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Abstract—Several servers have been proposed to schedule
streams of aperiodic jobs in the presence of other periodic
tasks. Standard schedulability analysis has been extended to
consider such servers. However, not much attention has been
laid on computing the worst-case delay suffered by a given
stream of jobs when scheduled via a server. Such analysis is
essential for using servers to schedule hard real-time tasks. We
illustrate, with examples, that well established resource models,
such as supply bound function and models from Real-Time
Calculus, do not tightly characterize servers. In this work, we
analyze the server algorithm of the Constant Bandwidth Server
and compute a provably tight resource model of the server. The
approach used enables us to differentiate between the soft and
hard variants of the server. A similar approach can be used
to characterize other servers; the final results for which are
presented.

I. INTRODUCTION

Scheduling of mixed or hybrid task-sets, i.e., task-sets
with a combination of periodic and aperiodic tasks, has been
a topic of much relevance in the real-time community. Well
known scheduling policies such as Rate Monotonic (RM)
and Earliest Deadline First (EDF) are usually employed to
schedule the periodic tasks. In the presence of periodic tasks,
the question of interest is: How to schedule aperiodic tasks,
as soon as possible, and without affecting the performance
guaranteed to the periodic tasks. To this end, the notion
of servers was introduced; servers reserve resources which
can be used to serve aperiodic tasks. One of the first such
reservation schemes was proposed in [1]. Several other
servers have been presented since, which are discussed in
detail in [2]. Standard schedulability tests can be extended
to consider the presence of such servers.

Aperiodic tasks are usually event-driven and may have
hard, soft or non-real-time performance requirements, de-
pending on the specific application. In this work, we consider
aperiodic tasks with hard real-time performance constraints.
When such aperiodic tasks are scheduled via servers, it
is essential to validate if the performance constraints of
the tasks are met. To this end, a notion of the aperiodic
guarantee [2] has been introduced. An aperiodic guarantee
specifies a condition to verify whether an aperiodic job (an
instance of an aperiodic task) of known execution time,
arriving at a certain time instant, meets its known deadline,
when scheduled via a server. Such aperiodic guarantees
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are provided for most of the existing servers. The crucial
limitation with this approach is that it considers only a single
job, instead of a stream of jobs that constitute the aperiodic
task. This nullifies the effect of self-interference, i.e., the
effect that the execution of one job of a task can delay the
execution of subsequent job(s) of the same task.

Another approach to quantify the service provided by
servers is to use statistical analysis to compute QoS guar-
antees expressed in terms of probability for each served job
to meet a deadline. For instance, [3] provides such analysis
for the Constant Bandwidth Server, proposed in [4]. Such
analysis is not suitable for hard real-time tasks, where worst-
case deterministic guarantees must be provided for each job.

A third approach is to study the scheduling of specific
streams, such as periodic streams, when scheduled via the
server. For instance, a Constant Bandwidth Server, charac-
terized by a period Ps; and maximum budget @), can serve
a periodic task with period P > P;, execution time C' < Q)
and relative deadline equal to the period [2]. Restricting the
analysis to only consider streams of periodic jobs belittles
the need for servers. This limitation is especially significant
because aperiodic tasks by definition can have irregular
patterns of job arrivals, which need to be considered in
validating if real-time performance requirements are met.
For instance, a burst of jobs may appear, potentially delaying
the execution of subsequent jobs. Characterizing the possible
variability in the patterns of such job arrivals and then
analyzing such a characterized task for the performance
guarantee provided by the server is necessary.

From the above discussion it follows that analysis of a
general stream of jobs when served via a server such as the
CBS has not been studied. However, such analysis forms
the core of real-time analysis and we can look at existing
methods to perform the same. The first step in such methods
is to characterize the supply provided by the server. Two well
known approaches to characterize the supply provided by a
resource are (a) the supply bound function proposed in [5],
and (b) resource models used in the framework of Real-Time
Calculus and Modular Performance Analysis. As we shall
see with the help of examples in the next section, neither
of these methods are suitable in tightly characterizing the
working of servers such as the CBS. This is the motivation
for this work, in which we formally characterize the resource
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model of the Constant Bandwidth Server (CBS) by analyzing
its server algorithm. We then discuss how to use it to tightly
compute the worst-case delay suffered by any given stream
of aperiodic jobs.

