
BUILDING RELIABLE DISTRIBUTED
EDGE-CLOUD APPLICATIONS
WITH WEBASSEMBLY
RT-CLOUD 2022

Franz-Josef Grosch, Dakshina Dasari,
Nuno Pereira, Anthony Rowe

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Distributed Edge-Cloud Applications
Industrial production – software-defined manufacturing

2

Leverage edge-cloud computing for modular, scalable and reconfigurable real-time control

PLC

PLC

SCADA: Supervisory Control and Data Acquisition – MES: Manufacturing Execution System –
ERP: Enterprise Resouce Planning – IPC: Industrial Purposes Computer

PLC: Programmable Logic Controller – usually hard real-time systems

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Distributed Edge-Cloud Applications
Car of the future – software-defined vehicle

3

Leverage edge-cloud computing for infrastructure-supported driver-assistance

*Source: Bosch
software-defined vehicleDriver-assistance: Usually safety-critical, real-time systems

https://www.bosch-mobility-solutions.com/de/mobility-themen/das-software-definierte-fahrzeug/

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Cloud native meets realtime computing
Distributed Edge-Cloud Applications

4

realtime computing

cloud native computing

*Breaking Down the Edge Continuum - LF Edge

Constrained
device edge

Smart
device edge On-prem

edge

Access
Edge Regional

edge
Data

centers

Last m
ile

netw
ork

Internet backbone

Local edge Service provider edge Cloud

https://www.lfedge.org/2020/08/18/breaking-down-the-edge-continuum/

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Distributed Edge-Cloud applications
WebAssembly virtualisation

Wasm Containers Virtual
machines

Memory
efficiency

Good (KB) Medium
(MB)

Poor (GB)

Cold startup
time

Good (usec) Medium
(msec)

Poor (sec)

Live migration Good
(seconds)

Poor (n/a) Medium
(minutes)

Targets Cloud,
edge,
device

Cloud, edge Cloud, edge

5

WebAssembly is lightweight

WebAssembly is loosely coupled

WHAT IS WEBASSEMBLY AKA WASM?

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Byte code for a stack-based virtual machine
What is WebAssembly aka Wasm?

7

*Why WebAssembly? | by Andreas Rossberg | Medium

 Fast, safe and portable semantics
 Fast to execute
 Safe to execute
 Well-defined – easy to reason about
 Hardware-independent
 Language-independent
 Platform-independent
 Open – to interoperate

 Efficient and portable representation
 Compact
 Modular
 Efficient – decode, validate, compile
 Streamable
 Parallelizable
 Portable

A binary instruction format for a stack-based virtual machine.
A portable compilation target for arbitrary programming languages.
Enabling application deployment on any modern hardware*

https://webassembly.org/
https://medium.com/dfinity/why-webassembly-f21967076e4

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What is WebAssembly aka Wasm?
Wasm is a typed programming language*

8

*Bringing the web up to speed with WebAssembly | PLDI 2017

 Basics
 A binary is a module defining functions, globals,

tables and memory
 Definitions can be imported and exported

Memory
 One linear memory per module
 Memory grows by pages (64KiB)
 Out-of memory access traps

Control flow
 Block with return, loop, if
 No unstructured control flow

 Function calls
 Direct
 Indirect via table, dynamically validated
 Foreign calls for imported host functions

https://dl.acm.org/doi/10.1145/3062341.3062363

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What is WebAssembly aka Wasm?
Wasm is a stack-machine with typed instructions
 Fibonacci function in C Fibonacci function in Wasm

9

int fib (int n)
{

if (n < 2) {
return 1;

}
return fib(n-2) + fib(n-1);

}

(module
(type (;0;) (func (param i32) (result i32)))
(func $fib (type 0) (param $n i32) (result i32)

local.get $n
i32.const 2
i32.lt_s
if ;; n < 2

i32.const 1
return

end
local.get $n
i32.const 2
i32.sub
call $fib ;; fib(n-2)
local.get $n
i32.const 1
i32.sub
call $fib ;; fib(n-1)
i32.add
return)

(export "fib" (func $fib)))

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What is WebAssembly aka Wasm?
Wasm execution requires a host runtime

Wasm modules provide
 Sandboxing

‒ A module can only interact with its environment
through its imports which are provided by a client,
so that the client has full control over the
capabilities given to a module.

