
Performance Engineering of
Cyber-physical Systems in the
Compute Continuum
RT-Cloud 2023 Keynote

Prof. dr. Benny Akesson

50 km
(30 mi)

2

Examples of Dutch Cyber-physical Systems (CPS)

System Complexity is Increasing!

3

Five technological and market trends drive increasing complexity in CPS:

1. Additional functionality
• Number of interfaces and lines of code are rapidly increasing

2. Mass customization
• Increased customization of systems at design time to the point where each system is unique

3. Long life times
• Systems operate for decades and need to continuously evolve after deployment

4. Increasing autonomy
• Systems acting autonomously with little or no human interaction

5. Systems of systems
• Interconnected systems of which nobody is in complete control

Managing Complexity

4

Increasing complexity cannot be dealt with by current engineering methodologies
• Increasing development and maintenance costs

• Increasingly hard to guarantee functional correctness and balance system qualities

• Severe shortage of skilled people

New design methodologies are required to manage the increasing complexity and enable future
generations of CPS to be developed efficiently!

TNO-ESI at a Glance

5

SYNOPSIS

• Foundation ESI started in 2002

• ESI acquired by TNO per

January 2013

• ~60 staff members many with

extensive industrial experience

• 8 Part-time professors

FOCUS

Managing complexity of
high-tech systems

through
• system architecting
• system reasoning and
• model-driven engineering

delivering
• methodologies validated in

cutting-edge industrial
practice

PARTNER BOARD

ESI
Program
Lines

5. System Architecting

2. System
Dependability

1. System
Performance

3. System
Evolvability

4. Exploiting
System
Context

Key Product
Qualities

Selling Catalogue
Items

Focus on
Total cost of
Ownership

Customer-
specific Products/

Configuration

Integration in
Application

Context

Quality &
Dependability

Variability and
Ease of Change

Integration and
Services

Expansion of Industry Business Focus

6

From Industry Focus to Program Lines

Industry
Priorities

Business
Focus

System Performance

7

ESI has many years of experience in the area of system performance
• System performance is the amount of work done by a system at a predefined quality level

• Considers performance in terms of timing, e.g. latency and throughput

Work considers the complex cyber-physical systems of our partners
• Typically distributed systems with a monolithic component-based software architecture

… but increasing complexity is driving change …

Different Performance Characteristics in the ESI Eco-system

ASML Thales Philips

Distribution scope Device Device Device-edge-cloud

Software architecture Monolithic component-based Microservices Mixed

Problem Fine-grained performance
analysis/diagnostics

Traceability of
(performance) requirements
/ Performance verification

Performance analysis,
service continuity

Order of timing
requirements

Micro-/milliseconds Hundreds of milliseconds Seconds

Timing requirements Firm Firm Soft

The world we know

The world of some
of our partners

The future of our
partners?

8

Problem Statement

These changes challenge our expertise
• Do our methods and tools for performance

engineering translate?

We have limited experience with:

• microservice technologies
• E.g. containers and their orchestration,

sidecars and service meshes

• public/private cloud environments
• E.g. pod/node scaling

Technology in this area is developing rapidly!

[1] Jamshidi, Pooyan, et al. "Microservices: The journey so far
and challenges ahead." IEEE Software 35.3 (2018): 24-35.

9

10

Presentation Outline

Introduction

Performance Verification in Microservice Architectures

Performance Analysis and Service Continuity of CPS in the Compute Continuum

Conclusions

Performance Verification in
Microservice Architectures

Thales Case Study

Running Dutch PPP Project

11

System Context

Thales is making a new product to re-establish itself in the fire control market

The platform is a microservice architecture running in a private cloud environment
• Software is decomposed into independent services communicating through message passing

• Makes use of containerization to improve portability and increase deployment options

• Uses container orchestration to improve system resilience

12

Research Context

13

The considered application for this work is a "Thales Meal Delivery System"
• Inspired by a real application, but abstracted to protect sensitive IP and allow public dissemination

scheduleorders
Planning

Meal
Request

dispatcher

Kitchen B

Kitchen A

Electrical Bike
(large box)

