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Abstract—Multidimensional Scaling (MDS) is a widely used
technique for visualizing a set of objects in an n-dimensional
space. It has been extensively applied in wireless sensor networks
for deriving the coordinates of a set of nodes in distance-
based Localization. Many variants of MDS have been proposed
to overcome issues such as partial connectivity and different
types of noise in the measurements. In particular, some works
adapted and modified the MDS technique to include the notion of
anchors. However, in order to maintain the original formulation
of MDS, the algorithm was twisted by adding constraints to
the minimization function or adapting the final result through
roto-translations. Unfortunately, however, these adaptions do not
fully solve the problem, because they try to align the relative
positions of the nodes to the global reference system provided by
the anchors only after the MDS algorithm.

This paper provides a theoretical generalization of the classical
MDS algorithm when some of the coordinates of some elements
(e.g., anchors in the case of localization) are known. The proposed
generalization can be applied to any of the many MDS variants
(e.g., classical MDS, ordinal MDS, MDS-MAP, GM-MDS) that
minimize the stress function with the SMACOF technique. The
formulation is proved to be correct and does not add any
constraints to MDS.

I. INTRODUCTION

One of the main issues in wireless sensor networks is to
locate the positions of the nodes. In indoor systems, where
the GPS is not available, a common solution is the distance-
based localization, which derives the coordinates by measuring
the inter-nodes distances. There exist different techniques that
estimate the node coordinates from distance measurements,
such as trilateration, multilateration, and Multidimensional
Scaling (MDS). MDS [1], [2] is a technique that aims at
visualizing a set of objects in an n-dimensional space. It takes
as input a Dissimilarity Matrix that expresses how much two
objects are dissimilar along one quality and finds a set of
coordinates such that the distance between each couple of
objects is proportional to the value of dissimilarity. MDS has
been used for plotting sets of data in many application fields,
such as economics and psychology. In the last decades, MDS
has also been used for localization, where the objects are
the nodes, and the dissimilarity matrix contains the inter-node
distances.

In wireless sensor networks, the use of anchor nodes
deeply impacts the accuracy of the entire localization sys-
tem. However, in the MDS formulation the notion of an-
chor nodes is missing, since such a technique was designed

for plotting generic objects with qualitative characteristics.
Moreover, some limitation such as partial connectivity [3],
[4] and different type of noise exist in the specific case
of network localization [5]. For this reason, many variants
of MDS have been proposed in the literature. Referring to
the specific problems of MDS with anchors, some works
proposed solutions for including the known coordinates into
the algorithm. Such variants of MDS can be distinguished
in two categories: distributed and centralized approaches. An
approach is considered distributed when the computation of
the algorithm is divided among the components of the network.

A distributed version of MDS, called distributed weighted
Multidimensional Scaling (dwMDS), was proposed by Costa
et. al [6]. They successfully introduced the notion of anchors
and were able to consider them in the MDS formulation since
they split the computation on each node without modifying
the anchor’s coordinates.

When referring to centralized approaches, a common so-
lution is to apply a roto-translation transformation after the
MDS computation and superimpose the estimated coordinates
over the anchors [3], [4], [7], [8]. Instead, Biaz and Ji [9] used
a different approach consisting of updating the anchor’s posi-
tions during the minimization procedure. However, contrarily
to the current MDS versions, the positions of the nodes whose
coordinates are known (anchor nodes) should not be modified
during the minimization. For all these cases, at the end of the
minimization, the coordinates of the anchors slightly changes
due to the minimization procedure, leading to a position error
that reduces the overall accuracy of the system. Also, in the
case where the anchor coordinates are modified at the end of
the minimization, the output is not exact since the anchor’s
coordinates are not fully used for finding the best estimation.

On the other hand, as previously stated, dwMDS provides a
valid solution to the problem. However, a distributed approach
is often used in very large sensors networks usually composed
of inexpensive sensors with low computation capabilities.
Moreover, such sensors are typically static. In this case, the
dwMDS distributes the computation among all the sensors
with the only drawback of a high exchange of wireless com-
munication (and hence, longer time needed) in order to con-
verge to the final coordinates. Centralized approaches, instead,
are usually preferred in small networks and in applications
which consider node mobility, e.g., in the case of a small team
of robots [10]. Another application case in which a centralized
approach is commonly used includes indoor people tracking978-1-5090-6234-8/17/$31.00 c©2017 IEEE
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[11].
This work provides a theoretical generalization of the clas-

sical MDS algorithm when the coordinates of some variables
(e.g., anchors) are known. We propose a modified MDS
formulation to include the notion of anchors directly. Our
generalization can be used to any of the many MDS variants
(e.g., MDS, wMDS, ordinal MDS, MDS-MAP, GM-MDS).
Our formulation does not add any constraints to MDS nor
requires additional computation, such as roto-translations or
tailored procedures.

