
Extensions for Shared Resource Orchestration in
Kubernetes to Support RT-Cloud Containers

Gabriele Monaco, Gautam Gala, Gerhard Fohler
Technische Universität Kaiserslautern, Germany

{monaco,gala,fohler}@eit.uni-kl.de

Abstract— Industries are considering the adoption of cloud
computing for real-time applications due to current improvements
in network latencies and the advent of Fog and Edge computing.
To create an RT-cloud capable of hosting real-time applications,
it is increasingly significant to improve the entire stack, including
containerization of applications, and their deployment and or-
chestration across nodes. However, state-of-the-art orchestrators
(e.g., Kubernetes) and underlying container engines are designed
for general purpose applications. They ignore orchestration and
management of shared resources (e.g. memory bandwidth, cache,
shared-interconnect) making them unsuitable for use with an
RT-cloud. Taking inspiration from existing resource management
architectures for multicore nodes, such as ACTORS, and for
distributed mixed-criticality systems, such as the DREAMS, we
propose a series of extensions in the way shared resources are
orchestrated by Kubernetes and managed by the underlying
Linux layers. Our approach allows fine-grained monitoring and
allocation of low-level shared resources on nodes to provide
better isolation to real-time containers and supports dynamic
orchestration and balancing of containers across the nodes based
on the availability and demand of shared resources.

Index Terms—Kubernetes, Containers, Real-time Systems,
Mixed-criticality Systems, Resource management.

I. INTRODUCTION

As seen in Ericson’s Computing Fabric [1], and EU SE-
CREDAS project [2], industries are exploring cloud computing
for real-time applications to benefit from ease of re-usability,
maintainability, and reconfiguration while providing workload
elasticity and higher availability. However, the adoption of
cloud computing for real-time applications is hampered by
performance uncertainties as the current cloud models are not
designed to guarantee worst case requirements. Some of the
major hurdles are achieving high resource utilization in the
cloud while providing timing guarantees and low interference
between users, and supporting dynamic workloads and fluctu-
ations in infrastructure availability. Previous work, such as [2],
[3], have proposed using private RT-clouds with virtualization
solutions and resource management extensions to host real-
time and best-effort virtual machines in the cloud. However,
virtualization solutions tend to have high overheads. In contrast,
the overhead of containers compared to direct execution on
top of the operating system is extremely low, making them a
lucrative option for real-time applications.

Containers are becoming the de facto industrial approach,
especially in cloud environments as they provide an ideal

underlying layer for edge-to-cloud and multi-cloud scenarios.
Organizations leverage containers to use multiple public cloud
providers as well as their on-premises cloud. Container or-
chestrators, such as Kubernetes (K8s) [4], manage, deploy
and scale containers across clusters of physical and virtual
nodes. Orchestrators allow easy deployment of containers by
properly setting up their runtime and monitoring their execution
without the requirement of a cumbersome and error-prone
manual process. In cloud environments, containers are often
deployed via such orchestrators, managing certain resources,
such as CPU-time and memory space, and delivering acceptable
Quality-of-Service (QoS) to different users, typically based
on their subscription plans. Based on the user configuration,
orchestrators deploy containers to balance the usage of certain
resources across the cluster nodes and guarantee these resources
to the containers. Moreover, orchestrators can be configured to
have container replicas, which in case of node failures, can be
deployed on different nodes.

Orchestration of cloud resources is gaining relevance for the
real-time systems, especially due to the advent of Fog and
Edge computing, which brings the nodes closer to the end-
users, thus, considerably lowering the latencies and enabling
time-sensitive containers in the cloud. Orchestrators can help
configure containers to exploit resource isolation possibilities
provided by the underlying hardware and software layers to
support meeting real-time requirements. However, widely used
resource orchestrators (e.g., K8s) and the underlying Linux con-
tainer technology (e.g. Docker [5]) and resource management
approaches (e.g. Cgroups [6]) are not designed to consider
strong shared resource isolation and end-to-end guarantees.
They typically aim to improve average-case performance with-
out regard for the worst case. Thus, the level of isolation
provided by containerization and supported by container or-
chestrators is not adequate for real-time systems. Although
optimizations and patches to reduce latencies are available, it is
challenging to meet end-to-end constraints by considering only
temporal allocation of CPU and spatial allocation of memory. A
system with dynamically changing availability and requirement
of resources requires the orchestrators to be aware of other
resources of the node (e.g., memory bandwidth, cache, and
shared interconnect) and services running in the container. The
orchestrators must coordinate system-wide resources and adapt
the QoS of services in the containers to the current resource



availability (and not suspend containers, even the best effort
ones, as far as possible).

