
Proceedings of the 3rd International Real-Time Scheduling Open Problems Seminar (RTSOPS 2012)

Exploiting Uni-Processor Schedulabilty Analysis for
Partitioned Task Allocation on Multi-Processors

with Precedence Constraints
Mario Bambagini, Giorgio Buttazzo

{mario.bambagini, giorgio.buttazzo}@sssup.it
Scuola Superiore Sant’Anna

Pisa, Italy

Sverre Hendseth
sverre.hendseth@itk.ntnu.no

Norwegian University of Science and Technology
Trondheim, Norway

Abstract—This paper considers the problem of scheduling
real-time tasks with precedence and communication constraints
on heterogeneous multiprocessor systems. Most partitioned ap-
proaches statically schedule the task set by computing start times
and finishing times for each task in such a way that a desired
cost function is minimized. The resulting optimization problem
is however highly complex. The open problem proposed in this
paper is to reduce the overall complexity by transforming prece-
dence relations into real-time constraints and exploit uniprocessor
scheduling results to guarantee the task set.

I. I NTRODUCTION

The problem of task allocation and scheduling in multipro-
cessor systems under precedence and real-time constraintsis
known to be NP-Hard and has been investigated for many
years.

Such a problem has become dominant with the development
of Multi-Processors System-on-Chips (MPSoC), distributed
embedded systems, and computer clusters. In spite of the dif-
ferent contexts, the common goal is to provide algorithms for
the automatic allocation of tasks to optimize the computational
resources.

Many algorithms [1] have been proposed in the literature
and they can be divided into global and partitioned approaches.
Global algorithms pick the highest priority task from a single
ready queue (shared by the cores) and allocate it on an avail-
able processor. Partitioned approaches first allocate the task on
the processors and then schedule them using a local scheduler.
A wide range of algorithms exist, which spread from complete
searches [2], [3], meta-heuristics [4], and heuristics [5].

Most of these approaches start from a task set with prece-
dence and time constraints and produce a static schedule,
stored in a table and executed in a time-triggered fashion.
The approach considered in this paper proposes to transform
precedence relations into activation times and deadlines for
each tasks and use an online scheduling algorithm to execute
them. The advantage of this approach is to exploit existing
uniprocessor results for analyzing the schedulability of the task
set allocated on each processor, thus reducing the complexity
to find a feasible solution.

II. M ODEL

We consider a setΦ of m heterogeneous processors and a
setΓ of n preemptive real-time tasks, characterized by a set
of precedence constraints.

Each processorφj has a specific typeptj which collects pro-
cessors in groups of performance. The processors are assumed
to be linked together through a fully-connected network which
consists of a dedicated communication link for each node pair.
These links are assumed to be full-duplex and heterogeneous,
meaning that data transfer may take different time for the same
message size, depending on where tasks are allocated.

A task τi allocated on processorφj is characterized by a
worst-case computation timeCi,j . Computation times ofτi are
equal for the same processor type. Precedence dependencies
are represented by a direct acyclic graph. More precisely, the
notationτi → τj indicates thatτj has to start not earlier than
τi finishing time plus the communication time required for
data exchange. The data transmission delay is computed as
the amount of data exchanged betweenτi and τj divided by
the bandwidth guaranteed between the two hosting processors.
The whole application is considered to be periodic with a
periodP and a relative deadlineD. For the sake of simplicity,
P andD are assumed to be equal. We assume that in each
processor tasks are scheduled by Earliest Deadline First (EDF)
[6].

III. O PEN QUESTION

Most of the proposed partitioned algorithms produce a static
allocation and then a static schedule on each processor, and
the application feasibility is guaranteed if and only if thelatest
finishing time is less than or equal to the application deadline.

Our goal is to split the multi-processor scheduling problem
intom different uni-processor scheduling problems and exploit
the well-known theoretical results to guarantee the feasibility
on each processor. In order to apply this approach, however,
it is necessary to assign an activation time and a deadline to
each task, so that EDF can schedule them.

For each processor, the feasibility can be checked using the
Processor Demand Criterion [7] or through the offset analysis
[8]. In this case the analysis is simplified because task periods

1



τ1

τ2

τ3

τ4

Fig. 1. Task Graph

φ1

φ2

τ1

τ2 τ3

τ4

t
D

d1

d2 d3

d4a1

a2 a3

a4

Fig. 2. A possible assignment

are all equal to the application period. This also means that
the hyperperiod is equal to the application period and only
one instance for each task must be taken into account within
the analysis interval.