Regular Bike
(small box)

meal
requests

delivery
actions

Recipe
book

Recipe
book

Bob

Alice

On-time delivery

Performance Verification Problem

14

A gap between the disciplines of system and software engineering has been observed
• Makes it hard to trace whether requirements are satisfied during design, operation, and evolution

Systems are specified at logical level, but are implemented and verified at the physical level
• The translation between these two levels is manual and requires substantial effort, and must be

repeated if either level evolves during development or operation

• Timing requirements of system flows are specified early, but typically only verified in late stages of
development when changes are more time consuming and expensive to make

• It is difficult to verify that the software implementation conforms to the system specification

Delivery
Control

Planner
Meal

Dispatcher
Meal

Preparation
Meal Delivery

Example System Flow – Timing Requirement 250 ms

Automated Telemetry-based Performance Engineering

15

We envision an automated approach to telemetry-based performance engineering
• Enables performance to be addressed frequently and consistently during the system life-cycle

• Nightly performance verification to determine whether timing requirements are satisfied

• Nightly conformance checking that detect whether implementation and specification diverge

To implement the vision, we need three key ingredients:
1. Timing requirements must be formally specified at logical level

2. Interactions between services in the system to be observable, e.g. through tracing

3. Relevant interactions in traces must be identified and extracted to verify performance
requirements and check conformance

Considerations for Methodology

16

Five considerations for verification methodology:

1. Enable gradual introduction of verification methodology to simply adoption

2. Use already known or available specifications to simplify adoption

3. Use a formal specification to prevent ambiguity

4. A clear relation between specification and observable data is required for traceability

5. Use a model-based approach to enable automation

PlantUML Specification of Timing Requirements

17

Sequence diagrams were chosen as the specification language
• Well-known and commonly used formalism among system and

software engineers at Thales

• Common format (PlantUML) and open tooling can be used

• Timing requirements added in PlantUML comments to avoid
changing grammars

max
250 ms

@startuml
title
Sequence diagram of "From order to delivery"
end title

participant DeliveryControlService
participant PlannerService
participant MealDispatchingService
participant MealPreparingService
participant MealDeliveringService

'@TimingStart 250000
DeliveryControlService-> PlannerService:
SubmitOrderRequest
PlannerService -> DeliveryControlService :
MonitorNotification
PlannerService -> MealDispatchingService :
ScheduleUpdateRequest
MealDispatchingService -> MealPreparingService :
MealPreparationRequest
MealPreparingService -> MealDeliveringService :
DispatchDeliveryRequest
MealDeliveringService -> PlannerService :
DeliveryUpdateNotification
'@TimingEnd
@enduml

The Pillars of Observability

Observability is provided through three complementary types of telemetry data

1. Metrics provide time-based numerical measurements on elements of the
application or system
• System metrics: CPU/memory/disk/network utilization, network retries, # deployed pods

• Application metrics: # of exposed wafers, # of failed payments, customer satisfaction

2. Logging collects application-generated structured or unstructured text

3. Traces represent flows through the system in services and function calls

[1] Goniwada, Shivakumar R. "Observability." Cloud Native Architecture and Design. Apress, Berkeley, CA, 2022. 661-676.
[2] Li, Bowen, et al. "Enjoy your observability: an industrial survey of microservice tracing and analysis." Empirical Software Engineering 27.1 (2022): 1-28.

18

Proposed Observability Solution

We have proposed an observability solution based on:
• Prometheus for monitoring and alerts for application and system metrics

• Jaeger for distributed tracing

• Grafana for visualization across data sources

• OpenTelemetry for technology-agnostic instrumentation

This direction is chosen because:
• Thales software architecture uses containerized software in a Kubernetes environment

• Thales has a preference for open source tools maintained by large communities

19

Metric dashboards Visualization of nested spans Service dependency graphs Trace comparison

Performance Verification

20

Relevant interactions in traces are identified based on the sequence diagrams
• Conversion by using PLY, a Python based library for compiler construction

• PLY uses the PlantUML BNF grammars to create an abstract syntax tree (AST)

• Transformation from AST creates a list of service interactions to be extracted from traces

Interactions are extracted and verified
• Listed service interactions are extracted from

ElasticSearch and requirements are verified

• If a requirement is violated, a PlantUML diagram
is generated with relevant timing information