Existing cloud orchestrators (e.g. K8s) work well when
considering temporal allocation of CPU and spatial allocation of
memory space, but do not support other shared resources. How-
ever, they require several extensions to ensure strong shared
resource isolation and end-to-end guarantees under varying
operating conditions. Existing works, such as [7], enable some
real-time capabilities in Kubernetes and underlying technolo-
gies. Cinque et al. [8] enable containers and the Linux kernel
to react with real-time performance. Such works aim to prevent
over-reservation of CPU time to containers, indirectly targeting
the weak isolation intrinsic to containers. Other works, such
as [9], [10], exploit the modularity of Kubernetes to extend its
capabilities over more resource types (e.g. network bandwidth),
allowing better resource allocations decisions, but still do not
consider allocation and monitoring of shared resources. Con-
trarily, our solution considers the allocation of shared resources
and relies on low overhead run-time monitoring of hardware
and software at various levels to obtain a system-wide view
of availability of resources and current/predicted demand of
containers, allowing the orchestrator to meet the end-to-end
requirements of real-time containers and help achieve the best
possible QoS by best-effort containers.

In this paper, we consider Kubernetes as the currently most
popular container orchestration technology [4], We take inspi-
ration from existing resource management architecture for mul-
ticore systems, such as ACTORS framework [11], and for dis-
tributed mixed-criticality systems, such as the DREAMS [12],
to extend it. The existing ACTORS framework only considers
a single multicore node, while DREAMS framework considers
offline allocation of shared resources to virtual machine in a
distributed system. However, offline allocation of resources is
unrealistic in modern clouds. In fact, clouds require orches-
trators to dynamically provide resource and maximise their
utilization, and add new containers or provide scalability to
existing ones at run-time. We build upon the DREAMS node-
level (local) and system-wide (global) resource managers to
extend the dynamic resource orchestration capabilities of Ku-
bernetes while still ensuring strong resource isolation and fault
tolerance. We aim to add configurable monitoring capabilities to
Kubernetes at various levels ranging from low-level hardware
signals (e.g., performance monitor counter events), operating
system level events, and events in the containers, so that the
orchestrator can keep a system-wide view of availability of
shared resources and current/predicted demands of services
running in the containers. Based on this system-wide view,
the orchestrator can allocate resources to new containers or re-
allocate resources to existing containers. The aim is to support
real-time applications in clouds and ensure that their resource
demands are promptly met while best-effort containers achieve
the best possible QoS.

Section II introduces the DREAMS resource management
and the standard resource orchestration in Kubernetes. Sec-
tion III illustrates previous works that extended Kubernetes and

Linux containers to support real-time containers. Section IV
provides a series of enhancements for the orchestrator and
the underlying layers to orchestrate and manage real-time
containers together with best-effort containers. We describe how
these enhancements can be applied in Kubernetes (with Linux)
and finally conclude in Section V, providing future research
and implementation directions.

II. BACKGROUND

A. DREAMS resource management architecture

We identified the resource management architecture delin-
eated by the DREAMS project as a good base for creating
extensions to the Kubernetes container orchestrator and the un-
derlying Linux layers for supporting RT-Cloud. Several works
are based on and extend this architecture [13], [3]; hence we
can take benefit of those as well.

The resource management architecture delivers fault-
tolerance and ensures real-time guarantees in mixed criticality
distributed systems, where each node is capable of running
multiple real-time and best-effort VMs. It attempts to provide
best-effort applications with the best QoS level without com-
promising real-time guarantees in the system.

The DREAMS architecture decouples the system-wide or-
chestration decision making from the fine-grained resource
management on the nodes. Each node runs a Local Resource
Manager (LRM), capable of monitoring and scheduling the
resources of the node. Furthermore, a Global Resource Manager
(GRM) controls and coordinates the LRMs. The GRM takes
decisions related to the entire system. By knowing the abstract
sysem status on each node via the LRMs, the GRM can react
to failures by reconfiguring nodes, and improves the resource
balancing when overloaded situation occurs in a node. The
capabilities of LRMs are split among the two subcomponents:
monitors (MON) and Local Resource Schedulers (LRSs). The
MON is responsible for observing the utilization of resources,
and status and health of applications and resources. Examples
of MONs are core failure monitor or performance monitoring
event for CPU cache misses. The LRS schedules and controls
resources accesses from applications on the nodes. Examples
of LRS are CPU scheduler, network bandwidth regulators or
techniques such as cache partitioning.