The rest of the paper is organized as follows. We present
examples that motivate the presented analysis in Section II.
We define the system model and the problem in Section III.
We then describe and analyze in detail the Constant Band-
width Server in Section IV. We present the analysis of
the hard variant of CBS in Section V and discuss some of
the fine differences between the two variants. We present,
without proof, similar results for other servers in Section VI.
Finally, we conclude in Section VII.

II. MOTIVATIONAL EXAMPLES

In this section, we discuss specific examples where re-
source models such as the supply bound function [5] are
not able to tightly model the Constant Bandwidth Server.

The supply bound function characterizes the minimum
service or supply provided by a resource. More specifically,
sbf(A) denotes the minimum amount of service provided
by the resource in any interval of length A. Such a function
can be used to verify if a stream of jobs characterized
by an input arrival trace can be served by the resource
within a given delay bound. We formally define these terms
in Section III. In our case, we would like to characterize the
supply bound function of a server and use it to compute the
worst-case response time of a given stream of aperiodic jobs.
For instance, we can determine the supply bound function of
a TDMA server for given slot length and cycle period. The
supply bound function is such that we can tightly compute
the worst-case response time of any stream of aperiodic jobs
scheduled via the server.

Now let us consider a different server, namely the Con-
stant Bandwidth Server (CBS) characterized by a period P;
and maximum budget Q5. We describe the CBS algorithm
in Section IV. In contrast to the TDMA server, the CBS
is event-driven: the behavior of CBS adapts to the arriving
aperiodic jobs. Clearly, if no jobs arrive to be served by
the CBS, then the service provided by the server is 0, in
any interval of time. In other words, the server, by itself,
is not characterized by a supply bound function. Let us
redefine supply bound function such that sbf(A) denotes
the minimum amount of service provided by the resource in
any time interval of length A, within a backlogged period.
A backlogged period is one where the task queue of pending
jobs is non-empty. As we will see, even on using this
modified definition of the supply bound function, we cannot
derive tight results for the Constant Bandwidth Server.

Consider a specific task-set: a periodic task 77 with period
P; = 20, execution time C7; = 5, and relative deadline
Dy = 10, is scheduled along with a CBS with parameters
period P, = 2 and maximum budget Qs = 1. The task-set
is schedulable as given by the utilization test, Uy + Uy = 1,
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Figure 1. Computation of sbf for Constant Bandwidth Server. ¢, (t) and
ds(t) denote the server budget and deadline, respectively. In the interval
[10, 15] the aperiodic task T}, does not receive any service, though there
is pending work. Thus, sbf(5) = O for the considered CBS. This example
can be generalized to show that sbf(A) = 0,VA > 0.

where Uy = C1/Dy = 0.5 and Uy = P;/Qs = 0.5. Let
an aperiodic task T, be served by the CBS Ts. Consider
a specific arrival pattern of the jobs of the aperiodic task
as shown in Fig. 1. As can be seen, no periodic job is
present in the interval [0, 10], and thus, the resource is
fully utilized to serve the pending aperiodic jobs via the
server. However, in the process, the deadline of the server
is postponed to a large value. Then, a periodic job arrives at
time ¢ = 10, and gets served in the interval [10, 15]. In this
interval, the server provides no service to the aperiodic tasks,
though there are aperiodic jobs waiting to be served. Thus,
sbf(5) = 0 for the considered CBS. Indeed, this example
can be generalized, by changing the task-set, to show that
for arbitrarily long intervals of time, pending aperiodic jobs
may receive no service at all via the server. And thus for
a CBS sbf(A) = 0 for all A > 0: a characterization that
provides no performance guarantee.

A natural point that may be raised in response to the
above discussion is that the considered server is soft, in
the sense that by serving jobs in a hurry it postpones the
server deadline thereby leading to longer stalls. This has
been observed earlier in [6]. The Hard-CBS algorithm [4]
was proposed to nullify this effect. We formally describe
the algorithm of the server in Section V. Let us attempt to
compute the supply bound function of a Hard-CBS.