II. RELATED WORK

Several authors attempted to extend MDS localization for
including the knowledge of anchors. However, most of such
extensions suffer from two drawbacks: the MDS minimization
does not benefit from anchors information, and the algorithm
introduces noise on the coordinates.

Two different approaches have been used to fix the problem
described above: a) apply a roto-translation to the MDS
coordinates, b) act on the minimization process by adding con-
straints or modifying the cost function. This section explains
why both approaches do not solve the problem efficiently. In
this work, we refer only to centralized approaches, distributed
solution has been proposed by Costa et. al. [6].

A. Applying a roto-translation transformation

The first class of works divides the localization algorithm in
two step: first, the relative coordinates are estimated through
MDS; then, a roto-translation transformation is applied at the
end of the minimization to align the estimated coordinates of
the anchors to their real positions.

For example, Ji and Zha [7] align the relative positions
of the nodes to their real positions by computing a shift,
rotation, and reflection of the coordinates. They compute
the rotation and translation matrices by the aid of at least
three nodes. Similarly, in the MDS-MAP algorithm [3], the
authors transform the global map to an absolute map based
on the absolute positions of the anchors. They state that for
m anchors, the complexity of this step is O(m3 + n).

Latsoudas and Sidiropoulos [12] avoid the problem of
aligning the relative positions of the nodes to the real location
of the anchors by carefully placing the anchors to form an or-
thogonal triangle, and the orthogonal sides of this triangle are
chosen as coordinate basis vectors. Then, all the projections
are computed directly onto the native coordinate basis, thus,
avoiding the need of applying a roto-translation. This approach
has the drawback that the anchor nodes need to be placed in
the environment according to a specific pattern.

Cheung and So [13] proposed an approach that uses the
anchor coordinates to compute the rotation matrix. Their
approach is initially similar to the one proposed in this paper.
However, we do not compute any rotation matrix. Moreover,
their MDS formulation is specific to the case in which only
one node has to be located through the use of m anchors.

B. Modifying the MDS minimization or adding constraints

Biaz and Ji [9] described a way of updating the anchor’s
positions during the minimization procedure. They first run
the MDS step and then, after a check of communication
constraints, they update the anchors’ position. Note that this
procedure is a workaround since all nodes are treated as
unknown, and the MDS minimization is also performed on the
anchors. After the minimization, the position of the anchors is
updated, but it is also necessary to adjust the distances between
the anchors and the nodes to maintain consistency.

Another technique that exists in the literature of MDS con-
sists of applying generic restrictions to the variables [14]. In
particular, information regarding the anchors locations can be
included as a constraint of MDS. However, such an approach
increases the space of the variables and leads to higher com-
plexity and computational cost. Conversely, reducing the space
of the variables to only the unknown nodes and consider the
anchors as a constant value, not only improves the precision
but also reduces the complexity of the algorithm. This is the
intuition behind our approach. With respect to the related
work, our formulation provides a mathematical formulation to
estimate only the coordinates of the nodes. Since the anchor’s
coordinates are used to estimate the node positions, the two
presented drawbacks do not subsist in our approach, leading
to a higher accuracy in the localization.

III. REVIEW OF MULTIDIMENSIONAL SCALING THEORY

Multidimensional Scaling (MDS) is a technique that rep-
resents a set of elements in an n-dimensional space using
the similarities/dissimilarities between pairs of elements as
distance information. There exist several variants of MDS such
as Classical MDS, Metric MDS, Non-Metric MDS, depending
on the characteristics of the distance information. Given a
network composed by N nodes in a d-dimensional space,
whose coordinates X = [x1, · · · ,xN ]T ∈ RN×d are unknown,
the algorithm recovers the coordinates of the elements by
minimizing the mismatch of the following function

min
X
S(X) = min

X

∑

i<j≤N
wij

(
d̂ij − dij(X)

)2

(1)

where wij is a weight defining the quality of the measurement
d̂ij and dij(X) = ‖xi − xj‖ is the Euclidean distance.

