
A Multi-Domain Software Architecture for
Safe and Secure Autonomous Driving

Luca Belluardo∗, Andrea Stevanato∗, Daniel Casini∗†,
Giorgiomaria Cicero∗, Alessandro Biondi∗†, and Giorgio Buttazzo∗†

∗TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
†Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy

Abstract—This work aims at making Apollo, a popular au-
tonomous driving framework, safer and more secure by designing
a multi-domain architecture, where its components are split be-
tween a feature-rich domain running Linux and a critical domain
running a real-time operating system (RTOS). The two domains
are isolated by a hypervisor. We implemented a prototype where
the control component has been ported from Linux to the
Erika automotive-grade RTOS, and we discuss a number of
challenges that have been faced in moving the component to
Erika. The proposed solution has been experimentally evaluated
by measuring the latencies involving processing paths passing
through the control component.

Index Terms—multi-domain architecture, autonomous driving,
safety, hypervisor

I. INTRODUCTION

In recent years, autonomous driving (AD) and advanced

driver-assistance systems (ADASes) attracted increasing atten-

tion in the automotive landscape. An autonomous vehicle can

sense the surrounding environment thanks to various sensors

and move safely with no human intervention.

Implementing AD/ADASes requires dealing with several

non-trivial tasks, such as perception, prediction, planning,

localization, and control.

These tasks are typically managed by different components

within autonomous driving frameworks, such as Autoware [1]

or Apollo [2], which provide facilities to run them. Fur-

thermore, these frameworks also provide the required inter-

component communication mechanisms usually by leveraging,

in turn, other middleware layers implementing the publish-

subscribe paradigm, such as ROS [3] or CyberRT [4].

AD frameworks typically require a considerable interaction

with device drivers, e.g., to acquire data from sensors, and

software stacks, e.g., to run inference of deep neural networks

on hardware accelerators [5]. As a consequence, a feature-

rich OS as Linux is a convenient candidate to run them.

On the other hand, Linux is a complex operating system

with a potentially large attack surface for security threats and

several safety-related issues. On the contrary, AD systems

need to ensure safety and security, thus making a trusted

real-time operating system a more commendable choice for

implementing the most critical functionalities.

A possible solution to take the best of both worlds is to

split the AD system into two parts:

• a highly-critical one, comprising functionalities such as the

computation of control actions, supervision of the vehicle

navigation, fall-back control, and CAN-based communica-

tion, which are highly safety-related and do not generally

require interaction with complex software stacks and device

drivers; and

• a less critical one that generally involves components that

are limitedly relevant for safety and not suitable for certifica-

tion. For example, the latter category may include perception

tasks based on complex convolutional neural networks [6],

which are very hard to certify [7].

Each part of the system can then run on the most convenient

operating system for its purpose as part of a separate domain,

i.e., virtual machine (VM), managed by a hypervisor, thus

realizing a multi-domain architecture.

In this paper, we focus on the Apollo framework [2] (version

5.0) for AD developed by Baidu [8]. Apollo runs on Linux,

which provides a large number of device drivers and software

stacks that would not be available on an RTOS. On the other

hand, it exposes Apollo to security and safety threats.

Contribution. This paper presents the design and implemen-

tation of a prototype multi-domain architecture for Apollo. To

this end, a deep analysis of the Apollo framework has been

conducted to individuate the most safety-related components

to be moved on the Erika RTOS [9], an OSEK/VDX certified

RTOS used by various companies in the automotive market,

including Magneti Marelli PowerTrain and Cobra Automotive

Technologies [10]. In the proposed solution, Erika and Linux

run into two different domains. To the end of realizing a tech-

nology demonstrator, the KVM hypervisor is used to run the

domains upon the same platform, orchestrating the accesses to

the hardware components. In this way, Apollo can leverage the

benefits provided by the two operating systems: for example,

it can run the perception component on Linux, benefiting

from the pre-existing NVIDIA software stack for accelerating

deep networks on Graphics Processing Units (GPUs), and

the control component (i.e., the one performing actuation) on

Erika with a higher degree of safety and security. However,

porting an Apollo component from Linux to Erika requires

dealing with several not-trivial shortcomings that are discussed

in this paper. Furthermore, the communication between the

components running on Linux and Erika needs to be restored,

involving the adoption of a proper inter-VM communication

mechanism provided by the hypervisor.

