with several types of observers and the implementation
of the controller has to include them. Also, the selection ofthe
state variables is arbitrary, and therefore, students haveto take
design decisions. For example, the voltages in both capacitors
could also have been chosen as a state variables. In any case,
if possible, it is interesting to chose the state variables in such
a way that the controlled variable is directly available through
the output matrix in order to minimize computations in the
micro-controller.

B. Problem 2. Electronic components

The selection of the electronic components is very impor-
tant for several reasons. The output impedance must be low
enough to properly connect the circuit to the analog-to-digital
converter (ADC) or to some external instrumentation, such
as an oscilloscope. For example, given the initial components
R1 = R2 = 1 KΩ andC1 = C2 = 33 µF, a manageable circuit
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(b) Faster closed loop response
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(c) Overshoot closed loop response

Fig. 2. Simulated RCRC responses.

impedance is obtained. With these components, the state space
model becomes

ẋ(t) =

[

0 1
−976.56 −93.75

]

x(t) +

[

0
976.56

]

u(t)

y(t) =
[

1 0
]

x(t).
(3)

Observation 2:Students can be given other values. For
example, withR1 = R2 = 330 KΩ and C1 = C2 = 100
ηF, it is easy to see that the equivalent output impedance is
too high for the ADC. To derive such a conclusion, students
have to consult the dsPIC data sheet.

C. Problem 3. Open loop simulation

Open loop dynamics can be observed by injecting reference
signals to the circuit via its inputVin. For example, by
injecting a square wave that oscillates between1 V and2.5 V
at 1Hz, the obtained dynamics are illustrated in Figure 2a. The
voltage outputVout (solid curve) slowly tracks the reference
(dashed curve).

Observation 3:The electronic components determine the
circuit open loop dynamics. Students must be aware of this
by playing with different electronic components. In addition,
simulation can be done by standard software packages used in
control engineering (e.g., MATLAB/Simulink, Scilab/Scicos)
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or by programming the response in C or even using an
spreadsheet application.

D. Problem 4. Controller design: sampling period and per-
formance specifications

For the chosen plant, there can be different control goals. A
possibility can be to modify theRCRC transient response by
accelerating it, or by arbitrarily achieving a given overshoot.
In any case, the selection of the sampling period and the
controller itself have a strong impact on control performance.
Also, they have to be selected and designed taking into account
the processing platform. If avoiding intermediate electronics
between plant and dsPIC is the assumption, the control signal
(Vin) can be generated using the Pulse Width Modulation
(PWM) (by adjusting the duty cycle) and the controlled
variable (Vout) can be obtained through the ADC. Therefore,
the reference, the sampling period, and the controller mustbe
chosen/designed so that the voltage levels of the control signal
and generated peak current levels lie within the hardware
limitations.

Given the previous square reference signal, through an
iterative design stage, and according to standard rules of
thumb, two state feedback controllers can be designed, one that
accelerates the response, namedfast controller, and another
that produces overshoot, namedovershootcontroller. For the
fast controller, the period is set toh = 0.01 s, and the
discrete state feedback controller is designed to place the
continuous closed loop poles atp1,2 = −30 (note that the open
loop system has poles at−12 and−81, approximately). The
overshoot controller has a sampling period ofh = 0.1 s, and
the controller places the closed-loop poles atp1,2 = −10±20i.

It is worth noting that, using only standard rules of thumb
for selecting sampling periods [39], both controllers should
have a slightly shorter sampling period. Thefast controller
should be given a period ofh = 0.007 s and theovershoot
controller a period ofh = 0.03 s. However, since longer sam-
pling periods result in lower controller resource demands,an
iterative simulation process was used to find longer sampling
periods for both controllers without introducing unacceptable
performance degradation.

Observation 4:Selecting sampling periods, desired closed
loop poles, or even having a higher amplitude for the reference
signal may cause the values of the control signal to be out
of range. Relations illustrating trade offs in the design of
embedded control systems can also be taught to the students,
such as showing that increasing sampling rates means stronger
control signals (saturation problem) but also more processor
usage (feasibility/schedulability problem).

E. Problem 5. Controller design: tracking

The controller design has to consider that the goal is to track
a voltage. The standard tracking structure [39], that includes
Nu as the matrix for the feed-forward signal to eliminate
steady-state errors andNx as the matrix that transforms the
referencer into a reference state, can be adopted. Following
the case study,Nu = [1] andNx = [1 0], and discrete gains

CPU mySystem {
OS myOs {
EE_OPT = "DEBUG";
CPU_DATA = PIC30 { APP_SRC = "code.c";MULTI_STACK = FALSE;

ICD2 = TRUE;};
MCU_DATA = PIC30 { MODEL = PIC33FJ256MC710;};
BOARD_DATA = EE_FLEX { USELEDS = TRUE;};
KERNEL_TYPE = EDF { NESTED_IRQ = TRUE;TICK_TIME = "25ns";};
};
TASK myTask {
REL_DEADLINE = "10ms";PRIORITY = 1;STACK = SHARED;
SCHEDULE = FULL;
};
COUNTER myCounter;
ALARM myAlarm {
COUNTER = "myCounter";
ACTION = ACTIVATETASK {TASK = "myTask";};
};

};

Fig. 3. Kernel configuration file

areK = [0.0685 −0.0249] or K = [1.0691 −0.0189] for
the fast or overshoot controller.

