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1. Introduction

In recent years, embedded systems have embraced multi-core architec-
tures to face the relentless growth of performance required by users. In
particular, in the mobile domain, the performance growth also faced the
important problem of energy-efficiency, which led to the adoption of DVFS-
capable architectures, first and foremost the ARM big.LITTLE one. This
is nowadays a fundamental characteristic of a plethora of mobile and tablet
devices on the market, where soft real-time applications are becoming more
and more important, for example in the multimedia and the gaming domains.

The big.LITTLE design deviates from classical symmetric multi-processing
(SMP), in that it introduces two different types of cores sharing the same
instruction-set architecture (ISA), so that tasks can be seamlessly migrated
among them, as in SMP, but with different frequency vs power consump-
tion curves: LITTLE cores specialize in low-energy computing whilst big
cores specialize in performance. The two types of cores are normally capable
of switching among principally different but partially overlapped frequency
steps. However, the differences in the internal micro-architecture and pipeline
design for the two core types causes a task running on a LITTLE core to take
longer for execution and to consume less power than when running on a big
core at the same frequency. Nowadays, the Dynamic Voltage and Frequency
Scaling (DVFS) capabilities of big.LITTLE architectures are constrained to
being able to set a single frequency for each of the two core type islands, al-
beit the most recent and advanced developments of the architecture, named
DynamIQ2, will remove this constraint.

The presence of real-time workloads requires the scheduler to make fast
decisions on whether to admit or not new tasks in the system, where at a time
t there can be any number of tasks ready to be scheduled, and tasks can enter
or leave the system at any time. In such an open and dynamic enviroment,
the need for fast and effective admission tests is a relevant feature of any
operating system (OS) scheduler. In the case of the Linux kernel, for example,
real-time workloads are supported either via POSIX RR/FIFO policies, or
by the SCHED_DEADLINE scheduler. This is a multi-processor variant of
the well-known constant bandwidth server (CBS) employing a reservation-
based scheduling strategy that can be conveniently configured as using either

2More information is available at: https://www.arm.com/why-arm/technologies/
dynamiq.

2



global or partitioned or clustered EDF scheduling underneath. However, no
fast and effective admission test for the ARM big.LITTLE architecture is
available.

1.1. Contributions
In this paper, a simple equation (see Equation (15) below) is proposed

to admit a taskset on a non-uniform multi-processor (NUMP) platform such
as the ARM big.LITTLE one and under P-EDF scheduling3. The proposed
equation follows the interesting technique proposed in [1], where we take into
account the utilizations of the heaviest few k tasks in the set, bounding the
utilization of the remaining tasks with the one of the kth heaviest task.

The proposed equation is embedded within three different admission tests
and combined with the SMP tests for big.LITTLE architectures, i.e., the
utilization-based test [2] and the heuristic proposed in [1] over task sets ran-
domly generated using the well-known randfixedsum algorithm [3]. The
evaluation is performed on a reference ARM big.LITTLE platform (ODROID-
XU3) and focuses on the capability to admit additional tasks into the sys-
tem, as well as the additional overheads due to the computational complexity
needed for the new tests. We show that the technique can be proposed as an
on-line admission test for dynamic real-time systems where real-time tasks
can enter and leave at any time. Our approach does not require to know the
whole taskset from the beginning and it allows for incrementally handling
new tasks entering the system.

2. Related Work

The problem of real-time tasks partitioning can be formulated as an in-
stance of the well-know bin-packing problem, where items must be allocated
into bins such that the final bins weights are less than 1. In the context of
real-time task scheduling, CPU cores are modelled as bins (with a size equal
to the core’s speed) and tasks are modelled as items (with a size equal to the
task’s utilization).

3Note that in this paper we refer to non-homogeneity in computational capabilities
and speed of computations of the various cores/processors, which is different from the
well-known NUMA acronym, that refers to non-homogeneity in memory access timing.
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Optimal solutions to the bin-packing problem can be found by using a
MILP (Mixed Integer Linear Programming) formulation. In fact, the bin-
packing problem is known to be NP-hard in the strong sense, thus making
other related interesting problems, like partitioning tasks to achieve the min-
imum energy consumption, intractable in polynomial time as well. Different
bin-packing heuristics (designed to work around the problem complexity)
have been investigated in previous works and some interesting conclusions
are reported in the state of the art. Simchi-Levi [4] provides worst-case re-
sults for the heuristics First-Fit, Best-Fit and their respective versions in
which items are ordered in decreasing order. The authors also provide the
absolute performance ratios, which gives the heuristic solution’s maximum
deviation from optimality. Likewise, [5] revisits some of the heuristics of the
bin-packing problem and compares the approximation ratio of these algo-
rithms as a function of the total size of the input items. Johnson [6], and sim-
ilarly [7], proposes simple, polynomial-time, heuristic algorithms for finding
approximate solutions, which are analyzed with respect to their worst-case
behavior. Finally, [8] shifts the focus from bin-packing towards bounding the
scheduling anomalies on multiprocessor systems when scheduling tasksets of
DAG tasks. The reader can refer to [9] for a survey on the heuristics for the
bin-packing problem and its variants. The survey emphasizes the worst-case
performance guarantees that are provably achievable, and it discusses work
that has been done on the expected performance and behavior “in practice”,
mentioning also some of the many applications of these problems. Notice,
however, that the approaches mentioned above can only be used for off-line
tasks partitioning.

Efficient heuristics for on-line bin-packing (which allow partitioning tasks
that start and terminate dynamically) have also been investigated. Gam-
bosi [10] allows a constant number of elements to move from one bin to
another, as a consequence of the arrival of a new input element, and possible
algorithms are presented. Ivković [11] shows that the ability to move more
than a constant number of items is necessary for accomplishing highly com-
petitive, time-efficient fully dynamic approximation algorithms for bin pack-
ing. Balogh [12] continues the work in [11] by improving the lower bound
on the asymptotic worst-case ratio, while [13] uses a new dynamic rounding
technique and novel methods to handle small items in a dynamic setting such
that no amortization is needed. Balogh [14] defines and analyzes a semi-on-
line algorithm where for each step at most k items can be repacked, for some
positive integer k. Semi-on-line algorithms for the bin-packing problem al-
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low, in contrast to pure on-line algorithms, the use of repacking, reordering
or lookahead before packing the items. Finally, [15] splits bins and items into
classes and proposes an algorithm to dynamically partition items into bins
based on their classes.