• More refined user feedback is being discussed

Next Steps

21

Currently, this work is being extended to support conformance checking
• Extension of the same infrastructure

• PAR statements in PlantUML used to indicate that some interactions can happen in arbitrary order

• We will find out if the simple PlantUML specification scales to cover this case in a good way

Performance Analysis and Service Continuity
of CPS in the Compute Continuum

Philips Case Study

Running ECSEL Joint Undertaking

22

TRANSACT Project Goal

Transforming CPS’ architecture from monoliths to
distributed solutions

Ensuring CPS’ performance and safety in the device-edge-
cloud continuum

Ensuring CPS’ security and privacy in the device-edge-cloud
continuum

Devising business models for CPS deployed in the device-
edge-cloud continuum

Local

Solution

Equipment

CloudDevice
Edge

Distributed

Develop a universally applicable distributed solution architecture, framework and transition methodology for
the transformation of standalone safety-critical CPS into distributed safety-critical CPS solutions.

23 [1] Hendriks, Teun, et al. "Thirteen concepts to play it safe with the cloud." 2023 IEEE International Systems Conference (SysCon). IEEE, 2023.

TRANSACT Use Cases

24

Remote operation of autonomous vehicles for navigating in
urban environments

• Reduce road fatalities and accidents

• Contribute to a more efficient urban mobility with less congestion

• Reduce fuel cost and GHS-emissions

Critical maritime decision support enhanced by distributed
AI-enhanced edge and cloud solutions

• Reduce groundings and other incidents

• Increase performance

• Reduce fuel cost and GHS-emissions

TRANSACT Use Cases

25

Cloud-featured battery management for electric vehicles
• Increase electrification of car park

• Reduce air pollution

Critical wastewater treatment decision support enhanced by
distributed, AI-enhanced edge and cloud solutions

• Mitigate climate change induced water scarcity

• Prevent ecological disasters due to potential wastewater spills

Edge-cloud-based clinical application platform for image-guided
therapy and diagnostic imaging systems

• Better clinical outcomes at lower cost

• Increased medical staff’s experience

• New business models based on 3rd party tool integration

Philips (IGT/HSDP) Case Study

Safety-critical, real-time
image & data
acquisition and viewing

Pre-interventional planning
or off-line reviewing, cloud
enhanced intervention
applications

Data access enabler for AI applications,
predictive analytics, download
upgrades, 3rd party integration and
enhanced services

Device tier Edge tier Cloud tier

26

How do we ensure the system satisfies end-to-end performance
requirements across the compute continuum?

How do we guarantee service continuity of mission-critical
functionality in the compute continuum?

27

Cloud-assisted Image Guided Surgery

Advanced image processing in the cloud, while patient is on the table
Response time should not keep surgeon waiting

28

How to meet SLA for Response Time?
Impact of dynamic demands on auto-scaling needs for cloud resources

Operate Operate Operate

C
lo

u
d

C
lo

u
d

So many hospitals?
So many operations?
So many cloud requests?

Stochastic, time-varying demand
How many cloud resources?
How to scale to meet timing?

An open POOSL simulation model is
available of this case if you are interested!

TRANSACT Open Experimental Platform

Open experimental platform for applied research and performance benchmarking

Platform technologies:
• AWS for public cloud environment

• TNO private cloud environment with 3 nodes

• Kubernetes for container orchestration

• Prometheus for monitoring of application and system metrics

• Jaeger for distributed tracing

• Grafana for visualization and alerts across data sources

• OpenTelemetry for technology-agnostic instrumentation

29

Open Source 3D Reconstruction Application

30

A folder of 2D images are selected on a client application running in a web browser
• The images in selected folder are uploaded to an S3 bucket

OpenMVG (Open Multiple View Geometry) matches the
images and creates a sparse point cloud

• Wrapper allows batches of images to be processed in parallel

OpenMVS (Open Multi-view Stereo) performs
3D reconstruction based on the point cloud

The reconstructed 3D model is shown in the web browser
of the client application

Features of 3D Reconstruction Demonstrator

31

Instrumentation and integration with observability tools
• Instrumented with OpenTelemetry to get spans, traces and latency data