73

2021 IEEE 27th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)

978-1-6654-4188-9/21/$31.00 ©2021 IEEE
DOI 10.1109/RTCSA52859.2021.00017

20
21

 IE
EE

 2
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
m

be
dd

ed
 a

nd
 R

ea
l-T

im
e

C
om

pu
tin

g
Sy

st
em

s a
nd

 A
pp

lic
at

io
ns

 (R
TC

SA
) |

 9
78

-1
-6

65
4-

41
88

-9
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
R

TC
SA

52
85

9.
20

21
.0

00
17

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:13:49 UTC from IEEE Xplore. Restrictions apply.

Paper Structure. The rest of this paper is organized as

follows. Section II provides the needed background. Section III

presents the proposed multi-domain architecture. Section IV

reports on the main challenges in implementing a multi-

domain version of Apollo, discussing the solutions adopted

in our prototype implementation. Section V illustrates our

experimental evaluation. Section VI discusses the related work.

Finally, Section VII concludes the paper and discusses the

future work.

II. PRELIMINARIES

This section reviews the three pillars required by our

multi-domain architecture, namely, the Apollo AD framework

(Section II-A), the Erika RTOS (Section II-B), and the KVM

hypervisor with the IVSHMEM mechanism to provide inter-

VM communication (Section II-C).

A. Apollo

Middleware

CyberRT

Operating System

Linux

Apollo

Perception Prediction Planning

Control

HMI

CanBus Monitor Guardian

Fig. 1: The Apollo software architecture.

Together with Autoware [1], Apollo is one of the most

popular open-source frameworks for autonomous driving. It

covers all the functionalities of an autonomous car, from the

perception of the surrounding environment to the decisions

to take for actually leading the passengers to the destination.

It leverages multiple sensors and actuators installed on the

vehicle. The Apollo code can be found on a GitHub open

repository [11]. The project was started in 2017 by Baidu,

and it is the only company to obtain the first batch of road

test licenses in China. The software architecture of an Apollo-

based system is shown in Fig. 1.
Apollo officially supports Intel x86 platforms only and

runs on PREEMPT_RT Linux, a variant of Linux which

allows achieving under-millisecond scheduling latencies in

most cases [12], and, in particular, on Docker. Docker is

a set of “platform as a service” products that use OS-level

virtualization to deliver software in packages called containers.

Containers are isolated from one another and bundle their own

software, libraries and configuration files.
Above Linux, the Apollo ecosystem provides CyberRT.

CyberRT is a framework that manages Apollo’s modules and

let them communicate using the publish/subscribe (pub/sub)

paradigm. Communication channels are called cyber-channels
or topics. Under the pub/sub paradigm, some software com-

ponents act as subscribers, “subscribing” to topics and getting

notified when other computational activities, called publishers,

“publish”’ on one of them.

CyberRT was not present in the first versions of Apollo:

up to version 3.0, Apollo used a customized version of ROS,

which included an optimized communication based on shared

memory. From Apollo 3.5, the pub/sub communication has

been managed by CyberRT, still developed by Baidu, to better

implement the specific requirements individuated by Apollo’s

developers.

On top of CyberRT, Apollo implements several software

components. The most relevant ones are localization, percep-

tion, prediction, CAN bus, planning, control, and the human-

machine interface (HMI), discussed below:

• Localization: provides the localization services, based on

GPS, IMU, and LiDAR sensors;

• Planning: provides functionalities to plan the path towards

the destination;

• Perception: allows detecting and classifying obstacles, as

well as determine the status of traffic lights;

• Prediction: tries to predict the future trajectories of the

obstacles detected by the perception module;

• CAN bus: forwards the control commands and receives the

car’s chassis status to the control module;

• Control: generates the actuation command based on the data

received from the other modules;

• HMI: is a module for viewing the status and controlling the

functioning of the vehicle.