In the context of real-time scheduling, one of the first important results is
the computation of a utilization bound for the First-Fit heuristic [2] on homo-
geneous multi-cores. This result has then been extended to uniform heteroge-
neous multi-cores, where different cores may have different speeds. Methods
for finding an approximate utilization bounds for partitioned scheduling on
heterogeneous multiprocessors are presented in [16], while [17] proposes a
strategy to partition sporadic tasks onto cores and then uses Rate Monitonic
to schedule tasks on each core.

The next logical extension is to consider platforms such as ARM big.
LITTLE, where cores are clustered in islands of homogeneous cores (see [18]
for a survey of real-time scheduling on such kind of heterogeneous systems).
In this case, tasks can be partitioned between the various islands (allow-
ing tasks to migrate within an island), or can be statically assigned to
cores [19]. If inter-island migrations are allowed, then optimal scheduling
algorithms can also be developed [20], by allocating fractional parts of the
tasks to the various islands ([21] is another example of this approach). Other
works [22, 23] use ILP formulations (thus considering only off-line assign-
ments) to partition independent constrained-deadline sporadic tasks upon
heterogeneous multiprocessor platforms, or extend the study to tasks with
shared resources [24]. Finally, some other works [25] tried to adaptively min-
imize the energy consumption under a dynamically partitioned EDF scheme
on big.LITTLE CPUs.

In this paper, we propose an improved equation for partitioned EDF
systems starting from the approach proposed in [1] and suitable for being used
on DVFS-enabled platforms such as the ARM big-LITTLE and DynamIQ
ones. The latter combines the original utilization-based admission test [2]
(which uses the utilization of the heaviest task to compute the utilization
bound) with a novel test based on the number of tasks in the taskset, using
not only the highest utilization task in the taskset, but also the subsequent
highest few ones, resulting in the capability to save a number of partitionable
tasksets that the original test would not admit.
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3. Background

A well-know utilization-based admission test for a taskset Γ = {τi}i=1..m

with utilization Ui ≤ 1 on a symmetric multicore platform (SMP) with n
cores with capacity Bj = 1 ∀j ∈ 1..n where tasks are scheduled with EDF
and using the First-Fit allocation strategy (EDF-FF) is given in [2]:

m∑
i=1

Ui ≤
nβ + 1

β + 1
(1)

where β =
⌊

1
α

⌋
and α = maxi=1..m{Ui}.

This test implicitly assumes that all tasks have the same utilization α
and thus it discards many tasksets that would be actually schedulable. This
behaviour is particularly showy when considering tasksets where the highest-
utilization task is considerably bigger than the other ones.

To overcome this issue, we proposed in [1] an extended test that considers
also a few smaller tasks, besides the biggest one α, and works in combination
with Equation (1) in the SMP case. The test considers the possible placement
options for the heaviest k−1 tasks of the taskset, assuming that the remaining
tasks have a utilization equal to the one of the kth heaviest task. This results
in a test on the maximum number mmax of tasks in the taskset that can
be admitted on the platform under partitioned EDF scheduling with any
placement strategy (e.g., First-Fit and Worst-Fit). It is suitable to be used
for incrementally partitioned tasksets and dynamic scenarios, where tasks
can enter and leave the system at any time. For example, in the taskset
Γ = {0.799, 0.342, 0.196, 0.192, 0.182, 0.124, 0.064197}, Equation (1) would
consider only the task with utilization {0.799} and would implicitly assume
that the remaining tasks have the same (high) utilization 0.799. On other
hand, the test in [1], with k = 4, would consider the possible placements of
the tasks with utilizations {0.799, 0.342, 0.196}, and implicitly assume that
the remaining tasks have utilization 0.192, which makes the latter test more
flexible and robust in terms of number of admitted tasksets in the system.
Notice that the taskset Γ can be increasingly built over time and the test can
be repeated at each task arrival.

Two formulations of the test have been proposed in [1], both growing in
computational complexity with the parameter k, and we provide an intuition
below for completeness (see Section 3.1). They are different not only in
computational complexity but also in their effectiveness (the combinatorial
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test is always better or equivalent to the logarithmic test). Both formulations
assume that tasks are sorted in decreasing utilization order. The one with
combinatorial computational complexity (with the parameter k) is:

mmax = k − 1 + min
{Γj}

{
k−1∑
j=1

1−
∑

i∈ΓH
j
Ui

Uk

}
+ (n− k + 1)

⌊
1

Uk

⌋
(2)

where the minimum is carried out over the possible allocations {Γj} of the
heaviest k− 1 tasks over k− 1 cores, ΓHj denotes the subset of the first k− 1
heaviest tasks hosted on core j and Uk is the utilization of the kth heaviest
task. The logarithmic-complexity approximated test is:

mmax ≥ 1 +

⌊
k − 1−

∑k−1
i=1 Ui

Uk

⌋
+ (n− k + 1)

⌊
1

Uk

⌋
(3)

In this case, we must check if m ≤ mmax and the final admission test
for SMP becomes the combination (i.e., the logical OR) of Equation (2) or
Equation (3), with Equation (1), which can be performed in logarithmic time
on the number of tasks if the taskset needs to get sorted in decreasing order.

Simulations on tasksets randomly generated using randfixedsum [3] showed
that already with k = 4 the technique increases in a good way the number
of admitted tasksets with respect to the case in which only Equation (1) is
used. This is shown in Figure 1 for example, where on the X axis we report
the total utilization of the tasksets that have been generated in the range
1.5 − 3.0, and on the Y axis the number of admitted tasksets, over the to-
tal of 100 tasksets of 6 tasks that were generated for each utilization, to be
admitted onto a symmetric quad-core system (maximum utilization 4.0).

The various coloured bins correspond to different admission tests: the
Utilization-based test refers to Equation (1); the Combinatorial test refers to
Equation (2) for k ∈ {3, 4}, and the Linear test refers to the approximated
test in Equation (3) for k ∈ {3, 4}; the Util.-based or Comb. refers to the
logical OR between Equation (1) and Equation (2) and the Util.-based or
Linear refers to the logical OR between Equation (1) and Equation (3). As
evident, both the combinatorial and the approximated faster linear tests,
in logical OR with Equation (1), manage to admit a substantial number
of tasksets in the range of high utilizations, whereas the original test of
Equation (1) alone would admit no tasksets at all.
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Figure 1: Comparison among different admission tests as in [1] in the case of a symmetric
multicore platform with 4 cores and considering tasksets of 6 tasks.