The objective function S, also called stress-function, can be
minimized in different ways, such as using the steepest descent
approach. De Leeuw [15] proposed an iterative method that at
each step minimizes a simple convex function which majorizes
the complex function. This approach is called “Scaling by
MAjorizing a COmplicated Function” (SMACOF) and it was
proved to perform significantly better with respect to other ap-
proaches [15], in terms of guarantees and rate of convergence.

The non linear least squares problem in Equation (1) is
solved minimizing iteratively a convex function T (X,Z) ≥
S(X). T bounds S from above and touches the surface of S at
point Z. The iterative procedure is summarized in Algorithm 1.
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Algorithm 1 Scaling by MAjorizing a COmplicated Function
(SMACOF)

input: initial position estimate X(0)

stress function S
majorizing function T

repeat
Z = Xk−1

Xk ← min
X
T (X,Z)

until S(Xk−1)− S(Xk) < ε

A. The majorization function

The stress function S can be expanded as follows:

S(X) =
∑

i<j≤N
wij

(
d̂ij − dij(X)

)2

=

=
∑

i<j

wij d̂
2
ij +

∑

i<j

wijd
2
ij(X)− 2

∑

i<j

wij d̂ijdij(X).

Note that the first term is a constant and the second term
is quadratic in X and therefore relatively easily solved. The
third term is bounded using the Cauchy-Schwarz inequality
using the fact that:

dij(X) = ‖xi − xj‖ = ‖xi − xj‖
‖zi − zj‖
‖zi − zj‖

≥

(xi − xj)
T (zi − zj)

‖zi − zj‖
(2)

where Z = [z1, · · · , zN ]T ∈ RN×d. Hence, the third term can
be bounded by:

∑

i<j

wij d̂ijdij(X) ≥
∑

i<j

wij d̂ij
(xi − xj)

T (zi − zj)

||zi − zj ||
(3)

Thus, we have a simple quadratic function T (X,Z) that
majorizes the stress:

S(X) ≤ T (X,Z) =
∑

i<j

wij d̂ij
2 +

∑

i<j

wijd
2
ij(X)

− 2
∑

i<j

wij d̂ij
2 (xi − xj)

T (zi − zj)

||zi − zj ||
(4)

T (X,Z) can be written in matrix form:

T (X,Z) =C + tr(XTVX)− 2 tr(XTB(Z)Z) (5)

where V and B(Z) are two matrices whose elements are
defined as follow:

vij =





N∑

k=1,k 6=j
wkj if i 6= j,

N∑

k=1,k 6=j
vkj if i = j.

bij =





N∑

k=1,k 6=j
wkj

d̂ij
dij(Z)

if i 6= j,

N∑

k=1,k 6=j
bkj if i = j.

Thus, the minimum of the function can be computed as:

X = min
X
T (X,Z) = V−1B(Z)Z (6)

IV. PROPOSED APPROACH

Let us consider a set of N = n + m nodes where the
first n nodes have unknown positions and the last m are the
anchor nodes. Referring to the matrices in Equation (6), we
can partition X and Z as follows:

X =

[
Xu

Xa

]
, Z =

[
Zu
Za

]
, with

Xu = [x1, · · · ,xn]T ∈ Rn×d

Xa = [xn+1, · · · ,xn+m]T ∈ Rm×d

Zu = [z1, · · · , zn]T ∈ Rn×d

Za = [zn+1, · · · , zn+m]T ∈ Rm×d.

Similarly, we can partition V and B(Z) in blocks as follow:

V =

[
V11 V12

VT
12 V22

]
,B(Z) =

[
B11 B12

BT
12 B22

]
, (7)

where matrices V11,B11 are of size n×n, V12,B12 are m×n,
and V22,B22 are m×m.

The following theorem provides a way for computing Xu

as a function of the anchors coordinates Xa.

Theorem 1. Given the stress function T (X,Z) of Equa-
tion (5), if we know the exact value of the subset Xa ∈ Rd×m

of X, it is possible to compute the remaining unknown values
Xu as a function of Xa:

Xu = V−1
11 (B11Zu + B12Za −V12Xa) , (8)

with V11, V12, B11, and B12 matrix block defined in (7).

Proof. See Appendix A.

The major practical benefit deriving from this theorem is
the possibility to extend any variant of MDS that uses the
SMACOF implementation to support the notion of anchors by
simply modifying the computation of X.

Note that, Equation (8) reduces to Equation (6) in the
absence of anchors (m = 0). Hence, our approach is not
limited to the a-priori knowledge on the anchors, but can
straightforwardly be used also when their number varies.

