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Abstract—When adopting multi-core systems for safety-critical
applications, certification requirements mandate bounding the
delays incurred in accessing shared resources. This is the case of
global memories, whose access is often regulated by memory
controllers optimized for average-case performance and not
designed to be predictable. As a consequence, worst-case bounds
on memory access delays often result to be too pessimistic,
drastically reducing the advantage of having multiple cores. This
paper proposes a fine-grained analysis of the memory contention
experienced by parallel tasks running on a multi-core platform.
To this end, an optimization problem is formulated to bound the
memory interference by leveraging a three-phase execution model
and holistically considering multiple memory transactions issued
during each phase. Experimental results show the advantage in
adopting the proposed approach on both synthetic task sets and
benchmarks.

I. INTRODUCTION

Nowadays, embedded real-time systems are becoming al-

ways more demanding, requiring more and more computing

power. The adoption of multi-core architectures in safety-

critical applications is therefore an advisable choice: nonethe-

less, it results in systems that are more complex to analyze due

to manifold sources of unpredictability. Certification of safety-

critical embedded systems requires bounding all the additional

delays generated by a multi-core system, often leading to

grossly pessimistic response-time bounds. This is the cause of

the “one-out-of-m” problem [1, 2], in which all the computing

power provided by the “additional” (m-1) cores is lost due to

the pessimism in the analysis. According to a recent FAA

report [3], contention for shared hardware resources (e.g.,

CPU caches, memory controllers, DRAM banks, etc.) is very

difficult to predict, hence having a predominant effect on the

pessimism introduced in the analysis.

Reducing the interference due to the memory hierarchy by

means of per-core, private and programmable local memories

(e.g., scratch-pads) is a desirable goal to avoid the unpre-

dictability caused by concurrent accesses to shared cache

memories. However, such memories provide a limited space

capacity [4]. Therefore, there is still a need for a larger

and typically globally shared memory. Such memories are

commonly based on Double Data Rate Synchronous Dynamic

Access Memory (DDR SDRAM) technology [5] and are

divided into banks: a memory controller is then in charge of

orchestrating accesses to each bank.

Predictable execution models [4, 6, 7] may be adopted to

limit the pessimism in bounding the global memory accesses

contention by localizing memory accesses in specific phases

of the task execution (e.g., preloading data in a scratchpad

memory at the beginning and writing-back the results at the

end of the execution of a predefined code segment). These

techniques are especially useful in the case of parallel tasks

and task chains that may be modeled by a direct acyclic graph

(DAG) where each edge between two nodes may denote a

producer-consumer relationship between two different code

segments. Consumers then need to access data produced by

their predecessors in the graph, which may possibly run in

different cores, thus needing to access the global memory.

Contribution. This paper presents a fine-grained analysis

for the memory contention experienced by parallel real-time

tasks scheduled under a per-node partitioned non-preemptive

scheduling policy based on a three-phase execution model.

Differently from previous works, we holistically consider all

the requests issued during each phase to bound the total

memory access time of a node in the graph. To this end, the

timing properties of the memory controller scheduling policy

are first derived and formalized to treat memory contention

as an optimization problem. Finally, an experimental study is

presented to assess the performance of the proposed technique.

II. BACKGROUND ON DRAM MEMORIES

To make the paper self-consistent, it is necessary to recall

some essential background related to DRAM memories.

In general, a DRAM memory subsystem is composed of

two major components: (i) the DRAM memory controller

and, (ii) the DRAM memory chips, connected by means of

two buses, one for commands and one for data. The memory

chips are organized into ranks. Ranks are in turn divided into

multiple banks. Memory requests targeting different banks can

be served in parallel, provided that no contention occurs in

the command and data buses. Each bank is organized as a

matrix (with several rows and columns): to access a specific

data (a cell of the matrix), it is first necessary to transfer

the row in which the data is located into a buffer, named

row-buffer, which can store at most one row at a time. The

row-buffer acts as a cache for the memory bank, meaning

that subsequent accesses to the same row result in a lower

latency. This scenario is typically referred to as a row-hit,
while the access to a non-cached row is referred to as a row-
conflict. The memory controller receives requests generated

by the processor cores and delivers commands to the DRAM

chips. In the presence of a row-hit, data can be read/written
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from/to the DRAM by means of the CAS (Column Access

Strobe) command. Conversely, when a row-conflict occurs, the

memory controller has to issue three commands in sequence:

first, a PRE (PREcharge) command to save the current content

of the row-buffer in the corresponding DRAM row; then,

an ACT (ACTivate) command to load the content of the DRAM

row that needs to be accessed into the row-buffer; finally, a

CAS command to actually write or read the data.

The JEDEC [5] standard for DRAM memories defines the

timing constraints that must be satisfied at the bus level be-

tween consecutive transmissions of commands or data. Please

refer to Table III of Appendix [8] for the details of such

constraints. At a high level, such constraints can be classified

as intra-bank timing constraints, related to commands and data

targeting the same bank, and inter-bank timing constraints,

related to commands and data targeting different banks.

Due to space limits, our review only addresses the features

of memory controllers considered in our system model (Sec-

tion III-D). For a more comprehensive review of the configura-

tions adopted in different DRAM systems, the interested reader

can refer to the recent work by Hassan and Pellizzoni [9].

III. SYSTEM MODEL

A. Platform Model

The platform model considered in this paper is shown in

Figure 1 and consists of a computing platform composed of a

set P of m identical cores (also called processors throughout

the paper), where each core pk ∈ P has direct, conflict-free

access to a local instruction memory LI

k and a programmable
local data memory LD

k. Each core has an in-order pipeline, i.e.,

out-of-order execution is not allowed.

Local memories can be either scratchpads or cache mem-

ories configured with lockdown techniques (and supported

by adequate software-level mechanisms, e.g., see [10]). Local

memories shared among multiple cores, such as shared cache

levels, are assumed to be either not present or disabled. All

the cores share a global DRAM memory G. A crossbar switch

provides point-to-point communication between each core and

the DRAM memory controller. The memory controller is

connected to the global memory through a single channel. The

DRAM memory module consists of one rank and is divided

into a set B of NB banks. A detailed description of the DRAM

subsystem organization is provided in Section III-D.

B. Task Model

The workload is composed of a set Γ of n sporadic parallel

real-time tasks, each described as a directed acyclic graph

(DAG) [11]. A task τi = (Vi, Ei, Di, Ti) is characterized by a

set Vi of nodes (also called vertices) that represent sequential

computations, a set of directed edges Ei, a minimum inter-

arrival time Ti, and a relative (constrained) deadline Di ≤ Ti.

Each task releases a potentially infinite sequence of instances,

also referred to as jobs. A task τi is said to be schedulable if

all its jobs complete within Di time units after its release. By

extension, a task set Γ is schedulable if each task τi ∈ Γ is

schedulable. Each edge eij,z encodes a precedence constraint
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Figure 1. Illustration of the platform model.

between node vi,j ∈ Vi and vi,z ∈ Vi, meaning that an instance

of vi,z can start executing only after vi,j completes. When

a task instance is released, the task becomes pending and

it remains pending until all its nodes complete. Similarly, a

node becomes pending when the corresponding task is released

and all its precedence constraints are satisfied. It remains

pending until it completes. Tasks are managed under a per-

node partitioned scheduling policy, i.e., each node vi,j ∈ Vi

is statically assigned to a processor core P(vi,j) ∈ P and

different nodes of the same task can be allocated to different

cores. Given a node vi,j ∈ Vi, the set of remote processors is

denoted as Prm(vi,j) = P \ P(vi,j).
Each node vi,j executes in a non-preemptive fashion accord-

ing to any job-level fixed priority scheduling algorithm and it

is characterized by a contention-free worst-case execution time

(WCET) Ci
j , i.e., considering all data and instructions required

by the task to be available in the local memory. Instructions

can be either statically stored in the local instruction memory

LI

k (or in dedicated per-core flash memory, as it is possible

on the AURIX TC3x [12] platforms), or pre-fetched from a

DRAM bank.

Precedence constraints and communication. For each node,

the set of immediate predecessors is defined as ipred(vi,s) =
{vi,j ∈ Vi : ∃ eij,s ∈ Ei}, whereas the set of immediate

successors is defined as isucc(vi,s) = {vi,j ∈ Vi : ∃ eis,j ∈
Ei}. The set of predecessors pred(vi,j) (resp., successors

succ(vi,j)) of a node vi,s is defined as the transitive closure

of set ipred(vi,s) (resp., isucc(vi,s)). That is, pred(vi,j) and
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succ(vi,j) account for precedence constraints that are either

direct or indirect (i.e., by means of intermediate nodes). For

notational convenience, we also define the set F(vi,j) =
{vi,x ∈ {pred(vi,j) ∪ succ(vi,j)}} of all predecessors and

successors of a given node vi,j , i.e., all nodes that cannot run in

parallel with vi,j . A node without incoming edges is denoted as

source node, whereas a node without outgoing edges is named

a sink node. Without loss of generality, this paper assumes a

single source and sink node for each task.