3.1. Intuition about the tests in [1]
We now give an intuition about Equation (2) and Equation (3) and the

reader can refer to [1] for a complete description of the state-of-the-art ap-
proach.

For simplicity and without loss of generality, we assume that m ≥ n ≥ k.
Also, remember that here we take into account a SMP platform, where each
core maximum capacity is 1, while in the rest of the paper we consider
a NUMP platform, where cores may also have lower maximum capacities
(for example, in the ARM big.LITTLE case, the LITTLE cores maximum
capacity is BL = 0.345328).

The main idea is that we have to consider all of the possible allocations of
the heaviest k−1 tasks partitioning them across a subset of k−1 processors.
Without loss of generality, we can assume these are the first k− 1 processors
among the n ones available on the platform. Whenever each of said processors
j hosts a subset ΓHj of the first k − 1 heavy tasks, with overall utilization
UΓH

j
,
∑

i∈ΓH
j
Ui ≤ 1 (note ΓHj can be an empty set for one or more processors

here), its utilization available to host small tasks is 1 − UΓH
j
, therefore each
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processor j < k can host a maximum number of small tasks mS
j equal to:

mS
j =

⌊
1−

∑
i∈ΓH

j
Ui

Uk

⌋
, for j < k, (4)

where the n − k + 1 remaining processors will exclusively host small tasks,
so the maximum number of tasks mS

j for j ≥ k is:

mS
j =

⌊
1

Uk

⌋
, for j ≥ k. (5)

Therefore, the number of tasks mmax that can be admitted is:

mmax =
k−1∑
j=1

(∣∣ΓHj ∣∣+mS
j

)
+

n∑
j=k

mS
j

= k − 1 +
k−1∑
j=1

⌊
1−

∑
i∈ΓH

j
Ui

Uk

⌋
+ (n− k + 1)

⌊
1

Uk

⌋ (6)

However, (i) we do not know a-priori where the k − 1 heaviest tasks
will be placed, and thus the sets {ΓHj } above are unknown, and (ii) we are
interested in formulating a test that holds regardless of the exact location of
the heaviest tasks {ΓHj }. So, we want to compute the minimum possiblemmax

as derived accounting for all the possible distributions of the k − 1 heaviest
tasks over k−1 processors respecting the single-processor EDF schedulability
test UΓj

≤ 1 ∀j < k.
Therefore, the test to be applied requires to verify that m ≤ mmax as

derived from eq. (6) for any possible partitioning of the k − 1 tasks with
highest utilization across k− 1 processors that respect the saturation bound
of UΓH

j
≤ 1 ∀j < k and, since we need to consider the worst-case scenario (in

fact, the actual scheduling strategy that will be applied is unknown a-priori),
we add the minimum to the formulation, obtaining Equation (2).

To derive the logarithmic formula Equation (3), we exploit the fact that

∀x, y ∈ R, bxc+ byc ≥ bx+ yc − 1. (7)

mmax as from eq. (6) above can be bounded as Equation (3), since the mmax

formulation in eq. (6) contains the summation of the result of k − 1 ceil
operations (one for each of the k−1 first cores possibly hosting heavy tasks),
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which can be bounded applying the approximation in eq. (7) exactly k − 2
times, resulting in the first term of (k − 1) in eq. (6) being reduced to just
1. Note that this bound is correct for any possible partitioning {ΓHj } of the
k − 1 heaviest tasks across the first k − 1 cores, and regardless of which
subsets of said tasks actually fit onto a single core. Indeed, the final bound
for mmax turns out to be identical in all these cases, and equal to the one in
Equation (3).

4. Proposed approach

Consider a NUMP platform where cores have capacities Bj ≤ 1 ∀j ∈
{1 . . . n} and let Γ ≡ {τ1 . . . τm} be a generic taskset where tasks have nom-
inal utilizations Ui ≤ 1 ∀i ≤ m (i.e., each task utilization Ui is referred to
the core with maximum capacity). We are interested in a test that is suit-
able to be used online and in a dynamic environment and that works for a
generic NUMP architecture, as for example a multicore platform with DVFS
capabilities. A simplistic and fast admission test is the trivial application of
Equation (1):

m∑
i=1

Ui ≤ U(m,n, α) =
βn+ 1

β + 1

with β =
⌊
minj=1...nBj

α

⌋
(alpha is the highest utilization) where we consider

the platform as if it had symmetric cores and each core had capacity the
minimum one among the processors. However, this would result in a very
pessimist test since: 1) it considers the minimum among all the core utiliza-
tion bounds Bj, discarding a potentially large part of the cores capacity; 2)
it considers all tasks as if they had the maximum utilization α.

A possible way to tackle the pessimism is to use the same idea of [1],
which is to consider not only the heaviest task of the taskset but also the
k heaviest ones. Without loss of generality, from now on assume the tasks
are sorted in decreasing utilization order, i.e., U1 ≥ U2 ≥ . . . ≥ Um (and
α ≡ U1). Also, we assume for simplicity that m ≥ n ≥ k.

In the simplest (non-trivial) case k = 2 we must consider, for each possible
placement of the heaviest task with utilization U1 onto any j of the n cores,
that the remaining “small” m− 1 tasks, all bounded with utilization ≤ U2 ≤
U1, would have to fit in the leftover utilization Bj − U1 on the CPU j where
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U1 was deployed, plus the full capacity available on the remaining n−1 cores.
Thus the maximum number of small tasks mS that fit on the platform is:

mS = min
j=1...n,
Bj≥U1


⌊
Bj − U1

U2

⌋
+
∑

h=1...n,
h 6=j

⌊
Bh

U2

⌋ (8)

Generalizing for k ≥ 3, we need to consider all the possible ways to
distribute the k − 1 heavy tasks among the n cores so that each core is not
overcommitted. We obtain the following general formula:

mS = min{Γj}
∑
j=1...n

⌊
Bj −

∑
i∈Γj

Ui

Uk

⌋
(9)

where the minumum is carried out over all the possible assignments {Γj} of
the “heaviest” k − 1 tasks onto the n cores s.t.