Consider a specific task-set: a periodic task 77 with period
P; = 10, execution time C; = 8 and relative deadline D; =
Py, scheduled along with a Hard-CBS with period P = 5
and maximum budget Qs = 1. As before, this task-set is
schedulable as Uy + Us; = 1, where U; = C1/D; = 0.8
and Us = Qs/Ps = 0.2. Now consider a specific trace of
the system shown in Fig. 2. In the interval [1,9], pending
aperiodic jobs receive no service. Thus, sbf(8) = 0, for
the considered Hard-CBS. Now consider a different trace
of aperiodic jobs served via the scheduler, which is periodic
with period 5 and execution demand 1. It is required that this



Figure 2. Computation of sbf for Hard Constant Bandwidth Server. In the
interval [1, 9] the aperiodic task T}, does not receive any service, though
there is pending work. Thus, sbf(8) = 0 for the considered Hard-CBS.

set of tasks be executed within a relative deadline of 5. As
sbf(8) = 0, no job with a relative deadline less than 8, can
be guaranteed to meet its deadline. We may conclude that
the considered periodic jobs will fail to meet their deadline.
As discussed earlier, authors of [2] show that the Hard-CBS
can indeed guarantee that these jobs meet their deadlines,
as the period and the relative deadline of the jobs equal
the server period P; and the execution demand is equal to
the server’s maximum budget (). This discrepancy, again,
highlights that the considered sbf resource model is not a
tight representation of the server.

Instead of using supply bound function, using (strict)
service curves as used in Real-Time Calculus (RTC) [7] and
Modular Performance Analysis (MPA) [8], also leads to the
same conclusion in either of the two cases discussed above.
Thus, with models of resource used in standard real-time
analysis we have not been able to tightly characterize the
resource model of the Constant Bandwidth Server. This is
the motivation for the current work, in which we attempt
to formally characterize the resource model of the Constant
Bandwidth Server (CBS) and to use it to tightly compute the
worst-case delay suffered by any given stream of aperiodic
jobs.

III. SYSTEM MODELS AND PROBLEM DEFINITON

We first formally describe an aperiodic task. An aperiodic
task T, is a stream of jobs, J = {J;}. Each job J; is
characterized by an arrival time a; and an execution demand
¢;. The input arrival trace, denoted as R, of task T}, is defined
such that R(t) is the cumulative execution demanded by all
jobs that have arrived in the time interval [0, ¢), i.e.,

>

{J;€T | a;<t}

R(t) : (1)

C;.

In this paper, we assume that R(t) is a left-continuous
function. By definition, R(0) = 0 and R(¢) non-decreasing
function of time.

The aperiodic task T, is scheduled on a resource via
a server S, parameterized depending on its kind. Other
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tasks and/or servers may be co-scheduled on the resource.
Throughout this paper, we only consider systems which are
known to be schedulable. Well known schedulability tests
exist for all the servers considered in this work.

We define the output trace, denoted as R’, such that R’(t)
denotes the cumulative execution provided to the aperiodic
task in the time [0, t], i.e., in [0, ¢] the aperiodic task executes
for R/(t) amount of time. In this paper we assume that R’ (t)
is a right-continuous function. By definition, R'(0) = 0 and
R'(t) is a non-decreasing function of time.

Let the finish time of job J; be denoted as f;. The problem
we consider in this paper is to compute an upper-bound on
the delay that can be suffered by any of the jobs of the task
T, when served by the server S, i.e., we wish to compute
¢ such that

fi§a1+5, VJz eJ. (2)

If the value of § so computed is no more than the relative
deadline of the aperiodic task, then we can claim that the
real-time performance requirement of the aperiodic task is
met, when served by the server S. The value § will be
referred to as the delay bound of the task.

Note that the above constraint must hold for all possible
valid behaviors of the other tasks and/or servers of the
system. In other words, the server must provide the above
guarantee to the aperiodic task independent of the rest of
the system, subject to the assumed schedulability condition.