B. Kubernetes

Kubernetes is highly configurable. We can extend or even
replace components without patching the original codebase. In
this section, we will introduce the default resource management.

During configuration, each container can specify resource
requests and limits. Requests are used for scheduling: contain-
ers will not be deployed to nodes that cannot guarantee the
resource, based on declared requests of other containers. Limits
are usually enforced with Linux cgroups, to avoid overbooking
(use of more peak resources than requested). This optimistic
approach relies on resources being used less than their re-
quests, allowing containers to use more than their requests



and effectively allocating more resources than available. A
more predictable scenario uses limits to avoid this situation
(overbooking) from negatively impacting critical tasks. Natively
available resources are CPU and memory space.

Providers can define the so-called extended resources, de-
signed for resources like external devices (GPUs, FPGAs,
etc.), whose number is discrete and which cannot easily be
shared. Specific device plugins can bridge the actual driver with
Kubernetes, initializing devices and providing the orchestrator
with useful information about the status and availability of the
nodes. Containers requesting a device will be granted full access
to it until all available devices have been requested. A device is
hence consumed if a container requests it in its specifications.
Due to this architecture, the system does not enforce limits:
the requested amount of resources is all the containers can get,
regardless of their actual usage.

III. RELATED WORKS

Works in the literature employ Kubernetes with performance-
constrained IoT devices as [14], where the authors integrated
a light version of the orchestrator (K3s) with the FogBus2
framework. Struhár et al. [7] enriched Kubernetes’ support for
real-time hierarchical scheduling on nodes via Linux kernel
patches. They tackle the poor isolation of containers by mon-
itoring the execution of tasks (e.g., deadline misses and late-
ness) and adjusting with future scheduling decisions. Similarly,
Fiori et al. [15] modified Kubernetes for awareness of real-
time scheduling parameters on deployment. Parameters such as
runtime on rt-cpus per period are checked during admission
control and the task scheduler is configured accordingly. Xu
et al. [9] implemented the network bandwidth as a resource
in Kubernetes. The authors react on pod deployment and
control the Linux kernel stack according to specific rules.
By creating some differentiated queues on virtual interfaces,
they can give guarantees and limit overbooked resources, still
keeping the Kubernetes handling unmodified. Yeh et al. [10]
extend the GPUs handling in Kubernetes. They create an
additional controller that schedules the GPUs based on user
requirements. This can set time and memory (just like CPU), the
parallel scheduler ensures minimal fragmentation while sharing
devices across containers. Struhár et al. [16] assess whether
and how Linux containers can deliver real-time performances
and identify gaps regarding their deployment in safety-critical
scenarios. They identify three categories of ways to achieve this:
PREEMPT_RT for Linux Kernel to improve its responsiveness,
exploiting a real-time co-kernel running alongside Linux and
scheduling with improved guarantees the real-time containers,
and hierarchical scheduling of containers and their internal
tasks. Cinque et al. [8] propose an implementation scheme
for real-time-enabled containers running on a Linux kernel
with the co-kernel patch RTAI. Their implementation enforces
temporal separation among containers by using a fixed-priority
scheduler, run-time execution monitoring and mitigation. In
case of misbehaviour, they provide policies to prevent inter-
ference from lower priority containers. In [17], they improve

the previous work with a dynamic EDF scheduler for more
flexibility. Abeni et al. [18] based their work on hierarchical
scheduling, patching the kernel to allow 2 scheduling levels,
for both LXC containers and their tasks. The authors instantiate
their work and implement supporting facilities in the OpenStack
orchestrator [19], configuring their hierarchical scheduler from
a modified version of the orchestrator to implement Network
Function Virtualization services.

IV. EXTENDING KUBERNETES AND LINUX CONTAINERS TO
SUPPORT REAL-TIME APPLICATIONS

Kubernetes is designed to be extensible, it provides a default
configuration and implementation of most of the required
components, but it isn’t limited to it. System designers can
reimplement the pod scheduler to substitute or even assist
the default scheduler’s implementation. This allows extensions
without the need to restructure nor patch the orchestrator. Due
to its modularity, it relies on certain components, the Linux
containers and the related Control Groups, to name a few. Such
systems may not be ready to target real-time applications, but
their improvement is transparent to Kubernetes.