∪j=1...nΓj = {τ1 . . . τk−1},
Γj ∩ Γh = ∅ ∀j 6= h,∑

i∈Γj

Ui ≤ Bj ∀j = 1 . . . n
(10)

Therefore, the maximum number mmax of tasks that can be admitted is:

mmax = k − 1 +min{Γj}
∑
j=1...n

⌊
Bj −

∑
i∈Γj

Ui

Uk

⌋
(11)

With respect to Equation (2) presented in [1], Equation (11) must con-
sider every single core in the computation and cannot rely on the fact that all
cores have the same maximum capacity Bi = 1 ∀i = 1 . . . n, thus the formula
is less straightforward since we cannot assume to have n−k+1 free cores that
simplify the final equation. Figure 2 shows an example of partitions that we
must check with Equation (11) for the taskset Γ = {0.9237, 0.5331, 0.3762}
to be placed on cores with capacities {1.0, 0.6, 0.8, 0.7}, in the cases k = 3
and k = 4.

However, Equation (11) must check all the possible assignments of the
heaviest k − 1 tasks onto the n cores, and this makes its computational
complexity explode. We observe that all the partitions of the k − 1 heaviest
tasks on n cores will have at most k − 1 cores with some of those tasks and
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k=3

k=4

0.9237

0.5331

0.9237

0.5331

0.9237

0.5331

0.9237

0.5331

0.9237

0.5331

0.9237

0.5331

0.9237

0.5331

0.9237

0.3762

0.9237

0.5331

0.3762
0.5331

0.3762

0.9237

0.9237

0.5331
0.3762

0.9237

0.5331

0.3762

0.5331

0.9237

0.9237

0.5331
0.3762

0.9237

0.5331

0.9237

0.5331
0.3762

0.3762

...

0.9237

0.5331

0.9237

0.5331
...

0.5331

0.3762

Figure 2: Some of the possible partition configurations that Equation (11) must check
for a generic NUMP, for k = 3 (top) and k = 4 (bottom) when applied to Γ =
{0.9237, 0.5331, 0.3762} and core capacities = {1.0, 0.6, 0.8, 0.7} for the cores from left
to right respectively. Configurations that are impossible due to violation of EDF schedu-
lability are marked with a red cross. All the cores must undergo the check.

at least n − k + 1 cores without any of them, so they only host lightweight
tasks {τk . . . τm}. On the k−1 cores we still have to try all the possible ways
to partition the heavy tasks {τ1 . . . τk−1}. This is shown in Figure 2, where
(in the case of k = 3 for simplicity) we try to partition the two heaviest tasks
on one or two cores in all the possible ways, and in each valid partitioning
the remaining cores are left free and they can host the remaining “smaller”
tasks with utilization Uk = U3. In other words, all the possible partitions
of k − 1 tasks onto n cores can be thought of as all the possible subsets of
k− 1 cores, on which we try all the possible assignments of k− 1 tasks, thus
Equation (11) can be written as:
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mmax = k − 1 + min
C⊆{1...n},
|C|=k−1

 min
{Γj}∈Γ(C)


k−1∑
j=1

⌊
Bj −

∑
i∈Γj

Ui

Uk

⌋
+
∑
j /∈C

⌊
Bj

Uk

⌋


(12)
where C denotes a subset of cores, |C| denotes the cardinality of C and Γ(C)
is the set of the possible ways to assign the first k−1 tasks to the k−1 cores
in C:

∪jΓj = {τ1 . . . τk−1},
Γj ∩ Γh = ∅ ∀j 6= h,

Γj = ∅ ∀j /∈ C∑
i∈Γj

Ui ≤ Bj ∀j = 1 . . . n

(13)

The test in Equation (12) can be further simplified by exploiting the fact
that:

∀x, y ∈ R, bxc+ byc ≥ bx+ yc − 1 (14)

so the exact formulation of mmax in Equation (12) can be bounded as:

mmax ≥ 1 + min
C⊆{1...n},
|C|=k


⌊∑

j∈C Bj −
∑k−1

i=1 Ui

Uk

⌋
+
∑
j /∈C

⌊
Bj

Uk

⌋ (15)

In fact, after applying Equation (14), the terms
∑k−1

j=1

∑
i∈Γj

Ui in Equa-
tion (12) turn into

∑k−1
i=1 Ui and, since we have a sum of k−1 terms, we need

to apply Equation (14) k − 2 times, obtaining the final formula in Equa-
tion (15).

About the computational complexity of Equation (15), for k = 2 we
need to find all the subsets of cores of cardinality k − 1 = 1, and thus
the complexity is quadratic in the number of cores (n computations, each
requiring the calculation of n terms). In the general case of k > 1 we need
to find all the possible ordered subsets of k− 1 cores given n processors, and
compute n terms each time. Therefore, the computational complexity is:

O

(
n(k − 1)!

(
n

k − 1

))
= O

(
n

n!

(n− k + 1)!

)
(16)
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4.1. The case of ARM big.LITTLE

k=3

0.9237

0.5331

0.9237

0.5331

0.9237

0.5331

0.9237

0.5331

0.9237

0.5331

0.9237

0.5331

Figure 3: The possible partition configurations that Equation (15) must check in the case
of the ARM big.LITTLE architecture with nL = nB = 4 and k = 3 when applied to
Γ = {0.9237, 0.5331, 0.3762}. Configurations that are impossible due to violation of EDF
schedulability are marked with a red cross. For this example, the big island is on the
left with maximum core capacity BB = 1.0 and the LITTLE island is on the right with
maximum core capacity BL = 0.345328. Notice that the case k = 3 is exhaustive and that
only the first k − 1 cores must undergo the check.

The computation complexity of the final test based on the number of
subsets of k−1 cores in Equation (15) may seem pretty high, but it is actually
lowered in the specific case of ARM big.LITTLE architectures, where there
are two islands: the nB cores of the big island have the same capacity BB

at fixed frequency, while the nL cores of the LITTLE island share the same
capacity BL at fixed frequency, and n = nB +nL. In fact, in this special case
of a non-symmetric architecture, we must only take into account a smaller
number of combinations of cores.

For example, in the case k = 3, Equation (15) must consider:(
n

2

)
=
n(n− 1)

2

combinations of cores in the general NUMP case, which for n = 4 means
6 combinations, while in the ARM big.LITTLE case it reduces to just 3
combinations since the two heaviest tasks can only be deployed (i) both on
the big island; (ii) both on the LITTLE island; or (iii) one per island. The
same promising results applies for n = 8 cores. Therefore, Equation (15) is
greatly simplified in an interesting number of practical cases.
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This concept is illustrated in Figure 3 for an ARM big.LITTLE platform
with nB = nL = 4 (and thus n = 8 cores) and BB = 1 and BL = 0.345328
for the case k = 3 and Γ = {0.9237, 0.5331, 0.3762} and it shows that many
combinations that we must consider in Figure 2 are actually not needed for
Equation (15). For example, it is useless to consider the combination of tasks
in which all of them are deployed on the last big core, since it is equivalent
to deploying them on the first big core.