‒ A module without imports cannot do anything,
besides burning computation cycles.

 Encapsulation
‒ A module’s client can only access the exports of a

module, other internals are protected from
tampering.

‒ A module without exports cannot do anything,
besides allocating its initial memory.

10

functions
with

capabilities

Host runtime (machine specific)

Wasm module
(machine independent)

imports exports

main/host-thread

accesses/callsprovides

HOW WASM CHANGES THE GAME FOR

SAFETY-CRITICAL REAL-TIME APPLICATIONS

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Changing the game
Wasm is consistently fast
 JavaScript, C++, Wasm – all are fast

Wasm execution
‒ Interpreted
‒ Just-in-time compiled
‒ Ahead-of-time compiled

Wasm is consistently fast

‒ Decode, compile + optimize at startup
‒ No re-optimize
‒ Garbage collection will be optional
‒ Fits well to real-time applications

12

*What makes WebAssembly fast?

*Bringing the Web Up to Speed with WebAssembly

parse compile & optimize execute re-optimize collect garbage

decode compile & optimize execute

JavaScript

Wasm

https://hacks.mozilla.org/2017/02/what-makes-webassembly-fast/
https://cacm.acm.org/magazines/2018/12/232881-bringing-the-web-up-to-speed-with-webassembly/fulltext

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Changing the game
Wasm is safe

Wasm sandbox
 Memory safety
 Control flow integrity
 Fault isolation
 No access to code addresses

and the call stack

Capability-based imports
 Standardized Wasm system

interface (WASI)
 System safety
 Isolate untrusted or buggy code

13

WASI

Sockets

capability-based
imports

GPIO

…

Access to network Access to
sensors and

actuators

Access to files system,
environment, clocks, …

Wasm sandbox:
No access to the system by
default; runs isolated from
other modules

Others to develop:
cryptography, shared
memory, …

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Changing the game
Wasm is well-defined and deterministic

 Wasm is well-defined
 No undefined behaviour
 No implementation-defined behavior
 No machine-dependent behaviour
 No unspecified behavior
 Well-defined traps – e.g. division by zero
 No invalid calls
 No illegal access to data

 Wasm is deterministic
 Any program, on any machine
 NaN representation needs normalisation
 Threads will be optional

‒ Well-defined memory model on the way*

14

Schrödinger's Code - ACM Queue

*Weakening WebAssembly | OOPSLA 19

https://queue.acm.org/detail.cfm?id=3468263
https://dl.acm.org/doi/10.1145/3360559

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Changing the game
Wasm is polyglot

Compile safety-critical, real-time applications
from low-level languages

Compile best-effort applications
from high-level languages

Run prototyped applications
from dynamic languages

 Link applications from components written in
different languages

15

prototyping
best-effort

safety-critical, real-time

Say goodbye to the C/C++ stranglehold

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Changing the game
Wasm is open

 Open interfacing
 Useful for any environment,

not only the Web
 More WASI features

‒ system access, networking,
tensor flow

 Upcoming Wasm features
‒ threads, garbage collection,

exceptions, …
 Use consistent Wasm feature

sets for your domain
 Build/use the runtime for your

domain

16

Open design
 Designed cooperatively by

the 4 major browser vendors
(Google, Mozilla, Apple,
Microsoft)

 Design process open to the
public

 Defined by an open standard
 Anybody can use it,

implement it, contribute to it
 Avoids licensing,

copyrighting, or patenting
problems

Open for realtime requirements ?