In this work, we assume that the jobs of the aperiodic
task are scheduled to be served by the server in First-Come-
First-Server (FCFS) policy. This is a reasonable assumption
in practice because the jobs belonging to the same task are
generally of the same type and priority. For instance, in
a video-decoding application, decoding of each individual
frame may be considered a separate job. These jobs can be
queued according to the FCFS policy while they wait to be
served by the server. Technically, this assumption allows us
to relate the worst-case response time, §, to the input and
output arrival traces R and R’, respectively, as follows

§ <Del(R,R), )

where,
Del(R, R) Y sup {inf{A > 0: R(t—A) < (R)(t)}}.
t>0

“4)
The interpretation of the above formula is that when R > R’,
Del(R, R') gives the maximum horizontal distance between
the two curves, R and R’'.

IV. ANALYSIS OF CONSTANT BANDWIDTH SERVER

In this section, we will present the analysis of the Constant
Bandwidth Server (CBS), in some detail. This analysis will
set the template for the analysis of many other servers which
we consider in the subsequent sections.



A Constant Bandwidth Server (CBS) [4] is characterized
by a period Ps and a maximum capacity Q. It is a dynamic
priority server and thus assumes that Earliest Deadline First
(EDF) is the underlying scheduling discipline. The quantity
Qs/ Ps is usually referred to as the utilization of the server
and is denoted as U,. At each instance of time, the server
is characterized by a budget ¢s and a deadline d.

A. Server Algorithm

The following rules describe the working of a CBS. In all
notation below, 7 denotes the current time.
1) Initially ¢5(0) := 0 and d,(0) := 0.
2) Arriving jobs are queued in the FCFS manner in a task
queue of pending jobs.
3) When a new job J; arrives, if the task queue is empty
and if ¢s(7) > (ds(7) — 7)Us, then the server budget
is recharged to the maximum value (), and the server
deadline is changed as d(7) := 7 + Ps.
The job (if any) at the head of the task queue is
allowed to contend for the resource with a deadline
equal to the server deadline d(7).
5) Whenever a served job executes, the budget ¢s(7) is
decreased by the amount of received execution time.
When ¢,(7) = 0, the server budget is recharged to the
maximum value ()5 and the server deadline is changed
as dg(7) :=ds(7) + Ps.

4)

6)

B. Definition of Service Curve

In this section, we formally define service curves intro-
duced in Network Calculus [9]. We will use service curves
to characterize the servers and to thereby compute the worst-
case delay of a given stream of aperiodic jobs.

Definition 1 (Service Curve). Let the input arrival trace of
a stream of jobs be some arbitrary R(t). Let R'(t) be the
output arrival trace of the stream of jobs when served by
a resource. The resource is said to provide a service curve
B if and only if, B is a non-decreasing function of time,
B£(0) =0, and

R' >R B, &)
where,
(feo®) ™ f {fu)+gt-—uw}  ©

Let us understand the above relations better. For /3 to be
the service curve, we should have
R'(t) > (R® B)(t),
inf (R(u)+ B(t —u)),

0<u<t

vVit>0,
vVit>0.

In other words, a service curve [ is provided if and only if
for any given ¢ > 0, there exists s € [0, ¢] such that

R'(t) — R(s) > B(t — s). (7
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Figure 3. Graphical representation of the function F' defined in (9).

The quantity (R'(t) — R(s)) is the execution demand of
all tasks that both arrive and complete execution in the time
interval [s, t]. The above condition requires that this quantity
be greater than (¢ — s), for some s for any given ¢.

Note that the service curve is different in definition to
the supply bound function discussed in Section I. While
supply bound function provides a guarantee on every interval
of time, the service curve only guarantees properties on
certain intervals of time, which are free to be chosen. The
implications of this difference will be discussed later in this
section.

If indeed a resource provides a service curve /3, then it can
be used to compute the delay bound under the assumption
of FCFS queueing thus:

§ <Del(R,R') <Del(R,R® f). 8)

The above condition follows from the fact that whenever
R1 S RQ S R, we have Del(R, RQ) S Del(R, Rl)

C. Service Curve of CBS

If we succeed to show that for some non-negative non-
decreasing [ function, (5) holds for any input arrival trace R
and the corresponding output arrival trace R, when served
by a Constant Bandwidth Server (CBS), then we would be
able to prove that [ is the service curve provided by the
CBS.