In this way, the problem mainly consists in an allocation
phase and a time assignment phase, leaving the scheduling
to EDF. While the allocation has been investigated for a long
time, providing an effective assignment of activation times and
deadlines is still an open question.

An example is reported in Figure 2 to show a possible
timing constraints assignment from the precedence relations
depicted in Figure 1. In the example, four tasks must be
executed on two processors running EDF as a scheduler.τ1
andτ4 are allocated on the first processorφ1 andτ2 andτ3 on
φ2. A valid timing assignment must setτ1’s deadline earlier
than the activations ofτ1’s successors (also considering the
communication overheads). The same forτ4.

A similar assignment problem has been addressed by But-
tazzo et al. [9], who extended the idea proposed by Chetto et
al. [10]. Their method, however, focuses more on the path
analysis rather than on each single task and their solution

φ1

φ2

τ1

τ2 τ3

τ4

t
D

d1

d2
d3

d4a1

a2

a3

a4

Fig. 3. Buttazzo et al.’s assignment

assumes homogeneous systems and negligible communication
costs. Moreover, for the task set illustrated in the example,
assigning each flow to a different processor, their method
would makeτ4’s activation time occurc4,1 units of time earlier
than its deadline, meaning thatτ4 has a relative deadline
equal to its computation time (Figure 3). Since their procedure
would set a3 = a2 and d3 = d2, the task set would be
infeasible onφ2, leading τ3 to miss its deadline. In fact,
d3 − a3 = d2 − a2 > c2,2 + c3,2, although a considerable
amount of time is wasted tilld1.

This example suggests that it is worth investigating alter-
native approaches to assign activation time and deadlines that
guarantee feasibility while minimizing a desired cost function.

REFERENCES

[1] R. I. Davis and A. Burns, “A survey of hard real-time
scheduling for multiprocessor systems,”ACM Comput. Surv.,
vol. 43, no. 4, pp. 35:1–35:44, Oct. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1978802.1978814

[2] I. C. S. Institute, K. Shin, and D. Peng,Static Allocation of Periodic
Tasks with Precedence Constraints i Distributed Real-time Systems,
ser. Technical report (International Computer Science Institute).
International Computer Science Institute, 1988. [Online]. Available:
http://books.google.it/books?id=P3iIGwAACAAJ

[3] M. Lombardi and M. Milano, “Optimal methods for resource
allocation and scheduling: a cross-disciplinary survey,”Constraints,
vol. 17, no. 1, pp. 51–85, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10601-011-9115-6

[4] V. V. Peteghem and M. Vanhoucke, “A genetic algorithm forthe
preemptive and non-preemptive multi-mode resource-constrained project
scheduling problem,”European Journal of Operational Research,
vol. 201, no. 2, pp. 409–418, March 2010. [Online]. Available:
http://ideas.repec.org/a/eee/ejores/v201y2010i2p409-418.html

[5] L.-C. Canon, E. Jeannot, R. Sakelariou, and W. Zheng, “Comparative
Evaluation of the Robustness of DAG Scheduling Heuristics,” in
Integration Research in Grid Computing, CoreGRID integration
workshop, S. Gorlatch, P. Fragopoulo, and T. Priol, Eds. Hersonissos,
Crete, Grèce: Crete University Press / Springer US, 2008, pp. 63–74.
[Online]. Available: http://hal.inria.fr/inria-00333904

[6] C. L. Liu and J. W. Layland, “Readings in hardware/software
co-design,” G. De Micheli, R. Ernst, and W. Wolf, Eds. Norwell, MA,
USA: Kluwer Academic Publishers, 2002, ch. Scheduling algorithms
for multiprogramming in a hard-real-time environment, pp.179–194.
[Online]. Available: http://dl.acm.org/citation.cfm?id=567003.567018

[7] S. K. Baruah, R. R. Howell, and L. Rosier, “Algorithms andcomplexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor,”Real-Time Systems, vol. 2, pp. 301–324, 1990.

[8] R. Pellizzoni and G. Lipari, “Feasibility analysis of real-time periodic
tasks with offsets,”Real-Time Systems, vol. 30, no. 1-2, pp. 105–128,
2005.

[9] G. C. Buttazzo, E. Bini, and Y. Wu, “Partitioning real-time applications
over multicore reservations,”IEEE Trans. Industrial Informatics, vol. 7,
no. 2, pp. 302–315, 2011.

[10] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling
of real-time tasks under precedence constraints,”Real-Time Syst.,
vol. 2, no. 3, pp. 181–194, Sep. 1990. [Online]. Available:
http://dx.doi.org/10.1007/BF00365326