As a side note, the ARM big.LITTLE architecture can never reduce to
the general case of a NUMP architecture presented in Section 4 since all cores
of the same island share the same frequency and thus the same capacity.

4.2. Splitting tasksets for big.LITTLE platforms
It is noteworthy to mention that, in the case of ARM big.LITTLE ar-

chitectures, an alternative admission test might be designed in cooperation
with a prefixed partitioning of the tasks in the taskset among big and LIT-
TLE islands. Indeed, splitting the taskset Γ to be placed into a ΓB to be
admitted on nB big cores each with capacity BB, and a ΓL to be admitted
on nL LITTLE cores each with capacity BL, we can apply twice the tests in
Equation (2) or Equation (3) to the two islands, which are SMP when consid-
ered individually. However, we need to adopt a simple partitioning scheme
that can be implemented efficiently on a real system, with tasks potentially
arriving and leaving dynamically.

The taskset splitting strategy that we propose to use in this paper is
based on assigning to each island a percentage of the total taskset utilization
close to the percentage of the island overall capacity in proportion to the
overall system capacity, i.e., assuming U1 ≥ · · · ≥ Um:

ΓB = ΓH∪

{
τ1, . . . , τh |

∑h−1
i=1 Ui∑m
i=1 Ui

<
nB ∗BB

nB ∗BB + nL ∗BL
∧
∑h

i=1 Ui∑m
i=1 Ui

≥ nB ∗BB

nB ∗BB + nL ∗BL

}
,

(17)
where ΓH = {τi ∈ Γ|Ui > BL} is the set of heavyweight tasks that can only
be placed on the big island, and ΓL = Γ\ΓB. An alternative taskset splitting
technique relies simply on placing on the big island a number of tasks in the
same percentage as the big island capacity in proportion to the overall system
capacity, i.e.:

ΓB = ΓH ∪
{
τ1, . . . , τh |

h− 1

m
<

nB ∗BB

nB ∗BB + nL ∗BL
∧ h

m
≥ nB ∗BB

nB ∗BB + nL ∗BL

}
(18)
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ΓL = Γ \ ΓB.
It is relevant to choose the right partitioning technique for Γ as it affects

the effectiveness of the SMP tests in Equation (1) and Equation (3), as it will
be shown in the next section. Moreover, each test needs additional details
to be realized in the scheduler implementation, on new tasks arriving in
the scheduler or existing tasks leaving. For example, a test relying on the
taskset splitting in Equation (18) may require to move just one task among
the islands, on a task arrival or leave. Which task to move can be found
efficiently by keeping tasks into a min-heap data structure for the big island,
and a max-heap one for the LITTLE island. On the other hand, the splitting
in Equation (17) might need additional migrations among islands, as a big
task arriving may result in the migration of a multitude of smaller tasks to
the LITTLE island, for example.

Moreover, one could observe that, in Equation (17), we include τh to
ΓB, which, added to the previous tasks, causes the percentage of utilization
hosted on big cores to exceed the percentage of computational capacity of
the island. However, we prefer to try keeping such a task on the big island
(rather than the little one), to increase the possibility to schedule the taskset
(at least in cases where the overall utilization of all the tasks is sufficiently
below the overall computational capacity of the system). In fact, as this is a
heuristic, we cannot pretend it is optimum and, actually, it should guarantee
at least that all heavyweight tasks go to ΓB.

Finally, note that the NUMP test proposed in Equation (15) is meant
to be used without any prior taskset splitting technique. In this paper,
we propose to use three different admission tests, some of them applying
directly Equation (15), others recurring to the taskset splitting technique in
Equation (17). In what follows, the proposed tests are described in detail,
while their effectiveness is evaluated comparatively in Section 5.

4.3. Proposed admission tests
The NUMP tests in Equation (15) can be combined with the SMP tests

in Equation (1) and Equation (3) to generate a number of admission tests
for any type of taskset.

We define three main admission tests in this paper:

Admission Test 1: the test passes if the approximated NUMP test of Equa-
tion (15) passes, OR, after splitting the taskset with eq. (17), both tests
on big and LITTLE islands made separately using the utilization-based
test in Equation (1) pass;
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Admission Test 2: the test passes if the approximated NUMP test of Equa-
tion (15) passes, OR, after splitting the taskset with eq. (17) on the
two islands, either the simple utilization-based test in Equation (1) OR
the approximated test in Equation (3) pass on both islands;

Admission Test 3: the test passes if, after splitting the taskset in heavy-
weight and lightweight tasks, the heavyweight ones fit on the big cores
using a first-fit strategy, then the lightweight ones pass the approxi-
mated NUMP test in Equation (15) using the LITTLE island at its full
capacity plus the residual utilization left by heavyweight tasks on the
big cores.

As for Admission Test 1, it performs the SMP admission test with Equa-
tion (1) on both ΓL and ΓB obtained by splitting Γ with eq. (17), and Equa-
tion (15) on the whole taskset Γ. However, Equation (1) may easily discard
many tasksets since it only considers the heaviest task of ΓB and ΓL, whose
utilization depends on the split of the taskset discussed above. Therefore,
Admission Test 2 follows an interesting way to tackle this weakness and still
uses an SMP test by performing the logical OR between Equation (1) and
Equation (3), which are SMP tests performed independently on the two is-
lands.

Finally, a big part of the core capacities is discarded by the Admission Test
1 and 2. To make use as much as possible of the core capacity left by the heavy
tasks, Admission Test 3 splits the taskset into heavy ΓH = {τi|Ui > BL} and
lightweight tasks ΓL = Γ \ ΓH and performs an EDF-FF allocation of the
heavy tasks on the big island. If this is possible, the remaining core capacities
are computed and the test in Equation (15) is performed on the lightweight
tasks on the whole platform (with decreased capacities for the big island).

These three strategies are comparatively evaluated later in Section 5.