We first define a function which we shall use to define
the service curves of CBS and other servers.

F(p,q,0,A)
A— tola-
Z{(A—O)— L OJP—(Z?—(J)} + L ) OJ q,
&)
where
" = max(z,0). (10)

We graphically illustrate this function in Fig. 3. In words, F'
is a non-decreasing non-negative function with a maximum
slope of 1, that periodically with period p (subject to an
offset o) increases by a value gq.

We now prove that CBS indeed provides a service curve.



Theorem 2. CBS with a period P; and maximum budget
Qs provides a service curve [3 given as
BCBS(A) = F(P57Q5707A)- (11)
Proof: As discussed earlier, to show that a resource
provides a service curve /3, we have to compute a number
s for any given arbitrary ¢, such that (7) holds. We now
discuss how to compute such an s for any given ¢ for the
CBS algorithm for the [ described in (11). Two cases
arise depending on whether the task queue is empty or not,
at the given time ¢.

Case (a): Task queue is empty at time ¢.
Since the task queue is empty, we know that all the jobs
that have arrived in [0, ¢) have completed execution by time

t, i.e., R(t) = R/(t). Then, by setting s := ¢, we have
R({t)—R(s)=R(@t)—R(t)=0
= 5(‘135(0) = Bcss(t - 5) (12)

Thus, we satisfy (7).

Case (b): Task queue is non-empty at time ¢.

Let s be the latest time before ¢ when step 3) of the server
algorithm is executed and the server budget is reset. Such a
time always exists, because the arrival time of the first job
satisfies the condition and at time ¢ there are pending jobs
in the task queue. In the interval [s,t], the only changes
to the server parameters occur in Step 6) of the server
algorithm, wherein, whenever the deadline is increased by
Ps, the server budget is increased by Q)s. Let p denote the

cumulative added server budget in the interval (s, ¢]. Then,
we have
t—s
ds(t) = s+ { iz JPerPS,and (13)
ds(t) —ds(s
p(“P ())Qs~ (14)

We know that the system is schedulable, i.e., the task will
be executed for time equal to the server budget, if requested,
on or before the server deadline. Thus, at the given time ¢,
when the task queue is non-empty

qs(t) < min(Qs, (ds(t) — t)). (15)

The total server budget consumed in [s,t] which equals
the time for which the aperiodic task is executed in the
interval, i.e., R'(t) — R'(s) is given as

R(t)

— R'(s) = qs(s) + p— qs(t)

By substituting (13), (14) and (15) and by using ds(s) =
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Figure 4. Example validating the service curve provided by CBS. (a) The
input arrival curve R is shown along with the bound on the output arrival
curve R ® (3, where (3 is as given in (11). Also shown is the delay bound
8. (b) The actual observed output trace R’ is shown with the maximum
observed delay d.

s+ Py and ¢4(s)
R'(t) — R'(s)
S0, + (ds(t) —ds(s)

—V_SJQfS(Q— +
=15 s s — qs(t))

t—s t—s +
\\ JQS <(t5)+(QsPs)\‘P JPS)

:6035( - ) (16)
At time s, a new job arrived while the task queue was empty,
and thus, R'(s) = R(s). Substituting this in (16), we have

R'(t) — R(s) > Bess(t — s). Hence, we have computed an s
such that (7) holds. [ |

= @s, in the above equation, we have

) Q. — min(Qu. (du(t) — 1))

Let us consider the example in Fig. 1. With the use of the
above result, we should be able to compute a lower bound on
the output arrival trace and the delay bound. We can verify
if these bounds hold for the observed output trace shown
in Fig. 1. The CBS we considered in Section I had a period
P, = 2 and maximum budget QQ; = 1. From the above
results, such a CBS provides a service curve of 5(A)
F(2,1,0,A). With this service curve and the input arrival
trace considered in the example, we illustrate in Fig. 4 the
computed R® [ and the delay bound 4. Indeed, the observed
R/, is such that R’ > R ® (3, and the worst-case delay
d=10<15=4.