The edges also represent producer-consumer communica-
tions between nodes. Each edge eij,z = (mi

j,z, δ
i
j,z) is asso-

ciated with a weight mi
j,z , and a worst-case memory access

time δij,z . Specifically, mi
j,z denotes the number of transactions

needed to transfer from global memory the data produced

by node vi,j and consumed by vi,z , while δij,z denotes the

maximum amount of time needed to perform mi
j,z requests in

isolation, i.e., without contention generated by nodes running

on the other cores. For each communication eij,z ∈ Ei, the

corresponding data buffer is allocated to a single DRAM bank

denoted by B(eij,z).

C. Execution Model

The execution of the nodes follows a three-phase scheme.

First, a copy-in phase is performed to load into the local

memory all the data corresponding to global communications

(stored in the global DRAM). Read requests are blocking:

namely, when a processor issues a request it waits until it is

served1. Once the copy-in phase is completed, the node can ex-

ecute, only accessing the local memory (i.e., it cannot experi-

ence memory contention). Finally, when the node execution is

completed, a copy-out phase is performed to store in the global

DRAM memory all the data related to global communications.

Formally, each eij,z corresponds to a pair of copy-in and copy-

out phases; specifically, one for the producer and one for the

consumer. The copies are actively performed by the cores,

i.e., they consume processor cycles. A node completes after

the termination of its copy-out phase. Note that the three-phase

model can be implemented without code modifications as long

as code can be compiled and linked to access local memories

only. Copy-in and copy-out phases can be performed by non-

application (e.g., OS-level) code that is executed before and

after the execution of each node (e.g., see [13]). Code may not

have to be modified even when this is not possible thanks to

recent advances in compiler-level support for PREM [6, 14]: in

this case, memory accesses are rearranged (and/or added) to

comply with the three-phase execution model. Furthermore,

automatic code generation tools have also been proposed to

generate code compliant with the three-phase model [15, 16].

No modifications are needed to handle parallel tasks as it is

applied on a per-node basis.

The overall number of read and write accesses to DRAM

memory performed by a node vi,j ∈ Vi to a specific bank bx

1Note that this assumption is always satisfied by processors with an in-order
pipeline, which have at most one pending request at any time instant [9].

is defined as RDx
i,j =

∑
vi,z∈ipred(vi,j)∧B(eiz,j)=bx

mi
z,j , and

WDx
i,j =

∑
vi,z∈isucc(vi,j)∧B(eij,z)=bx

mi
j,z , respectively.

Local node variables (e.g., the stack) are assumed to be

stored into the local data memory. The contention-free WCETs

of the copy-in and copy-out phases of a node vi,j are given by

C IN
i,j =

∑
vi,z∈ipred(vi,j)

δiz,j and COUT
i,j =

∑
vi,z∈isucc(vi,j)

δij,z ,

respectively. For the sake of completeness, inter-task commu-

nication between two nodes vi,j ∈ Vi, vh,r ∈ Vh belonging

to different tasks are modeled with dummy nodes and edges.

In particular, if vi,j is producing data for vh,r, a dummy node

vi,x is added to Vi, and a dummy edge eij,x is added to Ei to

connect vi,j and vi,x. In a dual manner, a dummy node vh,d
is added to Vh , and an edge ehd,r is added to Eh to connect

vh,d and vh,r. In this way, vi,x represents vh,r in Vi, while

vh,d represents vi,j in Vh. Dummy nodes have zero execution

time and they are never executed. Pre-fetching of instructions

from global memory and communications between successive

jobs of the same task can be similarly handled.

Memory space requirements to realize the communications

and techniques to manage the related buffers are not discussed

in this paper: the interested readers can refer to [4] and [17].

D. Memory Controller Model

The structure of a memory controller as considered in this

paper is shown in Figure 1. For each bank, the controller

provides a queue of memory requests. The request at the top

of each queue is then managed by an inter-bank scheduler. To

formalize the properties of the considered memory controller,

its behavior is summarized in the following as a set of rules.

R1. Per-bank queues are organized in first-ready first-
come-first-served (FR-FCFS) order [18, 19], which

re-orders memory requests by prioritizing: (i) row-

hits (also called intra-ready requests) over row-

conflicts; and (ii) older requests over newer requests.

R2. To prevent unbounded worst-case delays for memory

requests [9], we consider an FR-FCFS implemen-

tation with thresholding [20]–[22], where at most

Nthr memory requests can be re-ordered before any

other request. This mechanism is quite common in

modern memory controllers, e.g., it is adopted by

Intel [23] and Texas Instruments (refer to Section

2.6.1 of [24]).

R3. Each FR-FCFS queue exposes its highest-priority

request to a global inter-bank scheduler.

R4. The inter-bank scheduler selects requests according

to a round-robin policy with the granularity of one

request per turn. To avoid unbounded delays, inter-

bank reordering is not allowed [9].

R5. Write requests are served in batches with a water-
mark approach. Specifically, the controller enqueues

write requests in a buffer and starts serving them as

soon as the number of enqueued writes exceeds the

watermarking threshold Wthr [25]–[27], and contin-

ues processing write requests until at least Nwb writes

have been served.
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R6. If there is at least one pending read request, the write

batch stops after Nwb writes have been served. Then,

at least one read request is served.

Write batching is typically adopted by COTS memory

controllers [28] to prioritize reads over writes (with the goal

of improving the overall throughput, since writes do not stall

the processing pipeline). Given a write buffer of size Qwrite,

as in prior work [27] we assume that: (i) Wthr ≥ Nwb, i.e.,

when the watermark threshold is reached there are at least

Nwb writes to serve in a batch and, (ii) Qwrite−Nwb < Wthr,

i.e., serving a batch of Nwb writes always reduces the overall

number of queued writes below the watermark threshold Wthr.

Furthermore, as in [9, 27], we assume that the write buffer is

large enough so that it never becomes full. Hence, as write

requests complete as soon as they are placed on the write

buffer, no contention delay is experienced by processors when

they are issued. Write batching maintains data causality: if

a read request targets a data for which there exists a pending

write in the buffer, such a read request is directly served by the

memory controller, without accessing the DRAM memory. A

memory request starts being pending in the memory controller

when it is enqueued in one of the per-bank queues, and remains

pending until it is served. A request ry is said to suffer

interference from another request rx if ry is pending while

rx is served.

The interference caused by ry to rx is classified into two cat-

egories: intra-bank and inter-bank interference. Specifically,

ry is said to suffer intra-bank interference from another request

rx if rx and ry target the same bank and ry suffers interference

from rx. Conversely, ry is said to suffer inter-bank interference

from another request rx if rx and ry target different banks.

Table I reports our notation, while Table II summarizes the

system model considered in this paper.

IV. PROPERTIES OF THE MEMORY CONTROLLER

Given a read request rx, issued by a node vi,j ∈ Vi, and

targeting a memory bank bu ∈ B, we start deriving some

useful properties of the memory controller. Such properties

are used next for bounding the number of requests causing

memory contention. We begin with a simple property.

Property 1: Each interfering read request ry may interfere

with at most one read request rx issued by node vi,j .

Proof: The property follows by noting that requests are

served non-preemptively and that read memory accesses are

blocking. Therefore, there may be just one memory request

from vi,j that is pending when ry is served.

Property 2 bounds the number of pending requests issued

by each processor.

Property 2: At any point in time, for each processor pk ∈ P
there can be at most one pending read request issued by pk
in the memory controller.

Proof: By contradiction, if a processor has more than one

memory request pending at the same time, then it means that it

was capable of issuing a memory request while a previously-

issued one was not completed. This contradicts the assumption

that memory accesses are blocking.

Table I
TABLE OF SYMBOLS

Symbol Description
pk k-th processor core
by y-th memory bank
m number of processors
NB number of banks of the DRAM memory
B set of the banks
τi i-th task
Ti i-th task period
Di i-th task deadline
vi,j j-th node of τi
Ci

j WCET of vi,j (execution phase)

C IN
i,j contention-free duration of the copy-in of vi,j

COUT
i,j contention-free duration of the copy-out of vi,j

RDy
i,j number of reads from vi,j to by

WDy
i,j number of writes from vi,j to by

P(vi,j) processor in which vi,j is allocated to
Prm(vi,j) P \ P(vi,j)
ipred(vi,j) immediate predecessors of vi,j
isucc(vi,j) immediate successors of vi,j
F(vi,j) set of all predecessor and successors of vi,j
eij,z edge connecting vi,j to vi,z
mi

j,z amount of data produced by vi,j for vi,z
δij,z worst-case memory access time (in isolation)

B(eij,z) bank in which the data of eij,z is allocated
Nthr max. number of reordered reads due to FR-FCFS
Wthr watermark threshold (write-batching)
Nwb # of writes in each batch
Qwrite size of the write buffer

Table II
SYSTEM MODEL SUMMARY

System Model
Task Model DAG tasks / sequential tasks

CPU Scheduler partitioned non-preemptive
Priority Assignment any fixed priority scheme

Local Memories per-core programmable
DDR3 DRAM, single rank,

Global Memory multiple banks, one bus for data,
one bus for commands

Memory Requests
blocking reads, non-blocking writes

Memory Controller
Intra-bank FR-FCFS adopted by
Arbitration with thresholding [23] [24] [9] [22]
Inter-bank round-robin adopted by
Arbitration [23] [9]

Write write batching adopted by
Management with watermarking [28] [27] [9]

As stated in Section III-D, the interference caused by a

request ry to rx can be classified as intra-bank or inter-bank

interference, depending on the memory banks targeted by the

two requests.