Orchestration systems work on networks of distributed nodes,
deployment latencies are hence typically high by design. How-
ever, for real-time tasks to properly work, the run-time (after
deployment) must be interfered with as little as possible.
Kubernetes relies on the underlining OS for most of the runtime
checks and operations (e.g. task scheduling or resource control).
We can therefore achieve real-time guarantees by both having
each node real-time capable (i.e. running a real-time capable
OS) and making the orchestrator aware of the relevant resources
to consider during deployment.

In the following subsections, we will discuss some points
where the orchestrator and its stack can be improved or
extended, giving some possible implementation and design
guidelines on how to do it.

T1 Tn

Container n

...
...

T1 Tn

Container 1

...

MONiLRSiLRSi

RMi

MONi MONiLRSiLRSi

RMi

MONi

HWLRS MON

Container runtime

Linux kernel MONiLRSiLRSi

RMi

MONi

Fig. 1: Local resource managers in a node

A. Resource monitoring

Most virtualization and orchestration solutions used in the
cloud already support some resource monitoring and regulation,



accounting for runtime usage and preventing tasks to use more
than reserved. Nevertheless, the considered items are usually
only CPU time and memory space. Due to the shared nature
of resources such as CPU cache, memory and bus, multicore
architectures typically suffer from interferences. Those shared
resources are generally ignored by the tools currently used in
the cloud.

Works such as Memguard [20] propose a way to regulate
the memory accesses by relying on data provided by the
hardware Performance Monitoring Units (PMUs). Such units
are widely supported on modern processor architectures and
typically allow several low-level events to be counted. Raw
monitoring data can be retrieved natively or with tools such as
Linux perf. We hence employ the hardware PMU to monitor
multiple resources using the same principle, exploiting the
architecture support, for instance, memory bandwidth usage,
shared bus and processor cache. Raw values can be obtained
with low overhead, as produced by hardware components,
however, the values alone are not always meaningful, counted
events can greatly vary, making the resulting response inac-
curate Moreover, frequent reactions to changes introduce high
overheads, negatively affecting the system. Consequently, we
abstract the resource values in significant bands, previously
defined per resource. As discrete numbers, bands are easier
to handle and we can smooth out changes between them with
filters. By properly stating rules for transitions among resource
bands, we can consistently reduce the overhead due to reacting
to state changes, still without losing generality or precision.

Monitoring can be exploited to implement various features in
Kubernetes and its orchestrator stack. Besides resource usage,
monitoring instances can detect faults on components as well
as on tasks and this knowledge can improve scheduling and
orchestration decisions. Our monitoring solution is integrated
into the Linux kernel and monitors separately each task. By
following the scheduling events in the kernel, we can react to
changes in the executing activity and we store values for each
monitored process. Thereby, we have a separate view of each
running task and we can enforce limits on a process basis.

B. Shared resource isolation for containers

Kubernetes relies on the container runtime to execute pods,
however containers have weak isolation with respect to shared
resources (memory, network or disk). As a lightweight alterna-
tive to Virtual Machines (VM), containers share the underlying
kernel and OS. The simpler structure makes them even more
vulnerable to interferences which can negatively and unpre-
dictably affect the performance of critical tasks.

Essentially containers are traditional Linux tasks with a set of
common properties to group them and the use of namespaces
to emulate isolation. We can monitor the execution of such
tasks and assign resource budgets to such groups. The typical
use case of pods/containers is to host what is logically a single
application, It can include multiple processes and even multiple
binaries, it is however conceptually a service. We model con-
tainers as tasks and the resource monitoring targets them rather

than processes. By exploiting our monitoring facilities, we
derive the resource usages of processes in containers, we then
throttle the processes whose container is running out of prede-
fined budgets and we communicate to the GRM to take proper
action. The architecture for resource managers on nodes and
containers is depicted in Figure 1. Shared resource management
is complementary to hierarchical scheduling used in previous
works, as we cannot achieve strong timing guarantees without
considering the impact of interferences on such resources.

C. Integrating awareness of shared resources in Kubernetes

The resources explicitly targeted by Kubernetes are memory
and CPU, with possible extension to external devices. Our
monitoring instances can provide an abstraction to various low
level shared resources and with the use of filters can carefully
distinguish between transient and continuous overload condi-
tions. We designed the resource as divided into allocation levels,
corresponding to the previously described resource bands. Pods
can request a certain amount of levels, based on their need and
the system will reserve them from the pool of available ones.