D. Is the Bound Tight?

We have so far shown that the CBS characterized by a
period Ps and maximum budget (s has a service curve given
in (11). This service curve can be used to compute the delay
bound, 6, by using (8). However, as the name suggests, ¢ is
only an upper-bound on the delay that can be suffered by
a job. In the example shown in Fig. 4, the observed worst-
case delay was strictly smaller than the delay bound. This



motivates the question, whether this bound is tight, i.e., can
some job actually be delayed by the delay bound. In other
words, does CBS provide a service curve larger than (.
We show with the following result that this is not the case.

Theorem 3. The service curve of a CBS given in (11) is
tight.

Proof: Recall that the service curve provided by a
resource must be valid independent of the other tasks
and/or servers in the system, subject to the assumption of
schedulability. Thus, to show that the provided service curve
is tight, we are free to choose the configuration of the rest
of the system as long as the system is schedulable.

Consider a system where a CBS with period Ps; and
maximum budget ) is co-scheduled along with a periodic
task 7" of period P, and execution time Ps; — (). The system
is schedulable for this configuration. Let an aperiodic job
arrive simultaneously with the release of a periodic job.
Without loss of generality, we can choose to execute the
periodic task whenever the deadline of the periodic job and
the server deadline are the same. Then, the output arrival
trace of the aperiodic task, until the end of the backlogged
period, would exactly follow R’ = R ® fSes. The longer
the backlogged period (which we can increase by increasing
the free variable R) the longer the above tightness continues.
Hence the computed bound on the worst-case delay is indeed
tight. It is noteworthy that this tightness is, in part, due to
the tightness of the EDF schedulability constraint. ]

V. ANALYSIS OF HARD-CBS

The Hard-CBS, proposed in [4], is a variant of the
original CBS algorithm. Like the CBS, a Hard-CBS is
characterized by a period P, a maximum budget (Q),. At
each time instance ¢, a Hard-CBS is characterized by a server
deadline d,(t) and a server capacity ¢,(t). The server works
according to the following rules. In all notation below, T
denotes the current time.

1) Initially ¢5(0) := 0 and ds(0) := 0.

2) Arriving jobs are queued in the FCFS manner in a task
queue of pending jobs.

When a new job J; arrives, if the task queue is empty
and if gs(7) > (ds(7) — 7)Us, then the server budget
is recharged to the maximum value () and the server
deadline is changed as d(7) := 7 + Ps.

The job (if any) at the head of the task queue is
allowed to contend for the resource with a deadline
equal to the server deadline d(7).

Whenever a served job executes, the budget ¢,(7) is
decreased by the execution time received by the job.
When ¢s(7) = 0, the server is suspended until time
ds(7), i.e., jobs served by the server do not contend
for resources in [r,ds(7)]. At time ds(7), the server
budget is recharged to the maximum value )5 and the
server deadline is changed as d,(ds(7)) := ds(7)+Ps.

3)

4)

5)

6)
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The difference between CBS and Hard-CBS is how either
server reacts in step 6) to the budget being exhausted. In
CBS the budget is recharged to full immediately, whereas
in Hard-CBS the budget is recharged only when the server
deadline is reached, and in the meantime the jobs served by
the server are not allowed to contend for resources. In spite
of this difference, we show below that Hard-CBS provides
the same service curve as CBS.

Theorem 4. Hard-CBS with a period Ps and maximum
budget Qs provides a service guarantee of B as defined
in (11).

Proof: A CBS behaves identical to a Hard-CBS with the
same parameters, if the server budget is always exhausted
exactly at the server deadline. A CBS can indeed behave like
this, as we have argued when showing that the service curve
provided by the CBS is tight. When a CBS behaves so, we
cannot distinguish between CBS and Hard-CBS by merely
looking at the input and output arrival streams. Thus, Hard-
CBS with period P; and maximum budget Qs provides a
service curve (s defined in (11). [ |

With the presented analysis, we have achieved what we
set out to do: to compute the delay bound of an aperiodic
task with any given input arrival trace, when scheduled
via a (Hard-)CBS with given parameters. We did this by
demonstrating that the (Hard-)CBS provides a service curve
to the stream of jobs it serves. In addition we showed that
the computed bound is tight.