Property 3: Each memory read request ry can generate

either intra-bank or inter-bank interference to another read

request rx �= ry , but not both.

Proof: The definitions of inter- and intra-bank interfer-
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Figure 2. Transitive and direct inter-bank interference. Inset (a) shows
transitive interference: rx is transitively interfered by all requests in the inter-
bank queue as long as rh1 is at the head of b1’s queue. Inset (b) illustrates
direct interference, which occurs when rx is at the head of b1’s queue.

ence are mutually exclusive and the bank they target does not

change during the time a request generates interference.

Following Property 3, let us consider inter- and intra-bank

interference separately.

Intra-bank interference. Due to the FR-FCFS intra-bank

scheduling policy, requests enqueued in the intra-bank queue

of bu arrived both before and after rx may interfere with rx.

The following property allows bounding the number of such

requests arrived before rx.

Property 4: Each memory read request rx issued by node

vi,j can suffer interference by at most one memory read

request issued before rx per core pk �= P(vi,j).
Proof: By Property 2, when rx is issued, there can

be at most one pending read request per remote processor.

Therefore, only one read request issued before rx can generate

interference per remote processor.

The number of requests arrived after rx that may cause

intra-bank interference due to FR-FCFS reordering can also

be bounded as stated in Property 5.

Property 5: Each read memory request rx targeting bank

bu ∈ B can suffer interference from at most Nthr read requests

to the same bank bu arrived after rx.

Proof: By rule R1, under FR-FCFS intra-bank scheduling,

read requests arriving after rx may be served before rx if they

result in a row-hit. By rule R2, the number of such requests

is bounded by Nthr.

Inter-bank interference. To analyze inter-bank interference,

it is necessary to distinguish memory requests causing direct
or transitive inter-bank interference to rx. Direct and transitive

inter-bank interference are defined as follows and graphically

illustrated in Figure 2.

A request rx is said to suffer direct inter-bank interference
when is at the top of its intra-bank queue (i.e., it is the next

request to be served for that bank) and it is suffering inter-bank

interference. Whereas, a request rx is said to suffer transitive
inter-bank interference when another request ry causing intra-

bank interference to rx is suffering inter-bank interference.

Property 6 bounds the number of requests that contribute to

direct inter-bank interference.

Property 6: Each read request rx to bank bu may suffer

direct inter-bank interference from at most one request per

other bank by ∈ B \ {bu}.
Proof: Since rx is suffering direct inter-bank interference,

it is the highest-priority request for bank bu. Hence, by rule

R3, rx participates to the inter-bank arbitration. Since the inter-

bank arbitration uses a round-robin policy (rule R4), at most

one request per other bank may be served, and therefore cause

interference to rx, before rx is served.
Building on the properties presented in this section, a linear

programming (LP) is formulated next to (i) compute how

many read requests interfere with those issued by a node

under analysis, and (ii) decide whether each interfering request

contributes to the inter-bank or intra-bank interference. The

objective of the LP is to maximize the total interference. Its

optimal solution will hence yield a safe interference bound.

V. MEMORY CONTENTION ANALYSIS

This section presents our memory-aware analysis for par-

allel real-time tasks. Contrary to the state-of-the-art, we use

a holistic approach that considers the contribution of multiple

requests at the same time in order to reduce the pessimism

in the computed bound. The analysis is based on a LP

formulation. It is inspired by techniques used for bounding the

delays incurred in accessing lock-protected shared resources

in multiprocessor systems [29]–[32].
This section focuses on bounding the delay suffered by a

node vi,j ∈ Vi. Thus, we only consider the copy-in phase

of vi,j . Indeed, during the execution phase, all data and

instructions accessed by vi,j are already loaded in the private

local memories; hence, vi,j does not issue any request in such

a phase. Furthermore, since write requests do not stall the

processing pipeline, the memory contention suffered by the

copy-out phase does not generate an actual delay for the node

under analysis. Finally, we will show how to integrate the

proposed technique to bound memory contention in analyzing

parallel tasks under partitioned non-preemptive scheduling.

A. Bounding the Number of Interfering Requests
We start bounding the number of read and write requests

that can interfere with a copy-in phase under analysis.
Lemma 1: Let Rh,x be a response-time bound for node

vh,x. The number of read requests issued by nodes running

on a remote processor pk �= P(vi,j) to a bank bu ∈ B that

may interfere with the read requests issued by the copy-in

phase of node vi,j within an arbitrary time window of length

t is bounded by

RDk ,u
i,j (t) =

∑
τh∈Γ

∑
vh,x∈Vh\F(vi,j)
: P(vh,x)=pk

ηh,x(t) · RDu
h,x , (1)

where

ηh,x(t) =

{
�(t+Rh,x)/Th	 if τi �= τh

1 otherwise.
(2)

Proof: We distinguish two cases: (i) read requests issued

by nodes of τi, and (ii) those issued by nodes of other tasks
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τj ∈ Γ \ τi. In the first case, since tasks have constrained

deadlines, only one instance of τi can be pending at a time.

Since reads are blocking, when the f -th instance of τi is

pending, read requests issued by any of the previous f−1 jobs

of τi cannot be pending anymore. Hence, at most one instance

of each node vi,x ∈ Vi \ F(vi,j) may issue read requests

interfering with vi,j . Consider now case (ii). Without loss of

generality, consider an arbitrary time window [0, t]. Clearly,

memory requests issued by jobs released after time t cannot

interfere in [0, t]. Furthermore, jobs of nodes vh,x released

before time −Rh,x must certainly have completed by time 0
(Rh,x is an upper bound on vh,x’s response time) and their read

requests cannot be pending in the memory controller anymore

within the interval [0, t]. It follows that the requests interfering

within [0, t] must be released within interval [−Rh,x, t), which

can host at most �(t+ Rh,x)/Th	 jobs. In both cases (i) and

(ii), each job can issue at most RDu
h,x read requests to bank

bu. The lemma follows by summing up the contribution of

each node allocated to the remote processor pk �= P(vi,j),
excluding the nodes that cannot certainly execute in parallel

with vi,j due to precedence constraints (nodes in set F(vi,j)
of vi,j’s predecessors and successors).

Lemma 2: The number of write requests issued by nodes

running on a remote processor pk �= P(vi,j) to a bank bu ∈ B
that may interfere with the read requests issued by the copy-in

phase of node vi,j within an arbitrary time window of length

t is bounded by

WDk ,u
i,j (t) =

∑
τh∈Γ

∑
vh,x∈Vh\F(vi,j)
: P(vh,x)=pk

ηh,x(t) ·WDu
h,x (3)

where ηh,x(t) is defined as in Lemma 1.

Proof: The proof is identical to that of Lemma 1, replac-

ing the number of reads RDu
h,x issued by a node vh,x by the

number of write requests WDu
h,x by that same node.

B. Bounding the Interference by Write Requests

Thanks to the write batching mechanism, it is possible

to compute a bound on the contention delay generated by

interfering write requests in a closed form as follows.

Lemma 3: The overall interference suffered by read re-

quests issued by node vi,j due to write requests in any time

interval of length t is bounded by

MCwr
i,j(t) = LWB (min {NR(t) ·Nwb, NW (t) +Qwrite}) ,

(4)

where NR(t) =
∑

bu∈B
(
RDu

i,j +
∑

pk∈Prm(vi,j)
RDk ,u

i,j (t)
)
,

NW (t) =
∑

bu∈B
∑

pk∈Prm(vi,j)
WDk ,u

i,j (t), and LWB (N) is

the delay generated by N write requests (defined in Equa-

tion (2) of [9] and recalled in Appendix [8]).

Proof: Let us consider separately the two terms in the

minimum of Equation (4).

First, note that due to the watermarking mechanism (see

Rules R5 and R6) each read request can suffer interference

from at most Nwb writes performed during a write batch, thus

yielding the bound MCwr
i,j(t) ≤ LWB (NR(t) · Nwb) where

NR(t) is the total number of read requests that may be issued

by vi,j (i.e.,
∑

bu∈B RDu
i,j ) and any other node interfering

with vi,j executing on other processors and accessing any

memory bank (i.e.,
∑

bu∈B
∑

pk∈P\{P(vi,j)} RD
k ,u
i,j (t) where

RDk ,u
i,j (t) is the bound proven in Lemma 1).