Observation 5:Students can practice other tracking struc-
tures, such as integral control, and can study whether the code
of the controller would suffer significant changes.

F. Problem 6. Controller design: closed loop simulation

The simulated closed loop response for the fast and over-
shoot controllers is shown in Figure 2 b) and c), respectively.

Observation 6:As before, simulations can be done using
different methods.

G. Problem 7. Controller design: observers

For the simulation, the two state variables are available.
However, in the real experiment, an observer must be included.
For simplicity in coding the control task, a reduced observer
can been chosen for observing the second state variablex2. For
example, the observer discrete gain isKr = −37.81 or Kr =
−13.42 for the fast and overshoot controller if the observer
continuous closed loop pole are located atpob = −50.

Observation 7:Students can design and evaluate by sim-
ulation different types of observers (reduced, complete, etc.)
with different dynamics. That is, they can also evaluate the
effect of different locations for the observer poles. From
an implementation point of view, students can also assess
the effect that splitting the control algorithm into two parts
(calculate control signal and update state) has on input-output
delays and schedulability [41].

H. Problem 8. Implementation: kernel configuration and con-
trol algorithm

The first implementation involves coding the controller in
a periodic task that will execute in isolation on top of Erika.
The main pseudo-codes are illustrated in Figures 3, 4 and 5.

Figure 3 is theconf.oil file that specifies the kernel con-
figuration with EDF (Earliest Deadline First, [40]) scheduling
algorithm and a periodic task that will be used to implement,
for instance, the fast controller. The basics of the main code
are illustrated in Figure 4. First, the timer T1 is initialized and,
together withSetRelAlarm, will produce the periodic activation
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int main(void)
{
T1_program();
EE_time_init(); // EDF initialization
ADC_init(); // ADC1 configuration
PWM_config(); // PWM1 configuration
SetRelAlarm(myAlarm, 1, 10);
for (;;) // reference signal
{ // generation

Delay(100000);
reference = 2.5;
Delay(100000);
reference = 1;

}
return 0;

}

Fig. 4. Main code

TASK(myTask)
{

x_1 = read_adc()
r = reference;
x_2 = observer(Kr,x1,r,x_1old,x_2old);
u = r*NU + K_1*(r*NX_1 - x_1) + k_2*(r*NX_2 - x_2);
write_pwm(u);
x_1old = x_1;
x_2old = x_2;

}

Fig. 5. Control task code

of the control task every10 ms (the processor speed was
configured at40 MIPS - Million Instructions Per Second).
Figure 5 shows the control task code including the observer
and the tracking structure.

Observation 8:Carrying out the kernel configuration and
programming the controller could be taught following an
ordered sequence of steps, such as: 1) introduction to kernel
configuration, 2) introduction to periodic tasks, 3) introduction
to input/output operations (PWM, ADC).

I. Problem 9. Implementation: setup and monitoring details

Figure 6a shows the experimental setup that includes an
oscilloscope (for displaying the circuit output voltage) to
show the open loop response (Figure 6b) and the closed loop
responses (Figures 7a and b) achieved by each controller
executing in isolation. The oscilloscope screen-shots confirm
that the implementation achieves the control goal: the system
output performs the desired fast tracking or achieves the
specified overshoot.

Observation 9:An oscilloscope has been used to monitor
both the responses. It can also be of interest to monitor whether
the control task executes when specified. Another option could
be to use the Multibus board to send the data of interest via
Ethernet or any other available communication protocol. This
would pose interesting challenges in terms of the real-time
system such as non-invasive debugging.

J. Problem 10. Multitasking: simulation

A second implementation is introduced to illustrate more
advanced concepts. In the previous implementation a control
task was executing in isolation. However, in many high-
tech systems, the processor is used not only for the control

(a) Setup

(b) Open loop response

Fig. 6. Experiment setup and monitoring.

(a) Fast closed loop response

(b) Overshoot closed loop response

Fig. 7. RCRC responses.

computation, but also for interrupt handling, error manage-
ment, monitoring, etc. And it is known that in a multitasking
real-time control systems, jitters, i.e. timing interferences on
control tasks due to the concurrent execution of other tasks,
deteriorate control loops performance [41]. The objectiveof
this implementation is to observe these degrading effects and
implement corrective actions, e.g. [42]–[44].