A. Strict Service Curve

The service curves guaranteed by CBS and Hard-CBS
with equal parameters are the same. Consequently, the
delay bound for any stream of aperiodic jobs is the same,
when served by either CBS or Hard-CBS with the same
parameters. However, as discussed in Section I, there seems
to be some difference in the guarantee provided by either
server. We shall try to understand this difference in this
section.

Let a stream of aperiodic jobs be served by a CBS with
period P; and maximum budget (),. Let at some point of
time ¢, the cumulative remaining execution time of all jobs
queued in the task queue be z(t), i.e., z(t) is the backlogged
demand, which can be written as R(t) — R'(t) = x(t). We
would like to answer the question: what is the earliest time
by when this backlogged demand would be served, under
the FCFS queueing discipline.

To illustrate the utility of such a computation, we consider
an example. Consider a fork system, where jobs can be sent
to several parallel servers based on a routing decision. If we
could determine the dynamic worst-case finish time of the
job when served in each of the servers, then we could route
the job to the server that provides the least such finish time.
If the queueing discipline is FCFS, this entails computation



of the time by when the backlogged demand of each server
would have been served. Does the service curve guarantee,
characterized by (5), help in answering such a question? The
answer is no. Even though the CBS provides a service curve
Bess» it can provide no guaranteed time by when the pending
jobs with execution demand xz(t) would be served. Another
example is the use of dynamic voltage scaling (DVS) to
adjust the frequency of a system such that it serves the
backlogged demand within a specified time window [10].
The service curve again provides us no means to perform
such a computation by using only the backlogged demand.

This limitation occurs because the guarantee provided by
the service curve says for every time ¢ there is some time
s < t, when a certain service guarantee is provided. This
value s can be such that (¢ — s) is arbitrarily large, and
thus to apply this service guarantee we must look back into
the history of the aperiodic stream and its execution via the
server. No guarantees are provided independent of what has
happened in the past. Thus, by merely knowing the quantum
of the backlogged demand we cannot compute a guaranteed
time by when it would be served. This limitation is overcome
if the server provides a strict service curve [9] defined as
below.

Definition 5 (Strict Service Curve). A resource is said to
provide a strict service curve (3 if in any interval of length A,
within a backlogged period, the amount of service provided
is at least B(A).

Note that the strict service curve is not defined with
respect to an input arrival curve. A strict service curve is
also a service curve, but the reverse is not always true [9].
To indicate that a service curve is a strict service curve, we
use the tilde symbol as B. We say a resource provides no
strict service curve, if B(A) =0, for all A > 0.

We now characterize the considered servers, namely CBS
and Hard-CBS, in terms of the strict service curve they
provide, if any.

Theorem 6. CBS provides no strict service curve and Hard-
CBS with a period Py and maximum budget Q) provides a
strict service of By.css given as

BH—CBS(A) = F(PS7 Qsa Ps‘ - Qs7 A)

Proof: We can prove that CBS provides no strict service
curve by contradiction. Let a CBS with a period Ps and
maximum budget Qs provide a strict service curve Bess such
that Bes(A1) > 0, for some given A;. We only consider
Ay > (Ps — Qs), as for any smaller A; even the tight
supply curve Ses(A1) = 0. Consider a system where the
CBS is co-scheduled with a periodic task 7" with execution
time A; and period A /(1 — Us), where U; = Q5/Ps. The
task-set is schedulable. Let an aperiodic job with execution
demand AU, /(1 —U,) + 1 arrive at time 0 along with the
release of a periodic job. It can be shown that the aperiodic
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job would be executed in the interval [0,A,/(1 — Uy) —
A4], and then the periodic job would be executed in the
interval [A;/(1—-Us)— A1, A1/(1—Us)]. In this interval of
length A4, the backlogged aperiodic job receives no service.
Hence the contradiction. Thus, for no A; we can claim that
ﬂCBS(Al) > 0.