The Apollo architecture is designed to run on a car con-

forming with the Apollo’s reference vehicle platform, which

specifies the compatible sensors and the requirements for the

industrial computer that needs to be stored inside the trunk.

From a safety point of view, it is interesting to note also

the presence of the monitor and guardian components. The

two modules act in synergy. The first one checks the status of

the running modules, the data integrity, and the system health

(in terms of CPU, memory, and disk usage). If it detects a

failure, it informs the guardian that is in charge of performing

an action to bring the car to a safe state.

B. Erika RTOS

Erika Enterprise [9] is an RTOS developed by Evidence Srl

[13]. Erika is certified OSEK/VDX, a standard for an open-

ended architecture for distributed control units in vehicles.

Erika has multiple versions, and the newest is version 3.

It provides several excellent features to foster predictability,

and hence safety, such as a fixed-priority scheduler, the support

for synchronization protocols, and a rich API that allows

creating tasks, events, alarms, resources, semaphores, etc.

Furthermore, Erika has a small footprint, which translates

to a small surface for safety threats and cyber-attacks, thus

resulting in being a good candidate to run the most safety-

critical parts of Apollo.

Erika comes with a development tool called RT-Druid.

RT-Druid is based on Eclipse and allows to write, compile,

and analyze applications. An Erika-based system is statically
configured by means of an OIL file, which includes all the

74

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:13:49 UTC from IEEE Xplore. Restrictions apply.

information required to define it. For example, tasks, resource

semaphores, counters, and alarms (used to trigger real-time

tasks periodically) are static and defined in the OIL file, and

hence known at compile time.

C. KVM and IVSHMEM

A hypervisor is the standard solution to integrate different

domains on the same hardware platform by managing the

accesses to each component (e.g., cache memories [14], inter-

connects [15], or I/O devices [16]). Domains are implemented

by virtual machines, handled by the hypervisor itself. More

VMs can co-exist on the same hardware: the hypervisor also

provides isolation among them (e.g., by means of reservation-

based mechanisms [17]–[19]).

The hardware machine used by the hypervisor is said to

be the host; instead, the VM that uses the resources granted

by the hypervisor is said to be the guest. Hypervisors are

categorized in two types: type-1 (also called bare-metal)

hypervisors, which run directly on the host hardware, and

type-2 hypervisors (also called hosted), which execute on an

operating system as an application. In this paper, we focus

on a type-2 hypervisor, namely, QEMU/KVM [20] (Quick

EMUlator/Kernel-based Virtual Machine), as it is a convenient

solution for developing our prototype. Indeed, KVM/QEMU

executes on Linux and allows running the Linux-based domain

of Apollo directly on the host machine, creating a single guest

domain (for Erika). It is composed of two parts: KVM and

QEMU. Specifically, KVM allows using some specific hard-

ware features to virtualize the processor cores, while QEMU

acts on the Linux side and creates a thread for each virtual

processor of the VM [18]. For brevity, this configuration will

be referred to simply as “KVM” in this paper.

Allowing Linux and Erika to communicate requires dealing

with an inter-domain communication mechanisms provided

by the hypervisor. In our prototype, we used IVSHMEM [21]

(Inter-VM Shared Memory), which exposes the shared mem-

ory as a PCI device with three base address registers (called

BARs), where: BAR0 stores the device registers, BAR1 pro-

vides inter-VM interruption functionalities, and BAR2 maps

the shared memory object.

III. A MULTI-DOMAIN SOFTWARE ARCHITECTURE FOR

AUTONOMOUS DRIVING

Fig. 2 illustrates the proposed multi-domain software ar-

chitecture for Apollo-based autonomous driving systems. The

system is divided into two domains: a critical domain and a

non-critical domain.

The first domain runs on Erika and includes all most critical

functionalities for the car, e.g., the control, CAN bus, and

guardian components. Conversely, the second domain runs

on Linux, which conveniently provides the software stacks to

interact with I/O devices such as lidars and cameras and per-

form hardware acceleration of deep neural networks on GPUs.