• Integration with Prometheus and Grafana for metrics, visualization, and alerting

Parallel processing of images to benefit from autoscaling
• Horizontal pod autoscaling using Kubernetes

• Horizontal and vertical node autoscaling using Karpenter

• Scaling is too slow to make a difference for a single job, but it useful at fleet level

Service continuity in case of lost network connection through mode switch to device-only mode
• Device and cloud clusters are securely linked using Skupper

• Load balancing and failover is handled by Nginx

• Switching from cloud mode to device-only mode, and vice versa, takes approximately 10 seconds

Next Steps

32

Quantify, measure and control performance overhead and quality of observability

Comparison of presented technology to a service mesh implementation [1, 2]
• Services communicate via sidecar proxies, forming a data plane, configured via a control plane

Fundamental features of a service mesh:
1. Service discovery

2. Load balancing

3. Fault tolerance

4. Traffic monitoring

5. Circuit breaking

[1] Jamshidi, Pooyan, et al. "Microservices: The journey so far and challenges ahead." IEEE Software 35.3 (2018): 24-35.
[2] Li, Wubin, et al. "Service mesh: Challenges, state of the art, and future research opportunities." 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). IEEE, 2019.

Next Steps

33

Observability alone is not sufficient in a system with many concurrently executing services [1]
• Automatic root-cause analysis and critical path analysis leveraging formalization between traces

and timed-message sequence charts (TU/e) and the Platform Performance Suite (PPS) by ESI [2]

[1] Bento, Andre, et al. "Automated analysis of distributed tracing: Challenges and research directions." Journal of Grid Computing 19 (2021): 1-15.
[2] Bits & Chips, “Clearning the critical software path”,(2021) https://bits-chips.nl/artikel/clearing-the-critical-software-path/

https://bits-chips.nl/artikel/clearing-the-critical-software-path/

Overview of Performance Engineering Framework

Meal Delivery /
3D Reconstruction

Application

Prome
theus

jaeger

Extract
traces

Order
traces

System flow
extract

Collect linked
traces (order id)

Extract all
subgraphs

SDG

Extract
statistics

Performance
Prediction

System Flow
Verification

Bottleneck
Identification

Observability
infrastructure

Specific Performance
Engineering Research

PPS
converter

34

Telemetry-based
Performance Engineering

Framework

Conclusions

35

Conclusions

The complexity of cyber-physical systems is increasing
• Driven by increasing needs for functionality, customization, evolvability, and autonomy, as well as

integration in a broader system-of-systems context

New model-based design methodologies are needed to enable the next-generation of CPS to be
efficiently developed, reducing development time and improving system quality

The architecture of (some) cyber-physical systems is changing
• From component-based to service-oriented/microservice architectures

• From distributed within a device to distributed over the cloud continuum

• This challenges ESIs experience and expertise in performance engineering

36

Conclusions

37

We discussed two relevant case studies from running projects:

1. Performance Verification in Microservice Architectures
• Thales Meal Delivery system on a microservice architecture in a private cloud environment

• A methodology based on open source tools allows requirements specified using sequence diagrams
to be verified using telemetry data

2. Performance Analysis and Service Continuity of CPS in the Compute Continuum
• Philips x-ray solution distributed over compute continuum

• Discussed alternatives for providing end-to-end performance and service continuity in continuum

Conclusions

38

There are clearly good open source tools to manage performance and
service continuity in microservice / cloud applications

• The challenge is to provide meaningful guarantees on their timing behavior

From this work, a general telemetry-based performance engineering framework is emerging

Acknowledgements

This work was partially supported by the TRANSACT EU project, ((https://transact-ecsel.eu/).
TRANSACT has received funding from the ECSEL Joint Undertaking (JU) under grant agreement
No 101007260. The JU receives support from the European Union’s Horizon 2020 research and
innovation programme and Austria, Belgium, Denmark, Finland, Germany, Poland, Netherlands,
Norway, and Spain.

The research is carried out as part of the ArchViews project under the responsibility of TNO-ESI
with Thales Nederland B.V. as the carrying industrial partner. The ArchViews research is
supported by the Netherlands Organisation for Applied Scientific Research TNO.

39

40