We now prove the strict service curve provided by Hard-
CBS. Let [t,t+A1] be some given interval of time, when the
server is backlogged. For a Hard-CBS, the server deadline
ds(u) < (u+ Py), for any u > 0. Thus, for any time u
when the server is backlogged, the server budget must have
been reset to the maximum in the interval [u — Ps,u]. Let
s be the latest time when the server budget was reset to the
maximum on or before ¢. Then, since the budget reduces at
a maximum speed of 1, we have ¢s(t) > (Qs — (t — s))T.
Also, from the server algorithm we can show that

t+A—s
P
From schedulability of the server, we know that the server

budget, if requested, will be served within the server dead-
line. Using this we have

gs(t + A1) < (ds(t+ A1) — (t+ A1) T

Let p denote the cumulative added server budget in the
interval [t,¢ + A;]. Then, p is given by
Jo.

~ [ds(t+Ar) — (s + Ps)
o= L

The total execution time provided by the server in the
interval [¢,t4+Aq] is equal to gs(t)+p—qs(t+A1). By using
the above results, we can show that this quantity is equal to
BH,CES(Al). Hence, Hard-CBS provides a strict service curve
of BH-CBS' n

19)

(20)

With the strict service guarantee provided by Hard-CBS,
we can conclude that backlogged jobs with execution de-
mand z(t) would be served within time y(¢) where y(t) is
given as

y(t) := argmin{y : BH,CBS(y(t)) > x(t)}.

This guarantee holds independent of the input arrival trace
of the jobs. No such guarantee is provided by CBS. Thus,
while the service curves and consequently the delay bound
provided by the two variants of CBS are the same, the Hard-
CBS provides a strict service curve which enables dynamic
computation of the earliest time when the pending jobs
would be completed.

2

VI. RESULTS FOR OTHER SERVERS

We indicated for the soft and hard variants of Constant
Bandwidth Server how to compute the delay bound of
streams of aperiodic jobs when scheduled via the servers.
A similar approach of analyzing the server algorithm can



be used to compute the service curve, and consequently the
delay bounds, for other servers. In this section, we present
the results for commonly employed other servers, without
providing the proofs.

Theorem 7. A Dynamic Sporadic Server [11, 12] with
period Ps and capacity Qs provides a strict service curve
Bpss given as

Boss(A) = F(Ps, Qs, P — Qs, ). (22)
and a service curve B, given as
/BDSS(A) = F(P57 Qsa 07 A) (23)

Theorem 8. A Polling Server [13] with p~eri0d P, and
capacity Q¢ provides a strict service curve [3ps given as

Bes(A) = F(Ps, Qs, Py — Qs, A) (24)

Theorem 9. A Deferrable Server [14] with period Ps and
capacity Qs provides a strict service curve [,s given as

Bos(A) = F(Ps,Qs, P — Qs, A). (25)
and a service curve B, given as
ﬁDS(A) = F(PS7 Q87 07 A) (26)

Theorem 10. A Sporadic Server [15] with period Ps and
capacity Q¢ provides a strict service curve B given as

Bs(A) = F(Py, Qs, Py — Qs, A). 27)
and a service curve B given as
ﬁSS(A) = F(PS) QS7 07 A) (28)

VII. CONCLUSION

Servers provide means to schedule a stream of aperi-
odic jobs in the presence of other periodic tasks and/or
servers. Temporal isolation amongst tasks is an important
consideration in the design of such servers. This temporal
isolation enables extension of standard schedulability tests
to be applied to servers. However, not much attention has
been focussed on computing safe upper-bounds on the worst-
case delay suffered by jobs of the aperiodic stream. Such
computation is particularly significant when the aperiodic
jobs have to finish within hard deadlines.

Towards computing the delay bounds provided by servers,
we considered existing resource models in the real-time lit-
erature, such as supply bound function and resource models
from Real-Time Calculus. However, from our examples, we
saw that while in some cases they provide no meaningful
delay bounds, in others they provide non-tight delay bounds.
We then proposed to use the supply curve as proposed in
Network Calculus to model servers. For the specific and
representative case of Constant Bandwidth Server (CBS)
we showed that by analyzing the server algorithm we can
compute a provably safe and tight service curve. As a
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distinguishing feature the hard variant of CBS also guaran-
tees a strict service curve. A similar approach of analyzing
the server algorithm can be employed to characterize other
servers. A list of such results were presented for some of
the other commonly used servers.
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