

A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimisation

15th Workshop on Virtualization in High-Performance Cloud Computing (VHPC'20, part of ISC 2020)

Model-based engineering of high-performance embedded applications on heterogeneous hardware with real-time constraints and energy efficiency

Tommaso Cucinotta - Scuola Superiore Sant'Anna, Pisa (Italy)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871669

Introduction & Motivations

CPSs have higher and higher computational performance & reliability requirements

Use of increasingly heterogeneous & interconnected, battery-operated platforms

- non-SMP multi-core
- GP-GPU/TPU acceleration
- FPGA
- Heterogeneous platforms needed in soft and hard real-time use-cases
 - automotive, railways, aerospace, robotics, gaming, multimedia, ...

Problems & Challenges

- Development of software for CPSs is cumbersome!
 - Optimum usage of underlying hardware parallelism & acceleration
 - Performance vs energy consumption trade-offs
 - Real-time constraints
 - Safety & certification

MDE & Formalisms in Embedded System Design

Model-Driven Engineering (MDE)

 Fill the gap between high-level specifications and actual system behavior

MDE embraces

- Formal specification language(s)
- Model transformation engine(s)
- Model refinements & composability
- Automatic code generator(s)
- Model verifiability
- => Correctness-by-construction

MDE & Formalisms in Embedded System Design

Cupational & Non-functional Dequirements Model-Dri Fill the high-lev **Traditional MDE limitations** behavio Single-processor systems or very limited MDE emb support for multi-core systems Formal Struggles at coping with nowadays Model t Model r complex heterogeneous embedded boards Actuators Automa Model v • => Correctness-by-construction

AMPERE Project Goal

Fill the gap between

- MDE techniques with no/limited parallelism support
- Parallel-programming models with efficient
 HW offloading
 (OpenMP, CUDA, ...)
- Heterogeneity in hardware

In presence of non-functional requirements

- High-Performance
- Real-Time Constraints
- Energy Efficiency
- Fault Tolerance

AMPERE Vision

- Synthesis methods for an efficient generation of parallel source code, while keeping nonfunctional and composability guarantees
- 2. Run-time parallel frameworks that guarantee system correctness and exploit the performance capabilities of parallel architectures
 - 3. Integration of parallel frameworks into MDE frameworks

AMPERE Vision

AUTOSAR

- SW-C
- Runnables
- Client-server
- ASIL

AMALTHEA

- Performance
- Tasks
- Scheduling
- Platform

CAPELLA

- · Functional components
- · Allocation of resources
- Data models
- View points
- validation rules

Meta-model Driven Abstractions

 $Components, \ Communications, \ Timing \ Characteristics, \ Integrity Aassurance, \ \dots$

Model Transformation Engine

Meta-parallel Programming Abstraction
Parallelism, Synchronization, Data Dependencies, Data Attributes, ...

OpenMP

- Task construct
- Dependencies
- Parallel construct

OpenCL

- clgetDeviceId
- clCreateBuffer
 - kernel exec

COMPSs

- Compute resource
- Data movements
- Task annotations

Parallel Run-Time Frameworks

AMPERE MDE Framework

AMPERE Software Architecture

Software Layer	Tool	Owner (License)
DSMLs	AUTOSAR	AUTOSAR (Proprietary)
	AMALTHEA	BOSCH (Open-source)
	CAPELLA	TRT (Open-source)
Parallel programming models	OpenMP	OpenMP ARB (Proprietary)
	CUDA	NVIDIA (Proprietary)
	OpenCL	Khronos (Proprietary)
	COMPSs	BSC (Open-source)
Artificial Intelligence	TensorFlow	Google (Open-source)
Code synthesis tools	Synthesis tools	AMPERE (Open-source)
Analysis and testing tools	NFP analysis	AMPERE (Open-source)
Compilers and hardware synthesis tools	Mercurium	BSC (Open-source)
	GCC/LLVM	GNU/LLVM (Open-source)
	Vivado	Xilinx (Proprietary)
Run-time libraries	GOMP	GNU-GCC (Open-source)
	KMP	LLVM (Open-source)
	Vivado	Xilinx (Proprietary)
Operating systems	Linux	Linux-Foundation (Open-source)
	ERIKA Enterp.	EVI (Open-source/commercial)
Hypervisors	PikeOS	SYSGO (Proprietary)

AMPERE Software Development Workflow Overview

AMPERE Use-Cases

Obstacle Detection and Avoidance System (ODAS)

 ADAS functionalities based on data fusion coming from tram vehicle sensors

Predictive Cruise Control (PCC)

- Extends Adaptive Cruise Control (ACC) functionality by calculating the vehicle's future velocity curve using the data from the *electronic horizon*
- Improve fuel efficiency (in cooperation with the powertrain control) by configuring the driving strategy based on data analytics and AI

FPGA System-on-Chip (SoC)

FPGA-based system-on-chips are a very promising solution to enable **predictable** HW acceleration of complex computing workloads

- Multiprocessors can host multi-OS software systems
- FPGA fabric can be used to deploy HW accelerators

HW Accelerators on FPGAs

 Programmable logic exhibits very regular, clock-level behavior (differently from other HW accelerators, e.g., GP-GPUs)

Internal control logic of several HW accelerators is typically based

on state machines

Possibility to deploy custom bus logic

FIR and Sobel filters from Xilinx IP library (screenshot from Vivado 2017.4)

Bus/memory contention can be made predictable

Dynamic Partial Reconfiguration

- Modern FPGAs offer dynamic partial reconfiguration (DPR) capabilities
- DPR allows reconfiguring a portion of the FPGA at runtime, while the rest of the device continues to operate
- Is essence, reconfiguration requires programming a memory
 - Simplifying, an image of the FPGA configuration (bitstream) is copied from one memory to another

FRED Framework

- Enable predictable HW acceleration on FPGA system-on-chips
- Collection of technologies developed at the ReTiS Lab

http://fred.santannapisa.it/

Supported platforms

Zynq Ultrascale+

Zynq-7000 series

FRED Programming Model

Time-predictable DNN Inference

- CHaiDNN: HLS based DNN Accelerator Library for Xilinx Ultrascale+
 - Designed for maximum compute efficiency at 6-bit integer data types (it also supports 8-bit integer data types)
- The inference time in isolation exhibits <u>very little fluctuations</u>
 - The real issue for time predictability is bus/memory contention

Setup: Xilinx ZCU102 (Ultrascale+), Vivado2018.2,

GoogleNet, DMA from Xilinx IP lib

Inside the FRED Framework

The FRED framework is a combination of several technologies:

- Run-time FPGA manager & scheduler for Linux (both C and Python API)
- Bus monitors and budget enforcers
- Automated FPGA floor-planning
- Automatic synthesis of bus interconnections

Conclusions

- AMPERE aims to bridge the gap between MDE and PPM on HHW by
 - 1. Providing a **development framework** for CPS targeting parallel heterogeneous architectures for an increased productivity compliant with current MDE practises
 - 2. Providing an **execution framework** for an efficient exploitation of parallel and heterogeneous architectures, fulfilling functional and non-functional constraints
 - 3. Integrating AMPERE software solutions into relevant industrial use-cases (automotive and railway) with HPC and real-time requirements

Thanks for Listening Any Questions?

https://www.linkedin.com/company/ampere-project

www.ampere-euproject.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871669