A starting point is to inject a new task in the kernel for
each control task. The new task, named noisy task, when to
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(b) Faster multitasking closed loop response
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(c) Overshoot multitasking closed loop re-
sponse

Fig. 8. Simulated multitasking RCRC responses and schedule.

be executed together with the fast controller, is given a period
(and relative deadline) of11 ms, and it is imposed anartificial
execution time of9 ms. The noisy task that goes together with
the overshoot controller has a period and relative deadlineof
110 ms with90 ms of execution time. The simulation of each
multitasking system was done in the TrueTime simulator [45].
Putting together each control task with the corresponding noisy
task under EDF results in timing variability (jitter) for the
control task, as illustrated for the first multitasking system in
the schedule of Figure 8a. In this figure, the bottom curve
represents the execution of the fast controller task, whereas
the top curve represents the execution of the noisy task. In
each graph, the low-level line denotes no-execution (that is,
intervals in which the processor is idle), the middle level line
denotes a task ready to execute (i.e., waiting in the ready
queue), whereas the high-level line denotes a task in execution.
Note that the control task has a measured execution time of
0.12 ms, which is much less than the noisy task.

Looking at the plant responses in Figures 8 b) and c), it can
be appreciated that the fast controller does not exhibit a control
performance degradation, while the overshoot controller suf-
fers some degradation: overshoots are bigger, square amplitude
differs, transient response varies, etc. This fact indicates that
the current control design for the fast controller is robust
against jitters induced by scheduling, while the second one
is more fragile.

Observation 10:Adopting an iterative simulation study,
students can learn which parameters play an important role

(a) Partial schedule

(b) Faster multitasking response

(c) Overshoot multitasking response

Fig. 9. Implemented multitasking RCRC responses and schedule.

when jitters appear. Are shorter sampling periods, or non-
overshootted responses, a guarantee for having robust control
designs? Which role do deadlines play in reducing jitters? For
further questions and solutions, see [46] and references therein.

K. Problem 11. Multitasking: implementation and monitoring
details

The new implementation requires specifying the noisy task
by modifying the kerneloil file in terms of defining the
new task and the associated alarm. Also, the new task has
to be coded: forcing an artificial execution time is achieved
by placing a delay into the code. Themain code has to be
modified to configure the new alarm associated to the new
task.

After the implementation, in the first multitasking system,
it can be verified that scheduling conflicts (as illustrated in
the simulated schedule shown in Figure 8a) may occur, as
illustrated in Figure 9a. In this sub-figure, the execution of
the fast controller task sets an output pin to0 and 1 at
each job start and finishing time. And the noisy task sets
an output pin to0 and 0.5 at each job start and finishing
time. In addition, similar responses for the fast and overshoot
controller are obtained (see sub-figures 9 b) and c)), showing
that the overshoot controller suffers degradation from jitters,
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(a) Overshoot controller with/without jitters

(b) Overshoot controller eliminating the jit-
ter problem

Fig. 10. Overshoot controller: degradation and solution

while the fast controller shows the same response as it is
executed in isolation. To illustrative purposes, Figure 10a
shows the overshoot controller response when executing in
isolation (dark curve) and when executing in the multitasking
system (grey curve).

Observation 11:Undergraduate students may work the ex-
periment up to this problem. It shows the importance of
concurrency and resource sharing with respect to control
performance in a multitasking embedded control system.

L. Problem 12: Multitasking: design for eliminating or mini-
mizing the jitter problem

Recent research literature has faced the problems introduced
by jitter and many solutions have been proposed. Here, the
solution proposed by Lozoya et al. [44] has been adopted.

The basic idea is to synchronize the operations within each
control loop at the actuation instants. In this way, the time
elapsed between consecutive actuation instants, namedtk−1

andtk, is exactly equal to the sampling period,h. Within this
time interval, the system state is sampled, namedxs,k, and
the sampling time recorded,ts,k ∈ (tk−1, tk). The difference
between this time and the next actuation time

τk = tk − ts,k (4)

is used to estimate the state at the actuation instant as

x̂k = Φ(τk)xs,k + Γ(τk)uk−1 (5)

whereΦ(t) = eAt and Γ(t) =
∫ t

0
eAsdsB, being A and B

the system and input matrices in (3), anduk−1 the previous
control signal. Then, making use ofx̂k, the control command
is computed using the original control gainK as

uk = Kx̂k. (6)

The control commanduk is held until the next actuation
instant. A control strategy using (4)-(6) relies on the time
reference given by the actuation instants, ifuk is applied to the
plant by hardware interrupts, for example. In addition, samples
are not required to be periodic becauseτk in (4) can vary at
each closed-loop operation.