We implement this type of management natively in Kuber-
netes using extended resources, however, the system does not
allow different values for requests and limits for such resources.
Nevertheless, we exploit annotations in the containers specifi-
cations to indicate whether the requirements are strict (for real-
time priorities) or loose (best effort), for instance, which we
handle in our module. If global scheduling decisions take into
account metrics such as available memory bandwidth, the main
overhead of the orchestrator extension is during deployment
(startup), while the control run-time logic is fully relying on
the monitoring instances on the nodes. Both real-time and
best-effort containers must declare their resource requirements
and/or limits, also regarding, for instance, memory bandwidth.
It is hence a responsibility of the system designer to both know
the total available memory bandwidth and how can it be shared
among the tasks of the system. We provide different policies
such as throttling containers on the node or rescheduling them
to a different node, based on the status and availability of
the cluster. The architecture for resource managers across the
cluster is depicted in Figure 2, our additional resource manager
is shown in solid background.

D. System-wide shared resource balancing

Kubernetes allocates containers on nodes taking into account
requested resources and nominal availability on nodes, once
this check is passed, containers are assigned without further
balancing or prioritization. Nodes can however receive a score
after the feasible ones have been filtered. This value will be used
to select the most suitable nodes for deployment, the scoring
system is however not defined and we need to design it with a
plugin to the scheduler.

Kubernetes doesn’t implement seamless rescheduling, simple
pods are either allocated on a node or deleted from it, with no
possibility to move them across nodes. The closest functionality



Scheduler

Controllers

K8s master

Developer

GRM

Kubelet

Container runtime 

Cgroups

Network proxy

LRSi

LRM
MONiMONi

LRSi

K8s worker 1

...

API
Server

pod 1

...

pod n

Users K8s worker n

Kubelet

Container runtime 

Cgroups

Network proxy

LRSi

LRM
MONiMONi

LRSi

pod 1

...

pod n

Fig. 2: Global and local resource managers with Kubernetes

is to instantiate pods in controller structures (i.e. deployments),
taking care of recreating the pod if terminated. Nonetheless,
recreating evicted pods might imply losing the entire job exe-
cuted by the pod, unless some architectural refactoring prevents
this condition. Pods can be automatically evicted as resource
consumption on nodes crosses certain thresholds, such as out of
memory or storage conditions. Yet, this can only prevent OOM
conditions and not to improve the cluster performances by
balancing resource-intensive pods. Resources such as memory
bandwidth are more likely to run out compared to storage, and
their effect is usually more relevant for the performances of RT
tasks. It is hence crucial to be able to keep a correct balance
among nodes before overload conditions happen.

We design different policies exploiting Kubernetes’ scoring
system, for instance, gathering best effort containers on the
same nodes or prefer allocation on empty nodes for resource-
intensive tasks and allocating tasks with lower resource re-
quirements on busy nodes. We rely on live monitoring for
further runtime checks and reorchestrate if the status is dif-
ferent from the predicted one or requested during deployment.
Live monitoring can detect poorly configured containers and
require readjustments before they unbalance the system. As
rescheduling to a different node can result in high latencies
due to network communication, we need to select with care the
containers undergoing the process. Those can be less critical
tasks or, collaboratively, tasks advertising their availability to
migrate.

E. System overload monitoring

Kubernetes is primarily designed for resource usage max-
imisation rather than for guarantees to critical tasks. While this
works during general usage, during overload, priority classes
don’t provide deterministic guarantees for real-time tasks, as
limits enforcement and regulation can be slow. Kubernetes

allows to either have all containers exposing same values
for limits and requests, preventing overload by design, or
better exploit the resources on the system but suffer from
unpredictability. The first case is predictable as we set our
requests to the worst case requirement. This can result in poor
resource usage, as most applications don’t consume their worst
case requirements all the time. The less conservative approach
allows the limit value to mirror the worst case usage, with
requests corresponding only to best or average cases. Assuming
the spikes in resource consumption on nodes don’t occur at the
same time, the system can use its resources more efficiently.

Monitoring the status of resources during runtime we can
identify overload situation in advance and enforce stricter reg-
ulations only then. We allow hence resource overload without
penalties in the general case and dynamically restrict it only
when it can affect critical tasks.