How WASI Makes Containerization More EfficientW3C WebAssembly Working Group

https://training.linuxfoundation.org/blog/how-wasi-makes-containerization-more-efficient/
https://www.w3.org/wasm/

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Changing the game
Wasm is formally defined and provably correct

WebAssembly Specification 2.0 (Draft)
Mechanising and verifying the WebAssembly

specification

Opens the door for certified compilers that
translate to Wasm

Raises the bar for programming language
design in general

Upgrades the state-of-the-art for certification

17

A computation either runs forever, traps, or terminates with a result that has the expected type.
It cannot “crash” or otherwise (mis)behave in ways not covered by the execution semantics.

https://webassembly.github.io/spec/core/index.html
https://dl.acm.org/doi/10.1145/3167082

ORCHESTRATION AND DEPLOYMENT OF

DISTRIBUTED WASM APPLICATIONS

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Heterogenous platforms and resource-constrained devices
Wasm orchestration and deployment

19

Edge
Device

Edge
Server(s)

Cloud Server(s)
Resources
(Transducers, Accelerator, etc.)

µEdge
Device

Edge
Device

Edge
Device

µEdge
Device

on-premoff-prem

Network
(TSN, WiFi 6, 5G, etc)

Edge Server: Linux x86 server
Edge Device: Linux ARM/x86 Single Board Computer
µEdge Device: Microcontroller

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Wasm orchestration and deployment
Distributed Wasm applications

Wasm modules
 Platform-independent
 Language-independent
 Portable
 Sandboxed
 Migratable

Host runtime
 Platform-specific
 Provides platform access and resources

‒ Filesystem, network interfaces, sensors,
accelerators

 Generic for different applications

20

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Wasm orchestration and deployment
High density and multi-tenancy

21

 1 runtime, many modules
 keep isolation
 keep fine-grained capabilities

 1 module, 1 thread
 OS threads
 green threads
 runtime level scheduler

 Link modules as components
 lightweight microservices
 Fast function calls
 Synchronous calls
 Asynchronous calls

Nano processes Module linking

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Wasm orchestration and deployment
Resource Monitoring and Enforcement

Host runtime
 Process-level resource mechanisms

‒ Scheduling primitives
‒ Control groups

 Separate runtimes for different QoS
requirements/criticalities

Wasm modules
 Fine-grained monitoring mechanisms

‒ „Gas“ metering for computation time
‒ Metering for linear memory

22

CONCLUSION AND FUTURE WORK

Grosch | Dasari | Pereira | Rowe | 2022-07-05
© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Conclusion and Future Work
Distributed reliable edge-cloud applications

Wasm is promising – also for realtime
 Performance
 Determinism
 Safety and security
 Metering
 Customizable host runtime

Distributed applications require more
 Real-time networking
 Edge orchestration
 Predictable distributed timing
 A suitable distributed programming model
 Functional determinism for safety

24

Computation Networking

Architecture

Orchestration

THANK YOU FOR LISTENING

QUESTION IT !

	��Building Reliable Distributed �Edge-Cloud Applications �with WebAssembly��Rt-Cloud 2022��Franz-Josef Grosch, Dakshina Dasari, �Nuno Pereira, Anthony Rowe
	Industrial production – software-defined manufacturing
	Car of the future – software-defined vehicle
	Cloud native meets realtime computing
	WebAssembly virtualisation
	����What is WebASsembly AKA WASM? ��
	Byte code for a stack-based virtual machine
	Wasm is a typed programming language*
	Wasm is a stack-machine with typed instructions
	Wasm execution requires a host runtime
	����How WASM CHANGES the GAME For ��Safety-Critical Real-Time Applications
	Wasm is consistently fast
	Wasm is safe
	Wasm is well-defined and deterministic
	Wasm is polyglot
	Wasm is open
	Wasm is formally defined and provably correct
	����Orchestration And Deployment Of ��Distributed WASM Applications �
	Heterogenous platforms and resource-constrained devices
	Distributed Wasm applications
	High density and multi-tenancy
	Resource Monitoring and Enforcement
	�����Conclusion and Future Work
	Distributed reliable edge-cloud applications
	��Thank You for Listening��Question iT !