After implementing this strategy on the overshoot controller
in the multitasking system, Figure10 b) shows the result.
Specifically, it shows the overshoot controller response when
executing in isolation (dark curve) and when executing in the
multitasking system using the algorithm that eliminates jitters
(grey curve).

Observation 12:The problem presented above and its solu-
tion can be split into several tasks, like analysis and modelling
of the new control algorithm, implementation of the control
algorithm, etc. An interesting issue is how synchronized ac-
tuation instants can be forced in the kernel. For example, a
solution could be to use a periodic task for computinguk and
another periodic task for applyinguk at the required time.
Another solution could be to enforce synchronized executions
at the kernel level, using the EDF tick counter. Moreover,
since different solutions to the jitter problem such as [42]
or [43] could have also been applied, students more confident
or interested in specific fields can select the solution that better
meets their preferences.

V. TENTATIVE WORK PLAN AND ITS APPLICATION TO A

SPECIFIC COURSE

The previous section has detailed some of the steps required
to successfully carry out the lab activity presented in thispaper.
This section summarizes them in order to propose a tentative
work plan that is divided into several sessions, each one being
a two-hour lab.

S1 - Introduction: Introduction to the activity, and sim-
ulation of the open-loop response after obtaining the state-
space form of theRCRC circuit from the circuit differential
equations (1) (consider random values forR andC). Here it
is assumed that state-space notation is chosen.

S2 - Problem specification (a):This session should be
used to specify the problem in terms of the levels for the
reference signal and for discrete controller design, which
includes selecting the sampling period and closed loop pole
locations, if pole placement is used. Other control approaches,
like optimal control, could also be used.

S3 - Problem specification (b):To complement the previ-
ous session, observers should also be designed and simulated.
The outcome of this session should be the complete simulation
setup.

S4 - Basic implementation (a):Build the RCRC circuit
and verify its dynamics in open-loop. Start the controller im-
plementation in a periodic hard real-time task in the processing
platform.

S5 - Basic implementation (b): Finish the controller
implementation and test its correctness.

S6 - Multitasking (a): Incorporate a noisy task in the
simulation setup to evaluate the effects of jitter. This step
would require to use, for example, the TrueTime simulator.
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S7 - Multitasking (b): Incorporate the noisy task in the
implementation and validate the previous simulation results.

S8 - Advanced implementation (a):If degradation in con-
trol performance is detected in the previous session, simulate
advanced control algorithms or adopt real-time techniquesto
solve or reduce the jitter problem.

S9 - Advanced implementation (b):Implement the previ-
ous solutions and validate them.

Note that the program timing, layout and the set of covered
topics should be adapted to particular needs/background ofthe
target audience or to the goals of the specific curriculum. For
example, the proposed activity has been introduced as a part
of the curriculum of the 2-year master degree onAutomatic
Control and Industrial Electronicsin the Engineering School
in Vilanova i la Geltŕu (EPSEVG) of the Technical Univer-
sity of Catalonia (UPC) [47]. In particular, since 2007, the
experiment was tailored to become part of the laboratory for
the Control Engineering course, which covers continuous and
discrete linear time invariant (LTI) control systems, as well as
non-linear control systems, all using state-space formalism.
Sessions S1 to S5 were adopted for the laboratory of the
discrete LTI control systems part.

The Control Engineering course can be followed by students
either in the first semester of the first year or in the first
semester of the second year. Students choosing the second
option simultaneously attend a course on real-time systems.
Therefore, within the same classroom, not all the students are
familiar with real-time systems. To overcome this apparent
drawback, teams of three students were formed containing at
least a student with competence on real-time systems. Within
such heterogeneous teams in terms of skills and theoretical
background, it was observed that students took their respon-
sibilities and team-work was significantly improved.

As in every course edition, after finishing the discrete LTI
control systems part, a short and simple questionnaire is given
to the students to let them evaluate several aspects of this part
of the course. The questionDo the laboratory activities permit
to better understand the theoretical concepts?is the only one
related to the laboratories. Looking at the students answers,
and taking into account that before introducing the presented
experiment the lab activities were focused on the simulation of
an inverted pendulum, the percentage of students appreciating
the practical part has increased significantly. Although the
standard course evaluation indicates this positive trend,a
more complete evaluation tailored to the introduction of this
experiment is required.

VI. CONCLUSIONS

This paper has presented a laboratory activity to be in-
tegrated in the education curriculum of embedded control
systems engineers. The activity consists of a real-time con-
troller of a RCRC electronic circuit. The potential benefits,
competences to be acquired, and expected learning outcomes
for students have been presented. The selection of the plantand
processing platform has been discussed. Extensive detailsof
a sample implementation have been presented and a tentative
work plan for carrying out the activity has been provided.

In summary, the proposed activity poses severalreal chal-
lenges to the students that can be met by putting together
interdisciplinary skills (electronics, real-time systems, control
theory, programming) towards a single goal: building a work-
ing system.
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