F. Collaborative QoS reduction on overload

The default policy of Kubernetes in overload situations is to
throttle down tasks (in case of CPU) or kill them (if running out
of memory). The likelihood of these measures depends on the
pod’s priority class, defined by the pattern of request/limits (e.g.
if both values are equal, the priority is higher). Applications are
unaware of this and cannot adapt preventively (e.g. by internally
throttling their QoS) nor be reallocated

To avoid uncontrolled degradation, we propose an interface
for tasks to programmatically lower their resources footprint
and readapt before the overload even occurs. We can implement
this with scheduler extensions, starting a communication to
tasks that request this functionality before corrective actions
are taken, then if the overload condition is still present, the
standard scheduler can take action.

G. Dynamic resource orchestration

Kubernetes provides resource requesting and limiting on pod
creation, this cannot be changed dynamically as it is mainly
relevant during allocation. Allowing limits higher than requests
lowers the priority class. If critical applications change their
requirement during their execution, they need either to have
their requests mirroring the worst case or to join the Burstable
class and have their resources guaranteed only in the best case.

We design additional interfaces to allow applications to
change their resource requirements at run-time, triggering all
required rescheduling on the orchestrator’s side. A secondary
pod scheduler in Kubernetes can be used to implement such
interfaces.

H. Node priorities and orchestration in heterogeneous clusters

The default Kubernetes scheduler assumes all nodes are
equivalent and schedules new workloads on the first available
node according to its requirements. As mentioned earlier, user
defined scoring systems can leverage that by sorting preferred
nodes in case multiple options are available. For example,



static prioritisation can help in a cluster with nodes powered
by different energy sources, the owners might prefer to run
and reschedule on nodes powered by green energy whenever
possible, using the others only as a secondary option. In a
cluster with heterogeneous nodes, with some driven by power
conservative but weaker processors and others with stronger
computing capability, a scoring system can exploit the CPU
requirements of each container and deploy them accordingly.

We can enhance this pattern with live monitoring: gathering
data from containers to understand which of them are either
power intensive or need more CPU and reschedule them dynam-
ically to optimize distribution in the aforementioned scenarios.

I. Control for scheduling classes on nodes

Kubernetes doesn’t control the actual scheduling of tasks,
just their assignment to nodes, then the OS scheduler will
do the job. Some workloads, especially safety critical ones
could take benefit from having a different kind of scheduling
properties on nodes, such as a time triggered with slot shifting.
The admission control of those pods can also compute a new
scheduling table for the supported nodes and send it with the
new task, ready to be scheduled in the end of the hyperperiod
and with reduced overhead on the worker node. The nodes
classes can be seen as a meta-resource by Kubernetes, which
would activate a secondary OS scheduler for this task.

V. CONCLUSION

Shared resources are ignored by popular container engines
and orchestrators, making them unsuitable for use with a
real-time(RT)-cloud. In this paper, we proposed extensions to
Kubernetes and the underlying container engine for shared
resource orchestration and management to support containers
of RT-cloud. Our extensions are inspired by the DREAMS
and ACTORS resource management architectures. We provided
configurable monitoring capabilities at various levels so that the
orchestrator can keep a system-wide view of the availability
of shared resources and current/predicted demands of services
running in the containers. Based on this system-wide view,
Kubernetes can now dynamically orchestrate resources to exe-
cute new containers or dynamically balance containers across
the nodes based on the current availability and demand of the
shared resources. Moreover, the extensions to the underlying
Linux layers ensure strong isolation in shared resources. The
overall goal of our extensions is to ensure that real-time applica-
tions meet their resource demands while best-effort applications
achieve the best possible QoS.

We follow the philosophy of Kubernetes of keeping all
components modular and extensible. Our proposed design is
transparent to different algorithms and strategies. Based on the
requirements, system designers can select the monitoring and
scheduling components that best fit their needs and plug them
into our resource managers. Thus, we reduce the integration
complexity without sacrificing flexibility and exploiting the full
potential of Kubernetes.

Future steps involve completing the implementation of the
proposed extensions and deploying this extended Kubernetes-
based RT-cloud with industrial use cases to assess and evaluate
the improvements over vanilla Kubernetes. Then by following
the design principle in DREAMS during implementation, we
can effectively guarantee end-to-end requirements of critical
containers.