4.4. Motivational example
In this section, we provide a simple example justifying the need for the

new tests proposed in this paper. Consider the taskset of 7 tasks in Table 1,
already sorted for convenience, and having total nominal utilization 1.9 and
an ARM big.LITTLE platform with nB = nL = 2 cores per island (for a
total of n = 4 cores) and BB = 1.0 and BL = 0.345328, as the ODROID-
XU3 platform.
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Table 1: Taskset for the motivational example

U1 U2 U3 U4 U5 U6 U7

∑
i Ui

0.799 0.342 0.196 0.192 0.182 0.124 0.064197 1.9

First, the taskset Γ is partitioned into ΓB = {0.799, 0.342, 0.196, 0.192}
and ΓL = {0.182, 0.124, 0.064197} with Equation (17). Equation (1) would
admit ΓL for the LITTLE island:

0.370197 ≤ 1.5 =
2
⌊

0.345328
0.182

⌋
+ 1⌊

0.345328
0.182

⌋
+ 1

the same equation applied to the big island would not:

1.529 > 1.5 =
2
⌊

1
0.799

⌋
+ 1⌊

1
0.799

⌋
+ 1

Therefore, the SMP test of Equation (1) (i.e., the logical AND between the
two islands) would fail.

Also the SMP test of Equation (3) would fail for k = 2 (and thus also
Admission Test 2 fails). The test applied to the big island would fail:

4 > 3 = 1 +

⌊
2− 1− 0.799

0.342

⌋
+ (2− 2 + 1)

⌊
1

0.342

⌋
while it would admit the taskset on the LITTLE island:

3 ≤ 9 = 1 +

⌊
2− 1− 0.182

0.124

⌋
+ (2− 2 + 1)

⌊
0.345328

0.124

⌋
For k = 3 the test of Equation (3) admits the tasksets ΓB and ΓL. For the
big island:

4 ≤ 5 = 1 +

⌊
3− 1− (0.799 + 0.342)

0.196

⌋
+ (2− 3 + 1)

⌊
1

0.196

⌋
and for the LITTLE island:

3 ≤ 27 = 1 +

⌊
3− 1− (0.182 + 0.124)

0.064197

⌋
+ (2− 3 + 1)

⌊
0.345328

0.064197

⌋
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Notice that Equation (1) and Equation (3) are used in combination within
Admission Test 2 above, which fails for k = 2, while for k = 3 the test admits
the taskset.

On the other hand, Equation (15) in case k = 2 must consider all the
possible partitionings of the “heaviest” task U1 on one core, and for each
valid partitioning the remaining cores are left free and they can host “smaller”
tasks with utilization Uk = U2. In other words, Equation (15) considers (i)
the case in which U1 is on the first big core, (ii) the case in which U1 is on the
second big core, (iii) the case in which U1 is on the first LITTLE core and
finally (iv) the case in which U1 is on the second LITTLE core. However,
since we are in the case of an ARM big.LITTLE platform, equivalent cases
(for example, U1 on the first big core is equivalent to U1 on the second big
core) are not considered in the final formula and the only valid cases are
(i) the case in which U1 is placed on a big core and (ii) the case in which
U1 is placed on a LITTLE core. Removing impossible cases, the only valid
case is the case in which U1 = 0.799 is placed on a big core (since U1 > BL,
which means that U1 does not fit in a LITTLE core) and the remaining
cores can be used for deploying the other tasks with (increased) utilizations
Ui = 0.342 ∀i ≥ 2. This test would not admit the taskset since it does
not meet the schedulability check, being the number of tasks in the taskset
greater than the maximum number of admissible tasks mmax (there is only
one element in the minimization general formula):

7 > 5 = 1 + min

{⌊
1− 0.799

0.342

⌋
+

⌊
1

0.342

⌋
+ 2

⌊
0.345328

0.342

⌋}
(19)

For the case k = 3, Equation (15) must consider all the possible parti-
tionings of the first two “heaviest” tasks U1 and U2 on two cores, and for
each valid partitioning the remaining cores are left free and they can host
“smaller” tasks with utilization Uk = U3. In other words, Equation (15) must
consider (i) the case in which U1 and U2 are both on the first big core; (ii) U1

and U2 are both on the second big core; (iii) U1 is on the first big core and
U2 on the second big core; (iv) U1 is on the second big core and U2 on the
first big core; (v) U1 is on the first big core and U2 on the first LITTLE core;
(vi) U1 and U2 both on the first LITTLE core; (vii) U1 on the first LITTLE
core and U2 on the second LITTLE core; (viii) and so on. However, since
we are in the case of an ARM big.LITTLE platform, equivalent cases, like
U1 on the second big core and U2 on the second LITTLE core (equivalent to
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Table 2: Comparison of the results of the admission checks for the presented motivational
example.

k=2 k=3 (without k)
Equation (1) big island - - no
Equation (1) LITTLE island - - yes
Equation (3) big island no yes -
Equation (3) LITTLE island yes yes -
Equation (15) no yes -
Admission Test 1 no yes -
Admission Test 2 no yes -
Admission Test 3 yes yes -

U1 on the first big core and U2 on the first LITTLE core), and impossible
cases, like U1 and U2 on a LITTLE core, are not considered in the equation.
Therefore, the following equation only shows (i) the case in which U1 and U2

are both on the big islands on two different cores; and (ii) U1 is on the big
island and U2 on the LITTLE island. The admission check would admit the
taskset:

7 ≤ 7 =1 + min

{⌊
(1 + 1)− (0.799 + 0.342)

0.196

⌋
+ 2

⌊
0.345328

0.196

⌋
,⌊

(1 + 0.345328)− (0.799 + 0.342)

0.196

⌋
+

⌊
1

0.196

⌋
+

⌊
0.345328

0.196

⌋}
.

(20)

This example compares the basic blocks of the three admission tests,
which result in the shown calculations. Table 2 summarizes the results of the
tests.