2017 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 26-28, Coimbra, Portugal

51



V. EXPERIMENTAL EVALUATION

The proposed formulation, named anchored MDS, has been
evaluated in comparison with a generic MDS approach that
applies a roto-translation transformation to the coordinates
estimated by the minimization. It is worth noting that the
techniques presented in the related work mainly differ in
the way they compute the roto-translation matrix. Different
techniques lead to different accuracy. However, despite the
specific algorithm used to align the coordinates, the two
drawbacks highlighted in Section II are common to all those
approaches. We simulated a network with a varying number
of unknown nodes and anchors. The noise in the distance
measurement between two nodes has been modeled as:

d̂ij = dij(X) + ν

where ν ∼ N (µ, σ2) is a Gaussian noise with mean µ and
standard deviation σ.

In all the simulations, the network is fully connected. The
problem of partial connectivity has been addressed in detail
in the literature (examples are [4], [8], [3]). However, since
we are evaluating a generalization of the classical MDS,
that can also be applied to all these variations, we are not
considering the case of partial connectivity and focus only on
the case of full connectivity in which we know the positions
of some anchors. Moreover, since the value of the weights
wij associated to each distance measurements affects the
minimization, we decided to set all the weights to 1.

To evaluate the goodness of the approaches with respect to
the real coordinates we use as a metric the Root Mean Square
Error (RMSE) between true and estimated node positions,
defined as:

RMSE
(
X, X̂

)
:=

√√√√ 1

n

n∑

i=1

‖xi − x̂i‖2. (9)

A. A graphic example

Figure 1 and 2 show a trivial example in which a network
with m = 3 anchors and n = 2 nodes are localized with the
classical MDS and the anchored MDS proposed in this paper.
The noise on the distance measurements ν has a zero mean
µ = 0 and a standard deviation σ = 1. Figure 1 shows the real
and estimated coordinates computed with the classical MDS.
At the end of the minimization, a roto-translation is applied
in order to match the anchors locations with the estimated
ones. The red dots represent the estimated coordinates during
the SMACOF iterations. Note that, for visualization purposes,
the roto-translation has also been applied to the coordinates
computed during the SMACOF iterations. In Figure 2, the
coordinates are estimated with our formulation. As it can be
seen from the figure, the anchor nodes are fixed at the correct
position from the beginning and only the coordinates of the n
nodes are computed during the SMACOF iterations.

The two drawbacks described in Section II are clearly
highlighted through the figures. First, the classical MDS
formulation does not benefit from the anchor information. The
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Fig. 1. Estimated coordinates computed with the classical MDS. The red dots
represent the coordinates during the SMACOF iteration.
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Fig. 2. Estimated coordinates computed with our formulation MDS with
anchors. Only the unknown node coordinates are estimated leading to a
reduction of the overall error.

distances between anchors are set to the exact values since
such an information is known. However, their coordinates are
subject to a minimization even if it is not required. Moreover,
the knowledge of the exact position of the anchors cannot be
properly used during the MDS minimization.

Second, the algorithm introduces noise on the coordinates.
As it can be seen from Figure 1, the anchors location is not
precisely reconstructed, even if such an information is known.

B. Experimental results

Some experiments have also been carried out to show how
the overall accuracy varies as a function of the error in the
distance measurements. In the first experiment, we verified
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Fig. 3. Comparison between the error in the coordinates (RMSE) computed
with anchored MDS and the classical MDS approach + roto-translation as a
function of the standard deviation σ.

how the overall accuracy varies as a function of the error in
the distance measurements. We varied σ from 0 to 3 meters,
with a step of 0.1 meters. For each vale of σ, we run 1000
simulations in which we chose X randomly. The network
is composed of N = 50 nodes of which m = 5 anchors.
Figure 3 shows the median of the RMSE error (bold lines),
while the colored surfaces are delineated by the first and
third quartile of the RMSE error. As it can be seen from the
figure, our approach always outperforms the classical MDS
approach. This was expected since the anchors locations in
our approach are placed at the exact position and such an
information positively affects the other nodes location during
the SMACOF iterations, leading to a lower RMSE.

The second experiment shows how the number of anchors
affects the accuracy of our approach. We simulated a network
of N = 50 nodes, where the distance measurements had a
standard deviation σ = 1.5 and varied the number of anchors
m from 3 to N . For each m we run 1000 iterations.