Second, the number of write requests interfering with read

request in the interval of length t is limited by the number

of pending write requests at the beginning of the interval and

the number of write requests issued during the interval. The

former is obviously bounded by the size of the write buffer

Qwrite. The latter is bounded by NW (t), which accounts for

all write requests issued by all nodes potentially interfering

with vi,j (as bounded by Lemma 2) summed over all cores

and memory banks. Note that NW (t) does not account for

any write request from the processor on which the node vi,j
under analysis is running because that processor executes the

copy-in phase of vi,j non preemptively and hence issues only

read requests. As both bounds are upper-bounds, the minimum

of the two yields a safe upper-bound too.
Lemma 3 bounds the interference experienced by read

requests due to writes. As discussed in Section V, our platform

model ensures that the contention suffered by write requests

never causes additional delays to the node under analysis or

to other nodes (e.g., its immediate successors). Indeed, writes

do not stall the processing pipeline and, once issued by a core,

they are stored in the write buffer in the memory controller

until the watermark threshold is reached. Since we assumed

that the buffer never becomes full (as for related work that

targeted memory controllers with write batching [9, 27]), the

contention suffered by writes never results in a delay for the

node issuing them. Additional contention due to writes is not

suffered either by successor nodes: indeed, if vi,s ∈ isucc(vi,j)
needs to load the data produced by node vi,j , such data can

be either in part (i) still stored in the write buffer of the

memory controller (i.e., the corresponding batch is not issued

yet), or (ii) already flushed in global memory. In the first

case, as discussed in Section III, vi,s is directly served by

the memory controller without accessing the global memory,

and no contention occurs. In case (ii), the delay suffered by

reads of vi,s due to writes issued by vi,j is already accounted

in Lemma 3 as they cannot be more than Qwrite.

C. Bounding the Interference by Read Requests
This section presents an optimization problem to bound the

memory contention incurred by the copy-in phase of a given

node vi,j due to interfering read requests issued within an

arbitrary time interval of length t.

Analysis approach. In the following, we consider an arbitrary
schedule S compliant with our system model in a window of

length t. Then, we define LP variables to model the parameters

of S that determine memory contention. Subsequently, we

present a set of constraints that hold for any possible schedule

compliant with our system model, and hence allow excluding

impossible schedules. As a result, maximizing the memory

contention among the schedules not excluded by the con-

straints yields a safe memory contention bound. This approach
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guarantees the correctness of the analysis by construction

as long as only schedules that are actually impossible are

excluded by the added constraints. Therefore, proving the cor-

rectness of the analysis is equivalent to prove the correctness

of each constraint. This makes the analysis modular and allows

addressing the problem with small independent local reasoning

(each constraint can be proven in isolation).

We start by defining the variables needed in the optimization

problem. Let C be the copy-in phase of a node vi,j under

analysis. For each pair of bank by ∈ B and processor pk ∈
Prm(vi,j), we count four different types of read requests. Each

of those types generates a different memory contention delay

in the worst-case scenario:

• IRintraFC
k,y ∈ R≥0: counts the number of read requests

issued in schedule S by processor pk to bank by that

generate intra-bank interference to at least one of the

requests issued by C because of the first-come-first-served
part of the FR-FCFS memory controller access policy

(i.e., each interfering request counted in IRintraFC
k,y arrived

before one of C’s read requests and is thus served first).

In the worst case, each of those requests generate a row

conflict in the memory controller.

• IRintraP
k,y ∈ R≥0: counts the read requests issued by pro-

cessor pk to bank by that generate intra-bank interference

to C by being promoted by the first-ready part of the FR-

FCFS memory controller access policy. By rule R1, these

requests can only generate row hits.

• IRinterP
k,y ∈ R≥0: counts the number of read requests issued

in schedule S by processor pk to bank by that generate

transitive inter-bank interference to C by interfering with

a request that causes intra-bank interference to C due to

being promoted by the FR-FCFS policy. As discussed

above, promoted requests can only result in row hits.

Therefore, they only use CAS commands. Thus, requests

counted by IRinterP
k,y can only cause inter-bank interference

with CAS commands.

• IRinterD
k,y ∈ R≥0: counts all the read requests issued by

processor pk to bank by that generate inter-bank interfer-

ence to C but are not counted by IRinterP
k,y . In the worst

case, those requests cause inter-bank interference with

complete sequences of PRE, ACT and CAS commands.

Note that the definitions of the first two and the last two

variables are mutually exclusive. Hence, we denote the total

number of read requests issued by processor pk to bank

by that generate intra- and inter-bank interference to C by

IRintra
k,y = IRintraFC

k,y + IRintraP
k,y and IRinter

k,y = IRinterD
k,y + IRinterP

k,y ,

respectively.

Objective function. The objective function of the optimization

problem consists in maximizing the overall interference gener-

ated by all types of inter- and intra-bank interfering requests:

maximize LINTER(N interD, N inter) +

LINTER
CAS (N interP, N inter) +

LCONF(N intraFC) + LHIT(N intraP),

(5)

where N intraFC, N intraP, N interP, N interD, and N inter are respec-

tively the sum of all interfering read requests of the type

intraFC, intraP, interP, interD and inter as defined above. That

is, N intraFC =
∑

pk∈Prm(vi,j)

∑
by∈B IRintraFC

k,y ,

N intraP =
∑

pk∈Prm(vi,j)

∑
by∈B IRintraP

k,y ,

N interP =
∑

pk∈Prm(vi,j)

∑
by∈B IRinterP

k,y ,

N interD =
∑

pk∈Prm(vi,j)

∑
by∈B IRinterD

k,y , and

N inter = N interP +N interD.

The objective function leverages the following functions to

account for the contention cost of each type of conflicting

request:

• LCONF(N intraFC) bounds the worst-case delay due to

N intraFC requests that cause intra-bank interference over

a row conflict.

• LHIT(N intraP) bounds the worst-case delay due to N intraP

interfering requests that cause intra-bank interference that

consist in a row-hit.

• LINTER(N interD, N inter) bounds the worst-case delay due to

N interD requests that generate inter-bank interference on

complete sequences of PRE, ACT and CAS commands.

• LINTER
CAS (N interP, N inter) bounds the worst-case delay due

to N interP interfering requests that generate inter-bank

interference on a CAS command only.

The first two functions were established in [9] and are

recalled in Appendix [8], while the last two are discussed later

in Section V-D.

Constraints. Next, we present the constraints that characterize

our optimization problem. We recall from Section V-A that the

constant RDu
i,j is defined to denote the number of reads issued

by C to bank bu ∈ B, while RDk ,u
i,j (t) denotes the number of

read requests issued by a processor pk to bank bu.

We begin with a constraint that establishes mutual exclusion

between intra- and inter-bank interference.

Constraint 1: For each bank bu ∈ B, for each processor

pk ∈ Prm(vi,j),

(IRintra
k,u + IRinter

k,u ) ≤ RDk ,u
i,j (t).

Proof: By contradiction, assume that the sum of the

number of requests creating intra-bank interference (IRintra
k,u )

and those creating inter-bank interference (IRinter
k,u ) is larger

than the total number of interfering requests RDk ,u
i,j (t). Then,

there must exist an interfering request r that causes both intra-

bank and inter-bank interference to requests issued in C. This

contradicts Prop. 3.

Next, we proceed by excluding impossible scenarios related

to intra-bank contention.

Constraint 2: For each bank bu ∈ B, for each processor

pk ∈ Prm(vi,j),
IRintraFC

k,u ≤ RDu
i,j .

Proof: By contradiction, assume IRintraFC
k,u > RDu

i,j . Then,

it must exist at least one request r issued during C (i.e., one

of the RDu
i,j ) and targeting bu that is interfered by multiple

requests issued by a remote processor pk that arrived in the

intra-bank queue of bu before r. This contradicts Prop. 2.
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Constraint 3: For each bank bu ∈ B,∑
pk∈Prm(vi,j)

IRintraP
k,u ≤ RDu

i,j ·Nthr.

Proof: It follows directly from Prop. 5, recalling that each

of the RDu
i,j requests issued by C may suffer interference due

to reordering in favor of at most Nthr promoted requests.

Now, we bound on the overall inter-bank interference.

Constraint 4: For each bank by ∈ B,

∑
pk∈Prm(vi,j)

IRinter
k,y ≤

∑
bu∈B\{by}

(
RDu

i,j +
∑

pk∈Prm(vi,j)

IRintra
k,u

)
.

Proof: By contradiction, assume the constraint does not

hold. Then, it means the overall number of inter-bank inter-

fering requests issued by processors pk ∈ Prm(vi,j) to bank

by is larger than the overall number of requests issued by C
to other banks bu �= by plus the number of requests that cause

intra-bank interference to them. This implies that at least one

of the
∑

bu∈B\{by}
(
RDu

i,j +
∑

pk∈Prm(vi,j)
IRintra

k,u

)
requests

to banks bu �= by suffers direct inter-bank interference from

more than one request to bank by . This contradicts Prop. 6.

Finally, we present three constraints that exclude impossible

scenarios related to inter-bank interference at a fine-grain level.