5. Evaluation

This section evaluates the combinatorial admission tests for the NUMP
case given by Equation (15) for the values of k = {2, 3, 4, 5}, comparing the
tests for the SMP case in Equation (1) and Equation (3). As it will become
clear, the joint use of the SMP and the NUMP tests results in a viable,
efficient and useful admission test for P-EDF that admits more tasksets than
the SMP tests alone would do when applied separately to the two islands.
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(b) |Γ| = 8
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(c) |Γ| = 11
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(d) |Γ| = 18

Figure 4: Comparison of equations behavior for n = 4 (i.e., nB = nL = 2) and varying
the number of tasks in each taskset
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(b) |Γ| = 12

Figure 5: Comparison of equations behavior for n = 8 (i.e., nB = nL = 4) and varying
the number of tasks in each taskset
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Tasksets have been generated with the taskgen.py program4 by Ember-
son et al. [3] and the number of CPUs is fixed to n = 4 (nL = nB = 2) and
n = 8 (nL = nB = 4). The admission tests have been repeated on a variety
of tasksets with different cardinality and overall utilization. For each overall
utilization among the values in {1.5, 1.6, ..., 2.4, 2.5} for n = 4 cores, and in
{3.0, 3.1, . . . , 3.9, 4.0} for n = 8 cores, 100 random tasksets have been gen-
erated and the admitted tasksets have been counted for each configuration.
Each taskset contains a number of tasks varying in the range {6, 7, . . . , 17, 18}
for n = 4 cores and in {9, 12, 15, 18, 21, 24} for n = 8 and results are shown
in Figure 4 and Figure 5 for the two cases of n = 4 and n = 8. Overall,
20800 tasksets have been tested for n = 4 and 6600 for n = 8.

5.1. Experimental evaluation of the admission tests
This section evaluates the mentioned admission tests for P- EDF with

the settings described in Section 5. We compare the 3 admission tests intro-
duced as Admission Test 1, 2 and 3 above, which are suitable for being used
online and in a dynamic environment for small values of k. To take a refer-
ence NUMP platform, we concentrate our attention on an ARM big.LITTLE
platform with BB = 1, BL = 0.345328, as the ODROID-XU3 one. Notice
that the tests presented below work for any value of BB and BL, and that
the parameters k given to Equation (3) for the tests on the big and LITTLE
islands have been kept equal. Also, given a taskset Γ = {τ1 . . . τm}, Admis-
sion Test 1 and 2 must be given a split of the tasks to be dispatched on the
big island, as discussed in Section 4.2, and we choose the splitting strategy
in Equation (17). Notice that the way we split Γ is another choice that af-
fects the effectiveness of the SMP tests. On the other hand, the NUMP test
proposed in this paper in Equation (15) can be used transparently given a
value of k.

We now discuss the effectiveness of the tests presented in Section 4.3.
In Figure 4 and Figure 5, “SMP Util ” refers to the logical AND between
Equation (1) applied independently on the big and the LITTLE island on
ΓB and ΓL respectively, “SMP Util OR SMP Approx ” refers to the logical
AND between Equation (1) OR Equation (3) applied to the big island and
applied to the LITTLE island for various values of k, “NUMP Subset” refers
to Equation (15) for various values of k, and “SMP Util OR NUMP Subset”,

4The tool is available at: http://retis.sssup.it/waters2010/tools.php
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“Util OR Approx OR Subset” and “EDF-FF AND Subset” refer to Admission
Test 1, 2 and 3, respectively, for different values of k. In Equation (15) and
Equation (3) we vary the value of k in the range k = {2, 3} for the case
n = 4 and k = {4, 5} for the case n = 8, where at each iteration the value
of k is the same for both equations. The value of the parameter k given to
Equation (3) can be different for the big and the LITTLE island, which is
yet another disadvantage of using the SMP tests on the NUMP architecture,
since choosing appropriate values for each island may lead to better results,
but tuning the value of k on the two islands may not be trivial. Notice that
the tests are grouped by color and that “SMP Util ”, “SMP Util OR SMP
Approx ” are state-of-the-art approaches and are depicted with various types
of green. The other bins are depicted with other colors to make the groups
clearer to the reader (green, blue, red, black and white respectively).

Analyzing the graphs in Figure 4, the joined use of Equation (15) (i.e.,
the NUMP check in the light-blue and blue bins) and Equation (1) (i.e., the
SMP check based on the taskset utlization) admits more tasksets than each
of the two equations applied alone. For example, for Total Utilization = 1.9
in Figure 4a, the red bin (corresponding to SMP Util OR NUMP Subset
k=3 ) is higher than both the green bin (corresponding to SMP Util) and
the light-blue bin (corresponding to NUMP Subset k=3 ), which means that
joining the two basic checks makes the final admission test in red more robust
and effective. When the dimension of the tasksets grows, the effectiveness
of the NUMP check decreases fast, and it is interesting to notice that the
combination of the SMP tests (Equation (1) and Equation (3)) applied to the
islands individually actually results in admitting many tasksets, as generally
evident from the light-green and dark-green bins for all the taskset dimensions
and total nominal utilizations.

Analogously, the combination of the NUMP and the SMP tests is valuable
in that the number of admitted tasksets is greater than or equal to the
one obtained by the checks taken individually. This is evident for example
in Figure 4a for Total Utilization = 2.0 for Util OR Approx OR Subset
k=3 (black bin, corresponding to Admission Test 2), where some of the
tasksets that are discarded by SMP Util OR SMP Approx k=3 (dark-green
bin) are then admitted by NUMP Subset k=3 (light-blue bin) and viceversa
(in fact, the black bin is higher than both the light-blue and the dark-green
bins). Since Admission Test 2 (black bin) considers the logical OR between
these two tests, it results in a more robust and effective admission test that
increases the number of admitted tasksets into the system. The same holds
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for SMP Util OR NUMP Subset k=3 (red bins) between SMP Util (green
bin) and NUMP Subset k=3 (light-blue bin), for example for Total Utilization
= 2.0 in Figure 4a, as exposed above (notice that the red bin denotes an
aggregation of different checks with respect to the one discussed in the current
paragraph and depicted with black bins).

Nevertheless, in some cases joining two or more checks does not improve
the number of admitted tasksets. Considering for example Figure 4a for
Total utilization = 2.2, we notice that SMP Util (green bin) does not admit
any taskset, while SMP Util OR SMP Approx admits some of them for both
k = 2 (light-green bin) and k = 3 (dark-green bin), which is due to the
fact that Equation (1) (green bin) does not admit any further tasksets than
Equation (3) (light-green and dark-green bins) alone.

As expected, an increase in the value of k also increases the effectiveness of
the proposed tests, at the cost of increased computational complexity. For ex-
ample, compare the light-blue and blue bins (corresponding to Equation (15))
for Total Utilization = 2.0 in Figure 4a and also compare the light-green and
green bins for Total Utilization = 1.9 (in Figure 4a). However, also notice
that for some tasksets the result of applying Equation (3) (corresponding to
the light-green and dark-green bins) with k = 2 may produce better results
than with k = 3, since the formula results degrade, especially for the big
island and under the taskset splitting strategy that we have chosen. This is
depicted, for example, for Total Utilization = 2.2 in Figure 4a, where the
light-green bin is higher than the dark-green bin.