REFERENCES

[1] Ericsson, Network Compute Fabric, last accessed:08/21. [Online]. Avail-
able: www.ericsson.com/en/edge-computing/network-compute-fabric

[2] G. Gala, G. Fohler, P. Tummeltshammer, S. Resch, and R. Hametner,
“RT-cloud: Virtualization technologies and cloud computing for railway
use-case,” in 2021 IEEE 24th International Symposium on Real-Time
Distributed Computing (ISORC), 2021, pp. 105–113.

[3] G. Gala, J. Castillo, and G. Fohler, “Work-in-progress: Cloud computing
for time-triggered safety-critical systems,” 2021 IEEE Real-Time Systems
Symposium (RTSS), 2021.

[4] Cloud Native Computing Foundation, “What is kubernetes?”
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/,
accessed: 2022-03-30.

[5] Docker, Inc., “Docker engine overview,” https://docs.docker.com/engine/,
accessed: 2022-05-03.

[6] T. Heo, “Control group v2,” https://www.kernel.org/doc/html/latest/
admin-guide/cgroup-v2, 2015.

[7] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V. Pa-
padopoulos, “REACT: Enabling real-time container orchestration,” 2021
26th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), pp. 1–8, 2021.

[8] M. Cinque, R. D. Corte, A. Eliso, and A. Pecchia, “RT-CASEs: Container-
based virtualization for temporally separated mixed-criticality task sets,”
in ECRTS, 2019.

[9] C. Xu, K. Rajamani, and W. Felter, “NBWGuard: Realizing network
QoS for kubernetes,” Proceedings of the 19th International Middleware
Conference Industry, 2018.

[10] T.-A. Yeh, H.-H. Chen, and J. C.-Y. Chou, “KubeShare: A framework
to manage GPUs as first-class and shared resources in container cloud,”
Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, 2020.

[11] R. Guerra, K. Arzen, G. Fohler, E. Bini, V. R. Segovia, G. Buttazzo,
C. Scordino, S. Schorr, and J. Eker, “Resource management on multicore
systems: The ACTORS approach,” IEEE Micro, vol. 31, no. 03, pp. 72–
81, may 2011.

[12] G. Fohler, G. Gala, D. G. Pérez, and C. Pagetti, “Evaluation of DREAMS
resource management solutions on a mixed-critical demonstrator,” 2018.

[13] G. Gala and G. Fohler, “Distributed decision-making for safe and secure
global resource management via blockchain: Work-in-progress,” 2020
International Conference on Embedded Software (EMSOFT), pp. 28–30,
2020.

[14] Z. Wang, M. Goudarzi, J. Aryal, and R. Buyya, “Container orchestration
in edge and fog computing environments for real-time iot applications,”
ArXiv, vol. abs/2203.05161, 2022.

[15] S. Fiori, L. Abeni, and T. Cucinotta, “Rt-kubernetes: containerized real-
time cloud computing,” Proceedings of the 37th ACM/SIGAPP Sympo-
sium on Applied Computing, 2022.

[16] V. Struhár, M. Behnam, M. Ashjaei, and A. V. Papadopoulos, “Real-time
containers: A survey,” in Fog-IoT, 2020.

[17] M. Cinque, R. D. Corte, and R. Ruggiero, “Preventing timing failures
in mixed-criticality clouds with dynamic real-time containers,” 2021 17th
European Dependable Computing Conference (EDCC), pp. 17–24, 2021.

[18] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time
scheduling in the linux kernel,” SIGBED Rev., vol. 16, pp. 33–38, 2019.

[19] T. Cucinotta, L. Abeni, M. Marinoni, R. Mancini, and C. Vitucci, “Strong
temporal isolation among containers in openstack for nfv services,” IEEE
Transactions on Cloud Computing, 2021.

[20] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. R. Sha, “MemGuard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms,” 2013 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 55–64, 2013.

www.ericsson.com/en/edge-computing/network-compute-fabric
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://docs.docker.com/engine/
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2

	Introduction
	Background
	DREAMS resource management architecture
	Kubernetes

	Related works
	Extending Kubernetes and Linux Containers to Support Real-Time Applications
	Resource monitoring
	Shared resource isolation for containers
	Integrating awareness of shared resources in Kubernetes
	System-wide shared resource balancing
	System overload monitoring
	Collaborative QoS reduction on overload
	Dynamic resource orchestration
	Node priorities and orchestration in heterogeneous clusters
	Control for scheduling classes on nodes

	Conclusion
	References