As expected, both approaches decrease monotonically to
zero as the number of anchors increases. However, since our
formulation takes advantage of the anchor’s location during the
minimization, it outperforms the classical approach achieving
both a smaller mean error and variance.

Finally, we performed a third experiment in which we varied
the number of nodes N while keeping a fixed ratio m/N =
20%. As in the second experiment, the standard deviation of
the distance measurement is fixed to σ = 1.5, and for each
value of N we run 1000 iterations.

As shown in Figure 5, both approaches present a monotonic
decrease with the number of nodes, and the error of the
anchored MDS is always below the classical MDS. This is
an expected consequence of the fully connected network since
the number of links increases proportionally with nodes.

Fig. 4. Comparison between the error in the coordinates (RMSE) computed
with anchored MDS and the classical MDS approach + roto-translation
varying the Anchors/Nodes ration.

Fig. 5. Comparison between the error in the coordinates (RMSE) computed
with anchored MDS and the classical MDS approach + roto-translation
varying the number of nodes and fixing the Anchors/Nodes ratio at 20%.

VI. DISCUSSION

A common approach used to align relative and global coor-
dinates is the Procrustes analysis [2], which is a method used
to analyze two sets of elements. It finds a linear transformation
(translation, reflection, orthogonal rotation, and scaling) of the
points in matrix B to best conform them to the points in matrix
A. In particular, the Orthogonal Procrustes does not scale the
matrix B. The orthogonal matrix R can be computed as:

R = arg min
Ω
‖ΩA−B‖F subject to ΩTΩ = I (10)

where ‖ · ‖F denotes the Frobenius norm. Despite the overall
error computed with such an approach leads to the minimum
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error, the coordinates of the anchor will never be aligned to
their real positions. Moreover, in the case of node mobility,
it will be impossible to correlate the node coordinates at
successive MDS computation, since the rotation between the
nodes will differ at every step. This will report erroneous
movements of the nodes unrelated with their actual dynamic.
Thus, the Procrustes analysis should be used only in the case
of relative localization and not when anchors information is
available.

VII. CONCLUSIONS

In this paper, we proposed a theoretical generalization
of the Classical MDS, and all its variants, introducing the
notion of anchors directly in the SMACOF formulation. The
proposed formulation correctly minimizes the stress function
by reducing the number of variables, while other approaches
force the output of the classical MDS to be consistent to the
anchors coordinates. Unfortunately, however, these adaptations
do not fully solve the problem, because they try to align the
relative positions of the nodes to the global reference system
proved by the anchors only after the MDS algorithm. Thanks
to its simplicity and straightforward applicability, the proposed
approach can effectively be used to modify any MDS variant
to include the concept of anchors with minor modifications to
the SMACOF implementation.
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APPENDIX A
PROOF OF THEOREM 1

The trace of a matrix is defined as the sum of the elements
along the diagonal. Hence, the trace of the d×d matrix XTVX
of (5) is equal to

tr(XTVX) =
d∑

k=1

XT
(k)VX(k)

with X(k) ∈ RN×1 being the k-th column vector of X. Hence,
we can rewrite Equation (5) as follows:

T (X,Z) = C + tr(XTVX)− 2 tr(XTB(Z)Z)

= C +
d∑

k=1

XT
(k)VX(k) − 2

d∑

k=1

XT
(k)B(Z)Z(k).

By partitioning in block the above expression, we find

T (X,Z) = C +

d∑

k=1

XT
(k)VX(k) − 2

d∑

k=1

XT
(k)B(Z)Z(k)

= C +
d∑

k=1

(
XT
u(k)V11Xu(k) + 2XT

u(k)V12Xa(k)

+ XT
a(k)V22Xa(k)

)

− 2
d∑

k=1

(
XT
u(k)B11Zu(k) + 2XT

u(k)B12Za(k)

+ XT
a(k)B22Za(k)

)
. (11)

By differentiating the expression of T (X,Z) of Equa-
tion (11) with respect to the unknowns Xu(k) only, we get:

∂T (X,Z)

∂Xu(k)
= 2(V11Xu(k) + V12Xa(k)

−B11Zu(k) −B12Za(k)), (12)

and by setting it equal to 0 we can find the unknowns Xu(k),
which are

Xu(k) = V−1
11

(
B11Zu(k) + B12Za(k) −V12Xa(k)

)
,

or, equivalently, in a matrix form

Xu = V−1
11 (B11Zu + B12Za −V12Xa) . (13)
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