Constraint 5: For each bank by ∈ B, for each processor

pk ∈ Prm(vi,j)

IRinter
k,y ≤

∑
bu∈B\{by}

(
RDu

i,j +
∑

pl∈Prm(vi,j)\{pk}
IRintra

l,u

)
.

Proof: Consider a bank by and a processor pk ∈
Prm(vi,j). The LHS of the constraint denotes the number

of requests that generate inter-bank interference that are is-

sued from processor pk to bank by . By definition of inter-

bank interference, those requests can only contend directly or

indirectly with read requests of C directed to banks �= by , and

by Prop. 2, only requests coming from different processors

can contend. Therefore, the requests counted by the LHS can

only cause interference to the requests counted by the RHS of

the constraint, which counts all read requests to banks �= by
that either (i) are issued by C (i.e., suffering direct inter-bank

interference), or (ii) generate intra-bank interference to C but

are not issued by processor pk (i.e., the cause of indirect

inter-bank interference to C). Note that the RDu
i,j requests

issued by C are issued by P(vi,j) �= pk since pk ∈ Prm(vi,j)
and therefore both (i) and (ii) respect Prop. 2. Now, by

contradiction, assume that the constraint does not hold. Then,

it means that there exists a schedule in which at least one

request r from the RHS is interfered by more than one request

to bank by (i.e., from the LHS). This contradicts Prop. 6.

Constraint 6: For each bank by ∈ B,∑
pk∈Prm(vi,j)

IRinterP
k,y ≤

∑
bu∈B\{by}

∑
pk∈Prm(vi,j)

IRintraP
k,u .

Proof: Consider a bank by . The LHS of the constraint

counts the overall number of requests to by that generate

inter-bank interference by interfering with the requests that (i)

are promoted due to the re-ordering employed by FR-FCFS

scheduling and (ii) generate intra-bank interference to C. Thus,

the requests counted by the LHS interferes with the requests

counted by IRintraP
k,u over all processors pk and banks bu.

However, by definition of inter-bank interference, the requests

from the LHS can only interfere with read requests directed to

banks �= by . Thus, the requests counted on the LHS can only

interfere with requests included in those counted by the RHS

of the constraint (which excludes promoted requests directed

to bank by). Now, by contradiction, assume the constraint does

not hold. Then, at least one of the requests counted by the

RHS suffers interference by more than one request to bank

by (counted by the LHS). Since the LHS and the RHS count

requests to different banks, this contradicts Prop. 6.

Constraint 7: For each bank by ∈ B, for each processor

pk ∈ Prm(vi,j),

IRinterP
k,y ≤

∑
bu∈B\{by}

∑
pl∈Prm(vi,j)\{pk}

IRintraP
l,u .

Proof: The constraint follows analogously to Constraint 5

after recalling the definitions of variables IRinterP
k,y and IRintraP

l,u .

D. Contention cost for inter-bank-interfering requests

This section discusses how to account for the contention

cost related to requests that generate inter-bank interference

considered in the objective function (Equation 5). To begin,

recall that the N interP requests cause inter-bank interference

to requests that are promoted due to FR-FCFS scheduling.

Consequently, as promoted requests consist of the CAS com-

mand only (row-hit), the N interP requests must interfere on

the CAS command too. The corresponding delay is bounded

by LINTER
CAS (N interP, N inter) (from [9]), which is also reported in

Equation (11) of Appendix [8] for completeness.

For the other N interD requests that generate inter-bank in-

terference, we do not know whether they interfere on the

PRE, ACT, or CAS commands. Two approaches are possible.

Approach I. A possible solution, also adopted in [22], consists

in upper-bounding the maximum delay experienced due to

conflicts on each of the PRE, ACT, and CAS commands, and

then summing up the three corresponding terms to obtain a

safe bound. For the sake of completeness, these terms are

reported in Equations (9), (11), and (12) of Appendix [8].

Overall, they result in constant scaling factors multiplied by

N interP and N inter. As such, the bound is easy to encode in

the objective function reported in Equation (5). In the follow-

ing, the analysis resulting from this conservative approach is

referred to as Holistic.

Approach II. Approach I is simple but pessimistic. Indeed,

as noted in [9, 27], only part of each inter-bank interfering

request generates contention. This is because the JEDEC

standard allows commands of different types, but directed

to different banks, to operate in parallel. Inter-bank timing

constraints are mandated by the JEDEC standard only between

pairs of ACT and CAS commands. Furthermore, all requests
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issue commands in the same order. As proved by Theorem

1 in [27], inter-bank interference can hence be studied by

modeling memory requests as execution flows that have to

be served by a 3-stage pipeline with non-preemptable stages,

where each stage denotes the service of commands PRE, ACT,

and CAS, respectively. The interference caused by an execution

flow on such a pipeline is bounded by the largest delay

introduced by the stages of the pipeline [27] (more details in

the Appendix [8]). Consequently, the inter-bank interference

suffered by a request is bounded by the largest delay suffered

by each command. Building on Theorem 1 in [27], the inter-

bank interference due to the N interD requests is split into three

groups of NPRE, NACT, and NCAS requests, respectively, that

cause inter-bank interference with the corresponding com-

mands. It is then bounded by LINTER(N interD, N inter), where

LINTER(x, y) = max
{
LINTER

PRE (NPRE) + LINTER
ACT (NACT, y)

+LINTER
CAS (NCAS, y) s.t. NPRE +NACT +NCAS = x

}
.

(6)

The above formula relies on the three func-

tions LINTER
PRE (NPRE), LINTER

ACT (NACT, N inter), and

LINTER
CAS (NCAS, N inter) that bound the contention delay

related to PRE, ACT, and CAS commands, respectively. The

definitions of these functions are available in [9] and are also

reported in Appendix [8].
The integration of Equation (6) in our optimization problem

is not straightforward and requires introducing accessory vari-

ables and constraints. As a first step, we split the inter-bank-

interfering requests command by command. Formally, for each

pair of bank by ∈ B and processor pk ∈ Prm(vi,j), we define

three positive variables IRPRE
k,y , IRACT

k,y , and IRCAS
k,y , one for

each of the three commands PRE, ACT, and CAS, which count

the number of read requests issued by a processor pk to a bank

by that generate inter-bank interference to the PRE, ACT, or

CAS command of one of the requests in C, respectively. These

auxiliary variables are constrained as follows.
Constraint 8: For each bank bu, for each processor pk ∈

Prm(vi,j), IR
PRE
k,y + IRACT

k,y + IRCAS
k,y = IRinterD

k,y .
Proof: Follows directly from Equation (6) and from the

definition of variables IRinterD
k,y .

Furthermore, it is possible to match the auxiliary variables

with the terms in Equation (6) by just summing up across all

processors and all banks, i.e.,
NPRE =

∑
pk∈Prm(vi,j)

∑
by∈B IRPRE

k,y ,

NACT =
∑

pk∈Prm(vi,j)

∑
by∈B IRACT

k,y , and

NCAS =
∑

pk∈Prm(vi,j)

∑
by∈B IRCAS

k,y .
Now, it remains to discuss how to encode the three functions

of Equation (6) in our optimization problem. By looking

at their definitions in [9] (or Eqs. (9) and (11) in Ap-

pendix [8]), functions LINTER
PRE (NPRE) and LINTER

CAS (NCAS, N inter)
include constant scaling factors, and are hence straightforward

to encode. Conversely, the definition of LINTER
ACT (NACT, N inter)

includes a maximum operator (see [9] or Eq. (10) in Ap-

pendix [8]), which can be encoded with the standard big-M
method by defining other two auxiliary variables (a decision

variable and LACT, which denotes the value taken by the

function). Finally, the maximization required by Equation (6)

is automatically implied by the maximization in the objective

function of our optimization problem. To adopt Approach

II, the term LINTER(N interD, N inter) in the objective function

(Equation (5)) has to be replaced with

LINTER
PRE (NPRE) + LINTER

CAS (NCAS, N inter) + LACT. (7)

This approach is referred to as Holistic-FG in the following.

VI. MEMORY-AWARE RESPONSE-TIME ANALYSIS

In this section, we discuss how to use the proposed memory

contention analysis to analyze the response time of parallel

tasks, considering the three-phase execution model discussed

in Section III-C. We recall that under that model, vi,j issues

only read requests during its copy-in phase. No memory

requests are issued by vi,j during its execution phase, and

only writes are issued during the copy-out phase. As discussed

in Section III-D, our platform model assumes non-blocking

writes, hence memory contention for writing data does not

correspond to an actual delay for the node under analysis.

Consequently, memory contention for transferring data and

instructions from global memory has to be accounted only

for the copy-in phase. Furthermore, thanks to non-preemptive

execution, once a node starts executing on a processor it can be

delayed only due to memory contention with nodes executing

on other processors (i.e., it cannot be preempted by higher

priority nodes on the same processor anymore).