It is remarkable that EDF-FF AND Subset k=2 proves to be effective in
a number of cases, like Figure 4a and Figure 4b, depicting the behavior of the
tests for n = 4 cores and |Γ| = {6, 8} respectively, where it accepts a greater
number of tasksets when the total utilization grows also with respect to the
other tests with k = 3 (white bins vs dark-red, grey, red and black bins), for
example with Total Utilization = 2.4 of Figure 4a. In fact, the Admission
Test 3 uses the whole core capacities by first performing an EDF-FF parti-
tioning of the heavy tasks on the big island (under the assumption that these
will not be many) and then applies Equation (15) on the lightweight tasks on
both islands, as described in Section 5. However, in Figure 4c and Figure 4d,
depicting the behavior of the tests for n = 4 cores and |Γ| = {11, 18}, EDF-
FF AND Subset k=2 bars are generally lower than all the other tests for
k = {2, 3} with the splitting strategy we use (white bins vs dark-red, grey,
red and black bins), while it may be higher with other splitting strategies.
Therefore, EDF-FF AND Subset k=2 gives better results than the other tests

26



with higher total utilizations and with smaller tasksets.
Analyzing the graphs in Figure 5 for n = 8 cores (i.e., nL = nB = 4,

as in the ODROID-XU3 platform), the behavior of the tests is similar to
the one for n = 4 cores in Figure 4, where EDF-FF AND Subset k=2 gives
better results than the other tests. In fact, in Figure 5a and Figure 5b and
expecially for total utilization greater than 3.5, the white bars are higher than
the dark-red, red, grey and black bars. Also, the bars for SMP Util (green
bin) decay much faster than with n = 4 (Figure 4), while the light-green
and dark-green bins are taller, meaning that Equation (3) is quite relevant
in this context. With respect to Figure 4, an interesting difference is that
EDF-FF AND Subset (white bin) is generally slightly better when increasing
the number of tasks in the tasksets (Figure 4a and Figure 4b vs Figure 5a
and Figure 5b). Finally, the relevance of combining the NUMP tests and
SMP tests is visible, for example, in Figure 5a for Total Utilizations 3.5 and
3.7 (black bin vs dark-green bin) and in Figure 5b for Total Utilizations 3.2
and 3.3 (black bin vs dark-green bin).

Generally speaking, combining the NUMP tests with the SMP ones pro-
duces better results since they compensate each other. Also, the choice of
the values of k for the big and the LITTLE islands in Equation (3) and how
Γ is partitioned are relevant choices in the SMP tests, while the NUMP test
in Equation (15) can be used on the entire taskset Γ and for any NUMP
platform.

Notice that the conclusions drawn from the comparison performed in this
section refers to tasksets randomly generated with the taskgen.py program
[3]. However, things might be different for alternative distributions of the
task utilizations. A more realistic comparison should consider benchmarks or
tasksets used in certain industrial domains. Our choice of using the tasksets
generator by Emberson et al. has been dictated by its popularity and wide
acceptance in the real-time research community.

Finally, we measure the average execution time of each of the presented
admission tests (Admission Test 1, 2 and 3) over all tasksets and total uti-
lizations for each number of cores in n = {4, 8} and k = {2, 3, 4, 5}, when
running on an Intel i7-8700 at 4.6 GHz and 16 GB RAM and the code is
written in C++. The total number of experiments for n = 4 is 20800 for
each value of k considered and for n = 8 it is 6600 for each value of k (the
same tasksets of Section 5 have been considered). Results are in Table 3,
which shows for each admission test the average execution times in microsec-
onds for each the number of cores in the system n and for each value of k

27



considered. The admission tests can be generally performed in less than a
millisecond for all values of k for n = 4 and for k = {2, 3, 4} for n = 8. Also,
the admission tests last significantly more time with n = 8 cores and the
average execution time for Admission Test 3 is greater than both Admission
Test 1 and Admission Test 2 and the one of Admission Test 2 is greater than
Admission Test 1.

Table 3: Average execution time for each Admission Test (values in us).

k = 2 k = 3 k = 4 k = 5
n = 4

Admission Test 1 1.01192 12.0065 132.772 -
Admission Test 2 1.01192 12.0065 132.772 -
Admission Test 3 1.96452 15.6746 486.16 -
n = 8
Admission Test 1 1.57515 13.74 580.677 56786.8
Admission Test 2 1.57939 13.7405 580.679 56786.8
Admission Test 3 1.56697 17.7364 1840.9 357999

6. Conclusions and Future Work

This paper tackles the problem of admitting real-time tasks onto a non-
uniform multi-processor platform, such as ARM big.LITTLE and DynamIQ,
under partitioned EDF-FF scheduling. To do that, we extended [1] to NUMP
architectures and proposed an improved equation that must check all the
possible partitions of the first k−1 tasks on all the cores and a heuristic that
checks only the first k − 1 cores and k − 1 tasks of the taskset. Then, we
focused on the ARM big.LITTLE architecture and embedded the proposed
equation within three admission tests which also exploit the SMP tests in [1]
applied to the big and the LITTLE island independently. Simulations show
that the proposed admission tests can be performed efficiently for small values
of k and that the combined tests admit a good number of tasksets.

Concerning the future works on the topic, we plan to specialize the tech-
nique presented in this paper to the case of DynamIQ, where clusters con-
tain a mix of big and LITTLE cores and cores may have different micro-
architectures and frequencies. Moreover, it can be interesting to research a
precise worst-case utilization bound for EDF-FF [2] on the ARM big.LITTLE
architecture, and to integrate it with the equation based on the number of
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tasks presented in this paper. Also it could be interesting to evaluate the ad-
mission tests for a setting with dynamic behaviour, where tasks are entering
and leaving the system dynamically and the tasksets are not fixed. Finally,
extending the formulas presented in this paper and in [2] to EDF-WF (Worst
Fit) would be a relevant contribution to the state of the art of the admission
tests, since adopting EDF-WF would more easily allow for the achievement
of higher energy savings (than EDF-FF) on ARM big.LITTLE platforms.
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