Therefore, the non-critical domain includes all the advanced

functionalities with such needs, e.g., artificial-intelligence-

based perception, localization, planning, and prediction. Low

Non-critical domain

Hypervisor

RTOS Linux

Advanced functionalities

Critical domain

Critical functionalities
• AI-based perception
• Localization
• Planning
• Prediction

• Control
• CAN
• Guardian
• (Fall-back control)

Fig. 2: Multi-domain architecture for Apollo.

critical functionalities as the HMI are also implemented in this

domain.

With some components remaining on Linux and some

moved to Erika, the CyberRT-based communication needs to

be restored.

To this end, the components moved to Erika are replaced

by corresponding bridging components in the Linux domain,

which act as a proxy and interact with the inter-domain

communication mechanism provided by the hypervisor.

The general guidelines to select which components to

include in the critical domain are reported in the following

list:

GL1 The component needs to be highly safety-critical;

GL2 The component should be suitable for certification;

GL3 The component should not require complex software

stacks and device drivers that are not available on an

RTOS.

These guidelines determined the high-level components-to-

domain assignment illustrated in Fig. 2: control, CAN-based

communication, and the monitor/guardian are well-suited to

run in the critical domain, as they conform to all the guidelines.

On the contrary, AI-based perception, localization, planning,

and prediction are kept on the Linux domain, as they all either

rely on hardware accelerators (e.g., AI-based perception or

prediction that requires a GPU and the NVIDIA software

stack), or are not suitable for certification (e.g., AI-based

perception or perception, which rely on deep neural network

and other techniques based on artificial intelligence that may

be subject to adversarial attacks [7]), or require other software

stacks, libraries, and device drivers that are not available or

portable to an RTOS.

The critical domain should also guarantee to bring the car

in a safe state when misbehavior is detected. Currently, this

is handled in Apollo by the guardian module, which provides

only minimal actions in correspondence of a fault. More in

detail, it implements a “hard-brake” if the ultrasonic sensors

are not working or if they are working and an obstacle is

detected; otherwise, it triggers a “soft-stop”.

75

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:13:49 UTC from IEEE Xplore. Restrictions apply.

Nevertheless, a safe autonomous driving architecture needs

to implement a more robust reaction to faults [22]. In our ar-

chitecture, this is implemented by a fall-back controller, which

is in charge of implementing control functionalities based on

minimal perception features, e.g., on data provided by legacy

sensors only (e.g., radars) that can be fully managed by the

Erika domain without the intervention of Linux. However, this

feature is not present in Apollo yet, and it requires further

studies that will be addressed in future work.

IV. DESIGN AND IMPLEMENTATION IN APOLLO

After presenting the multi-domain software architecture,

we discuss several shortcomings we faced in moving safety-

critical components of Apollo, the control component, from

Linux to Erika, the corresponding solutions, and how the

communication has been restored using the IVSHMEM inter-

domain communication mechanism provided by KVM.

A. Overview

First, we discuss the setup we considered in implementing

our multi-domain prototype. Given the current unavailability

to us of an actual car to develop the system and the risk

of developing a prototype on a car, we considered an HW-

in-the-loop simulation environment based on the LGSVL

Simulator [23]. Our simulation environment consists of two

different physical machines, one for LGSVL, and for run

Apollo, where the latter runs exactly the same software that

would run on an actual car for almost all enabled components.

However, when running in simulation, Apollo does not

enable all the components: the CAN bus component and the

Guardian are not used (i.e., the CAN bus is handled directly

by LGSVL [24]).

Consequently, we decide to implement our prototype by

only porting the control component on the Erika domain.

Nonetheless, porting a single and apparently simple compo-

nent revealed to be a hard task: indeed, the control component

leverages several libraries that are not trivial to move outside

Linux, as extensively discussed later in this section.

Furthermore, the control component interacts with several

other modules: Fig. 3 illustrates its main communication

relations.