Building on these considerations, Lemma 4 bounds the

overall delay experienced by the copy-in phase due to memory

interference only, i.e., assuming that node vi,j already started

executing non-preemptively on processor P(vi,j).
Lemma 4: The response time experienced by the copy-in

phase of a node vi,j that already started executing is upper-

bounded by the smallest positive solution to the following

recursive equation:

RIN
i,j = C IN

i,j +MCwr
i,j(R

IN
i,j) +MC read

i,j (R
IN
i,j), (8)

where MCwr
i,j(R

IN
i,j) is bounded with Lemma 3 and

MC read
i,j (R

IN
i,j) is bounded by solving the optimization problem

presented in Section V-C.

Proof: Due to non-preemptive scheduling, if vi,j already

started executing no other nodes can preempt it, and hence

memory contention is the only interference it may suffers.

Furthermore, only read requests can cause blocking of the

execution pipeline, and read requests are only issued during

the response time of the copy-in phase of vi,j . The lemma

follows by recalling that C IN
i,j is defined as the contention-

free WCET of vi,j’s copy-in phase, and MC read
i,j (R

IN
i,j) and

MCwr
i,j(R

IN
i,j) bound the memory contention suffered by vi,j’s

copy-in phase due to interfering read and write requests in an

interval of length RIN
i,j , respectively.

For each task τi ∈ Γ and for each node vi,j ∈ Vi, the re-

sponse time bound RIN
i,j on its copy-in phase can be computed

as discussed above before performing the actual schedulability
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analysis for parallel tasks. Then, the WCET is inflated as

C∗
i,j = RIN

i,j + Ci,j + COUT
i,j . Similarly to as request-driven

analysis [22], the proposed techniques ultimately consists in

a WCET inflation. Nevertheless, the analysis presented in

Section V-C allows to compute a more precise bound by holis-

tically considering multiple memory accesses while leveraging

a three phase model. Once the inflated WCETs are available

for each task and node, a response-time analysis for parallel

tasks under non-preemptive scheduling can be applied [33].

Further note that a sequential task can be modeled as a single-

node parallel task. Therefore, the proposed analysis can be

applied to sequential tasks by knowing, for each task τi, the

total number of reads and writes issued to each bank bu at the

task level, i.e., the parameters RDu
i and WDu

i . Processing

chains (e.g., analyzed with Compositional Performance Anal-

ysis [34]–[36]) under partitioned non-preemptive execution are

also supported. Note that Eqs. (1) and (3), which are used in

the optimization problem to bound the number of interfering

requests, depend on a response-time bound for the node under

analysis. However, the latter is expected to be computed by

response-time analysis, which itself depends on the number

of read and write requests computed by Eqs. (1) and (3).

This cyclic dependency can be broken by assuming that all

jobs are killed at their deadlines, hence setting the response-

time bounds to the corresponding deadlines. If the system is

then found schedulable by the response-time analysis, jobs will

never execute after their deadlines and hence they will never

be killed, thus making this assumption superfluous (see [37]

for more details). Algorithm 1 summarizes how the analysis

is performed. Memory contention is first bounded for each

node vi,j using Lemma 4 (line 3) by providing Ri,j as an

input, and the node’s WCET Ci,j are correspondingly inflated

(line 4). Schedulability is finally checked with the response-

time analysis at line 6 [33]. Note that the algorithm can be

improved by iteratively refining the response-time bounds R
(vector of all bounds Ri,j) every time a shorter response time

is found by the response-time analysis.

Algorithm 1 Memory-aware analysis algorithm

1: procedure MEMORYAWAREANALYSIS(Γ)
2: ∀τi ∈ Γ,∀vi,j ∈ Vi, Ri,j ← Di

3: ∀τi ∈ Γ,∀vi,j ∈ Vi, RIN
i,j ← Lemma 4(R)

4: ∀τi ∈ Γ,∀vi,j ∈ Vi, Ci,j = RIN
i,j + Ci,j + COUT

i,j
5: for each τi ∈ Γ do
6: Ri ← ResponseTimeAnalysis(τi, Γ)
7: if Ri > Di then
8: return FALSE;

9: return TRUE;

VII. EXPERIMENTAL RESULTS

This section presents the results of a large-scale experimen-

tal study that has been conducted to evaluate the proposed

analysis. Experiments are divided into three parts. The first

two parts target parallel task sets, using realistic benchmarks

from the STR2RTS library (Secs. VII-A and VII-B) and

synthetic task sets, respectively. They compare the response-

time bounds achieved by accounting for memory contention

with the two approaches proposed in the previous section

(Holistic-FG and Holistic) against the method by Hassan

and Pellizzoni [9], which is not explicitly designed for parallel

tasks. Nevertheless, such a method bounds the contention

delay suffered by each memory request agnostically of the task

model, and hence it is compatible also with parallel tasks by

computing the memory contention on a per-node basis. Then,

the analysis for parallel tasks under fixed-priority scheduling

proposed in [33] has been used by just inflating the tasks’

WCETs with the memory interference bound. The third part of

this experimental study (Section VII-C) targets sequential tasks

set and compares the analysis proposed in this work with the

state-of-the-art approach by Hassan and Pellizzoni [9]. In these

experiments, we compared: (i) the ratio between the memory

contention incurred by the copy-in phases as computed with

the two approaches, and (ii) the ratio of schedulable task sets

(also called schedulability ratio). Note that sequential tasks

can be handled by the results of this paper by modeling them

as single-node parallel tasks. All the experiments have been

executed on a machine equipped with an Intel Core i7-6700K

@ 4.00GHz. The optimization problem described in Section V

has been solved with IBM CPLEX used in conjunction with

the Microsoft VC++2015 compiler.

In the experiments, the accesses to instructions are assumed

to occur in a contention-free manner. The contention-free

duration of the memory phases (i.e., C IN
i,j and COUT

i,j ) has been

considered proportional to the number of memory transactions,

i.e., by multiplying it by a constant Dcf that denotes the

maximum time required to perform a single read request in

isolation. A preliminary experimental study showed that the

results are not affected by the choice of Dcf , which has been

set to 100 ns for simplicity. Nodes have been assigned to

cores according to the worst-fit heuristic with respect to their

utilizations, and edges have been assigned to memory banks

with the same heuristic using edge weights as a metric. To

compute memory contention, we considered the JEDEC timing

constraint of a DDR3 memory controller running at 1333 Mhz.

As in prior work [27], the threshold on the number of requests

that can be reordered by FR-FCFS scheduling has been set

to Nthr = 18, the number of requests served in a batch to

Nwb = 18, and the size of the write queue to Qwrite = 64.

A. STR2RTS Benchmark

The first experimental study targets the STR2RTS Bench-

mark Suite [38], which comprises a set of digital signal

processing applications. Each benchmark consists of an ap-

plication described by a parallel task that comes with (i) the

topological organization of the graph, (ii) the WCET associ-

ated with each node, and (iii) the amount of memory assigned

to each edge. Each benchmark has been considered separately.

Table IV in Appendix [8] summarizes the seven representative

benchmarks (named B1, B2, ..., B7) from the STR2RTS suite

we used. Given a number of banks NB ∈ {4, 8, 16}, for

each benchmark application, Figure 3 reports a pair of bars

that denote the ratio between the worst-case response time

computed with Holistic-FG and Holistic, and the one

from [9], respectively (denoted by ‘RT ratio’ in the plots).
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Figure 3. Ratio between the response times of applications taken from the STR2RTS benchmarks achieved by accounting for memory contention with the
proposed approaches and the response time achieved by using the analysis by Hassan and Pellizzoni [9].

Clearly, the lower the ratio the better. In all the tested cases,

our analysis provides less pessimistic response times. Insets

(a) and (b) target platforms with m = 4 and m = 8 cores,

respectively, and show how the improvement increases as the

number of banks NB increases, reaching a gap up to about

90% for benchmarks B1, B4 and B7. Figure 7 (reported

in Appendix [8]) shows a similar trend as a function of

the number of cores. In both the cases, the improvement is

attributed to a more precise bound on the memory contention,

which may cause domino effects along chains of nodes when

analyzing the response times of a parallel task. Similar trends

have been observed with m ∈ [4, 16] and NB ∈ [4, 16].
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Figure 4. Ratio between the response times of synthetic parallel tasks.

B. Synthetic Parallel Tasks

Synthetic parallel tasks have been generated using the DAG-

task generator presented in [39], which is also used in other

works [33, 40, 41] from which we inherit the configuration of

most the parameters discussed next. Each DAG is generated

by starting from two nodes connected by a single edge and

recursively replacing nodes with a fork-join graph (up to a

maximum depth) with a number of branches randomly chosen

in the interval [2, 6] with uniform distribution. During the

recursive procedure, each node is associated with a proba-

bility pfork = 0.6 to fork. Edges are randomly added with

probability padd = 0.1 to transform the resulting fork-join

graph in a DAG. For each node, a WCET has been generated

in the interval [1, 1000] μs. Given a target task set utilization

U =
∑

τi∈Γ(
∑

vi,j∈Vi
Ci,j)/Ti =

∑
τi∈Γ Ui and a number

of tasks n, individual tasks utilization have been derived

with the UUnifast algorithm [42], thus deriving Ti from the

other parameters. Deadlines have been set equal to minimum

inter-arrival times, i.e., Di = Ti, and priorities have been

set according to a deadline-monotonic assignment. For each

edge, a corresponding weight has been randomly generated

with uniform distribution in the interval [0, 100]. Again, our

methods have been compared to the one from [9]. Figure 4

shows the results of two representative configurations where

the same ratio of response times discussed in Sec. VII-A has

been measured (the lower the better). For each point in the

graph, 100 different task sets have been tested and, for each

of them, the average ratio of response times has been collected.

Holistic-FG allows reaching an improvement up to 60%.

C. Sequential Tasks
Sequential tasks have been generated as follows. For each

tested task set Γ and a given target utilization U , individual

task utilizations Ui have been generated with the UUnifast dis-

card algorithm [42]. For each task τi ∈ Γ, the minimum inter-

arrival time Ti has been randomly generated in the interval

[10, 100] ms with log-uniform distribution. The WCET Ci of

the execution phase of τi has been then derived as Ci = Ti ·Ui.

Deadlines have been set equal to the corresponding periods,

and priorities have been configured according to a deadline-

monotonic assignment. To generate memory accesses, the

number of banks accessed by each task is first randomly

chosen in [1,m] with uniform distribution; then, for each

bank, a number of accesses has been randomly generated with

uniform distribution in the interval [0, 100]. For each task τi,
the memory contention bound has been computed with both

our methods and the one proposed in [9]. Then, the ratio

between the value obtained by using each of our methods and

the one obtained by using [9] has been computed for each

task, and finally averaged among all tasks. This procedure

generates what is here called “CIN ratio”. Clearly, the lower

the ratio the better. Figure 5-(a)(b)(c) report the CIN ratios for

both Holistic-FG and Holistic under three representative

configurations (reported above the plots). Each point in the

graph has been obtained by averaging the CIN ratios out

of 100 task sets. Figure 5(a) shows that the improvement

achieved by using the proposed approaches increases as the

number of banks increases: this is attributed to a fine-grained

characterization of the memory interference related to each

bank allowed by the proposed analysis. In particular, for

NB = 16 banks, the Holistic approach provides a CIN ratio

of about 25%, hence providing a consistent improvement of

75%. Inset (b) shows how the performance improvement tends

to decrease when both the number of cores and tasks are in-

creased simultaneously. Inset (c) shows that the improvements

decrease as the number of tasks increases: this is because
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Figure 5. Ratio between the inflated WCET of the copy-in phase as computed with the proposed approaches and with the analysis by Hassan and Pellizzoni [9].
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Figure 6. Comparison of schedulability ratios.

with more tasks there are also more interfering requests, thus

making more likely that each request incurs the worst-case

contention as assumed by the analysis in [9].

Figure 5(d) reports the maximum running times observed for

computing the memory contention of an entire task set with

the same configuration of Figure 5(c), showing the benefits

provided by Holistic: while Holistic-FG is more precise,

it may take up to some seconds to analyze a task set, while

Holistic always take up to few hundreds of milliseconds.

Nevertheless, both Holistic-FG and Holistic exhibit a

runtime requirement largely compatible with off-line analysis

activities. Due to a lack of space, we were not able to report

the average running times, which resulted to be bounded by a

few hundred of milliseconds for both the proposed approaches.

Finally, Figure 6 shows the schedulability ratio of two

representative configurations (reported above the plots), where

the overall task set utilization has been varied. Insets (a) and

(b) show that both Holistic-FG and Holistic allow to

schedule a larger number of task sets, reaching up to 50%

improvement (e.g., in inset (b) for U = 2.5).

VIII. RELATED WORK

Many works have been presented over the years aimed at

bounding memory contention but, to the best of our knowl-

edge, none of them targeted a holistic analysis leveraging

a predictable execution model for parallel DAG tasks under

partitioned non-preemptive scheduling. Differently, prior work

mostly targeted a request-driven analysis [9, 22, 27], where

an upper-bound on the worst-case contention delay suffered

by each arbitrary memory transaction is computed and used

to inflate the WCET of vi,j . Besides request-driven analysis,

the so-called job-driven analysis has been proposed, which

bounds memory contention at the response-time stage. This

techniques is only sketched in the work due to Yun et al. [27],

and detailed exclusively in the work by Kim et al. [22], which

target a different memory controller model with respect to

this paper (e.g., in [22] writes are not handled in batches).

Other works addressed the impact of DRAM refresh [43]–

[45]: a more detailed discussion is reported in Appendix [8].

Davis et al. [45] used a task model based on execution traces

and proposed a memory-aware analysis for sporadic tasks,

but without considering a fine-grained model of the memory

controller as the one addressed in this paper. The first work

targeting a predictable model for execution is due to Pellizzoni

et al. [6], which have been later refined in other works [7, 46]–

[50]. Other works aimed at providing a predictable accesses

to memories [13, 51]–[59]. Due to space limits, we leave the

interested reader to the recent survey by Maiza et al. [60] for

a more detailed discussion of the state of the art.

Concerning parallel real-time tasks, the literature provides

a very large amount of works. Many papers adopted the DAG

task model [11] targeting different scheduling policies, e.g.,

global scheduling [40, 61]–[64], federated scheduling [65]–

[67], and partitioned scheduling [33, 68]. Other works targeted

different tasks models [41, 69]–[72], e.g., fork-join and gang.

Most relevant to us, Rouxel et al [16], proposed a memory-

aware analysis for a single statically-scheduled parallel task,

where each core is connected to memory only with a shared

round-robin bus. Alhammad and Pellizzoni [73] analyzed

parallel tasks scheduled by federated scheduling with a round-

robin arbiter and proposed two different arbitration schemes.

IX. CONCLUSIONS

This paper presented a holistic analysis to bound the mem-

ory contention experienced by parallel tasks under partitioned

non-preemptive scheduling, where each node executes accord-

ing to a three-phase model. An optimization problem has been

formulated to explicitly characterize interfering requests due

to each bank and processor. Experimental results show an im-

provement up to 90% in terms of accuracy with respect to the

state-of-the-art analysis by Hassan and Pellizzoni [9], which

however still provides a higher degree of flexibility, supporting

a wider range of configurations of DRAM memory controllers.

Future work should address the extension of the proposed

analysis to such configurations. Thanks to the modularity of

our approach, only a few new constraints may have to be added

to (or modified in) the optimization problem of Section V-C

to reflect other behaviors of the memory controller, e.g., to

target controllers with different intra-bank arbitration policies

or that do not implement write batching with watermarking.
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lizzoni, “A survey on cache management mechanisms for real-time
embedded systems,” ACM Comput. Surv., vol. 48, no. 2.

[11] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in 2011 IEEE 32nd
Real-Time Systems Symposium, 2011.

[12] Infineon, AURIX 32-bit microcontrollers for automotive and industrial
applications Highly integrated and performance optimized. [Online].
Available: https://www.infineon.com/dgdl/Infineon-TriCore Family
BR-BC-v01 00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7

[13] R. Tabish, R. Mancuso, S. Wasly, S. S. Phatak, R. Pellizzoni, and
M. Caccamo, “A reliable and predictable scratchpad-centric os for
multi-core embedded systems,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2017.

[14] R. Mancuso, R. Dudko, and M. Caccamo, “Light-prem: Automated soft-
ware refactoring for predictable execution on cots embedded systems,”
in 2014 IEEE 20th International Conference on Embedded and Real-
Time Computing Systems and Applications, Aug 2014.

[15] S. Derrien, I. Puaut, P. Alefragis, M. Bednara, H. Bucher, C. David,
Y. Debray, U. Durak, I. Fassi, C. Ferdinand, D. Hardy, A. Kritikakou,
G. Rauwerda, S. Reder, M. Sicks, T. Stripf, K. Sunesen, T. ter Braak,
N. Voros, and J. Becker, “Wcet-aware parallelization of model-based
applications for multi-cores: The argo approach,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2017, March 2017.

[16] B. Rouxel, S. Derrien, and I. Puaut, “Tightening contention delays
while scheduling parallel applications on multi-core architectures,” ACM
Trans. Embed. Comput. Syst., vol. 16, no. 5s, pp. 164:1–164:20, 2017.

[17] I. Puaut and C. Pais, “Scratchpad memories vs locked caches in
hard real-time systems: a quantitative comparison,” in 2007 Design,
Automation Test in Europe Conference Exhibition, 2007, pp. 1–6.

[18] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Mem-
ory access scheduling,” in Proceedings of the 27th Annual International
Symposium on Computer Architecture, ser. ISCA ’00, 2000.

[19] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair queuing
memory systems,” in Proceedings of the 39th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, ser. MICRO 39, 2006.

[20] M. Hassan and H. Patel, “Mcxplore: An automated framework for
validating memory controller designs,” in 2016 Design, Automation Test
in Europe Conference Exhibition (DATE), March 2016, pp. 1357–1362.

[21] ——, “Mcxplore: Automating the validation process of dram memory
controller designs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 5, pp. 1050–1063, May
2018.

[22] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Ra-
jkumar, “Bounding memory interference delay in cots-based multi-core
systems,” in 2014 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2014.

[23] Intel, External memory interface handbook volume 2: Design guidelines.
[24] T. Instruments, Keystone Architecture DDR3 Memory Controller.
[25] N. Chatterjee, N. Muralimanohar, R. Balasubramonian, A. Davis, and

N. P. Jouppi, “Staged reads: Mitigating the impact of dram writes on
dram reads,” in IEEE International Symposium on High-Performance
Comp Architecture, Feb 2012.

[26] C. Natarajan, B. Christenson, and F. Briggs, “A study of performance
impact of memory controller features in multi-processor server environ-
ment,” in Proceedings of the 3rd Workshop on Memory Performance
Issues: In Conjunction with the 31st International Symposium on Com-
puter Architecture, ser. WMPI ’04, 2004.

[27] H. Yun, R. Pellizzon, and P. K. Valsan, “Parallelism-aware memory
interference delay analysis for cots multicore systems,” in 2015 27th
Euromicro Conference on Real-Time Systems, July 2015.

[28] Qualcomm, Qualcomm snapdragon 600e processor apq8064e recom-
mended memory controller and device settings application note.

[29] A. Biondi, P. Pazzaglia, A. Balsini, and M. Di Natale, “Logical execution
time implementation and memory optimization issues in autosar appli-
cations for multicores,” in Proc. of the 8th International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS 2017).

[30] A. Wieder and B. B. Brandenburg, “On spin locks in autosar: Blocking
analysis of fifo, unordered, and priority-ordered spin locks,” in IEEE
34th Real-Time Systems Symposium, Dec 2013.

[31] A. Biondi and M. D. Natale, “Achieving predictable multicore execution
of automotive applications using the let paradigm,” in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
April 2018.

[32] A. Biondi and B. B. Brandenburg, “Lightweight real-time synchroniza-
tion under p-edf on symmetric and asymmetric multiprocessors,” in 2016
28th Euromicro Conference on Real-Time Systems (ECRTS), July 2016.

[33] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Partitioned fixed-
priority scheduling of parallel tasks without preemptions,” in 2018 IEEE
Real-Time Systems Symposium (RTSS), Dec 2018.

[34] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the SymTA/S approach,” IEEE
Proceedings - Computers and Digital Techniques, March 2005.

[35] D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg, “Response-
Time Analysis of ROS 2 Processing Chains Under Reservation-Based
Scheduling,” in 31st Euromicro Conference on Real-Time Systems
(ECRTS 2019), 2019.

[36] M. Negrean and R. Ernst, “Response-time analysis for non-preemptive
scheduling in multi-core systems with shared resources,” in 7th IEEE
International Symposium on Industrial Embedded Systems (SIES’12),
June 2012.

[37] G. Nelissen and A. Biondi, “The srp resource sharing protocol for self-
suspending tasks,” in 2018 IEEE Real-Time Systems Symposium (RTSS),
Dec 2018.

[38] B. Rouxel and I. Puaut, “STR2RTS: Refactored StreamIT Benchmarks
into Statically Analyzable Parallel Benchmarks for WCET Estimation
and Real-Time Scheduling,” in 17th International Workshop on Worst-
Case Execution Time Analysis (WCET 2017), 2017.

251

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:28:11 UTC from IEEE Xplore.  Restrictions apply. 



[39] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional dag tasks in
multiprocessor systems,” in 2015 27th Euromicro Conference on Real-
Time Systems, July 2015.

[40] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time analysis
of sporadic DAG tasks for global FP scheduling,” in Proceedings of the
25th International Conference on Real-Time Networks and Systems, ser.
RTNS ’17, 2017.

[41] D. Casini, A. Biondi, and G. Buttazzo, “Analyzing parallel real-time
tasks implemented with thread pools,” in Proceedings of the 56th Annual
Design Automation Conference 2019, ser. DAC ’19, 2019.

[42] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems, vol. 30, no. 1, pp. 129 – 154, May 2005.

[43] B. Bhat and F. Mueller, “Making dram refresh predictable,” in 22nd
Euromicro Conference on Real-Time Systems, July 2010.

[44] Z. P. Wu, R. Pellizzoni, and D. Guo, “A composable worst case latency
analysis for multi-rank dram devices under open row policy,” Real-Time
Syst., vol. 52, no. 6, pp. 761–807, 2016.

[45] R. I. Davis, S. Altmeyer, L. S. Indrusiak, C. Maiza, V. Nelis, and
J. Reineke, “An extensible framework for multicore response time
analysis,” Real-Time Systems, vol. 54, no. 3, pp. 607–661, Jul 2018.

[46] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo, “Memory-
centric scheduling for multicore hard real-time systems,” Real-Time
Syst., vol. 48, no. 6, pp. 681–715.

[47] G. Durrieu, M. Faugere, S. Girbal, D. G. Perez, C. Pagetti, and
W. Puffitsch, “Predictable flight management system implementation on
a multicore processor,” in Embedded Real Time Software (ERTS’14),
2014.

[48] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nlis, and T. Nolte,
“Contention-free execution of automotive applications on a clustered
many-core platform,” in 28th Euromicro Conference on Real-Time
Systems (ECRTS), July 2016.

[49] A. Alhammad and R. Pellizzoni, “Schedulability analysis of global
memory-predictable scheduling,” in Proceedings of the 14th Interna-
tional Conference on Embedded Software. ACM, 2014, p. 20.

[50] A. Alhammad, S. Wasly, and R. Pellizzoni, “Memory efficient global
scheduling of real-time tasks,” in 2015 Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS). IEEE, 2015, pp. 285–296.

[51] M. R. Soliman and R. Pellizzoni, “WCET-Driven Dynamic Data
Scratchpad Management With Compiler-Directed Prefetching,” in 29th
Euromicro Conference on Real-Time Systems (ECRTS 2017), ser. Leib-
niz International Proceedings in Informatics (LIPIcs), 2017.

[52] S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Mar-
wedel, and H. Falk, “A unified wcet analysis framework for multicore
platforms,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 4s, apr.

[53] J. Eo, K.-W. Kim, and C.-G. Lee, “Memory access pattern-aware
dram controller design for mixed-criticality systems,” in Cyber Physical
Systems. Design, Modeling, and Evaluation, R. Chamberlain, W. Taha,
and M. Törngren, Eds. Springer International Publishing, 2019.

[54] M. Xu, L. T. X. Phan, H. Choi, Y. Lin, H. Li, C. Lu, and I. Lee, “Holistic
resource allocation for multicore real-time systems,” in 2019 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
April 2019, pp. 345–356.

[55] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens,
“A globally arbitrated memory tree for mixed-time-criticality systems,”
IEEE Transactions on Computers, vol. 66, no. 2, pp. 212–225, Feb 2017.

[56] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun, “Wcet(m)
estimation in multi-core systems using single core equivalence,” in 2015
27th Euromicro Conference on Real-Time Systems, July 2015, pp. 174–
183.

[57] P. Pazzaglia, A. Biondi, and M. D. Natale, “Optimizing the functional
deployment on multicore platforms with logical execution time,” in
Proceedings of the 40th IEEE Real-Time Systems Symposium (RTSS
2019), 2019.

[58] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo, “Is
your bus arbiter really fair? restoring fairness in axi interconnects for
fpga socs,” ACM Trans. Embed. Comput. Syst., vol. 18, no. 5s.

[59] L. Sha, M. Caccamo, R. Mancuso, J. Kim, M. Yoon, R. Pellizzoni,
H. Yun, R. B. Kegley, D. R. Perlman, G. Arundale, and R. Bradford,
“Real-time computing on multicore processors,” Computer, vol. 49,
no. 9, pp. 69–77, Sep. 2016.

[60] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I.
Davis, “A survey of timing verification techniques for multi-core real-
time systems,” ACM Comput. Surv.

[61] H. S. Chwa, J. Lee, K. Phan, A. Easwaran, and I. Shin, “Global
edf schedulability analysis for synchronous parallel tasks on multicore
platforms,” in 2013 25th Euromicro Conference on Real-Time Systems,
July 2013.

[62] C. Liu and J. H. Anderson, “Supporting soft real-time parallel applica-
tions on multicore processors,” in 2012 IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, Aug
2012, pp. 114–123.

[63] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Techniques
optimizing the number of processors to schedule multi-threaded tasks,”
in 2012 24th Euromicro Conference on Real-Time Systems, July 2012.

[64] M. Nasri, G. Nelissen, and B. B. Brandenburg, “Response-Time Analysis
of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling,”
in 31st Euromicro Conference on Real-Time Systems (ECRTS 2019).

[65] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in 2014
26th Euromicro Conference on Real-Time Systems, July 2014.

[66] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling of
parallel real-time tasks on multiprocessors,” in IEEE Real-Time Systems
Symposium (RTSS), 2017.
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