The control component receives data from the planning,

localization, CAN Bus, and HMI components regarding the

trajectory, localization estimate, chassis status, and data for the

HMI. Furthermore, it writes the control command on another

topic to be transmitted on the CAN bus by the corresponding

component.

The messages exchanged with the HMI are not relevant in

the context of this paper: indeed, they cannot be generated in

simulation.

In a simulated environment, since no CAN device is avail-

able, the actual CAN bus component is not started, and another

software module runs in place of it.

The control component consists of a periodic activity trig-

gered every 10 ms. From a functional perspective, it consists

of two main functions calls: (i) init(), which initializes the

module and loads the configuration parameters for the control

algorithms; and (ii) proc(), which acquires the data from

the CyberRT channels, computes the control commands, and

sends them to the CAN bus component.

B. Pub/Sub communication with CyberRT

As a first step, we performed a deep inspection of the

Apollo and CyberRT codebase to understand them in detail.

In particular, we highlight some aspects related to the pub-

lish/subscribe communication implemented by CyberRT that

resulted in being helpful to know when developing our multi-

domain solution.

The control module uses the NodeChannelImpl class

to communicate. The message types to exchange are defined

by protobuf1 files. When the NodeChannelImpl class for a

node is created, it is notified to a nodes manager, which keeps

track of all the NodeChannelImpl classes created. To use

the publish/subscribe paradigm, each module needs to create

reader and writer objects. Specifically, to subscribe to a

topic, the module needs to create a reader object for such

a topic.

When a reader is created, optionally, it is possible to

associate to it a callback function. Then, when a new message

is received, it is stored in the reader class and, if a callback

function has been registered, it is activated. Similarly, if a

module wants to publish on a specific topic, it needs to create

a writer object.

C. Porting the required libraries to Erika

As a preliminary, a bare-metal ERIKA3 RTOS image for

x86-64 has been created to run Erika with the KVM hypervi-

sor. This configuration requires a specific bare-metal toolchain

to compile the program [25], which includes a compiler, linker,

and libraries to provide interfaces to the operating system, and

a debugger.

Before porting the control component on the Erika RTOS,

the first step involved isolating the component from the Apollo

codebase. Then, the control module has been taken out from

Apollo, with all the necessary files to compile it, i.e., the files

of the control module sub-folder and the protobuf files of the

components that communicate with the control module.

Then, we compiled it on Linux but outside Docker. This step

helped in identifying the library dependencies of the control

component:

• qpOASES [26]: is an open-source C++ implementation of

the Online Active Set Strategy using the quadratic program-

ming (qp). It is used by the controller to compute the control

commands.

• protobuf [27]: is the library used by Apollo to standard-

ize the format of configurations and messages exchanged

among components.

• gflags [28]: is a library to specify flags and use them

during the program execution. An example of a flag is the

1Google’s Protocol buffers (protobuf) is a mechanism for serializing struc-
ture data, similar to XML files.

76

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:13:49 UTC from IEEE Xplore. Restrictions apply.

Apollo
Planning

component (PC)

Localization
component (LC)

CAN Bus
component

(CBC)

Topic E reader
of CC

Topic G reader
of CBC

Topic A writer of PC
(ADCTrajectory)

Topic C reader
of CC

Topic A reader
of CC

Topic G writer of CC
(ControlCommand)

Control
component

(CC)

Topic B writer of PC

Topic C writer of LC
(LocalizationEstimate)

Topic D writer of LC

Topic E writer of CBC
(Chassis)

Topic F writer of CBC

Data to other
components

Data to other
components

Data to other
components

Fig. 3: Communication relations of the control component. Different data flows are highlighted with different colors.

path of the configuration file of the module or the size of

the reader message queue.

• glog [29]: implements application-level logging. The li-

brary provides logging APIs based on C++ style streams

and various helper macros.

Then, the component needs to be compiled for Erika.

However, these libraries subtly rely on different features

of Linux. Since Erika uses a different compiler (i.e.,

x86_64-unknown-elf-g++), it is necessary to re-compile

the libraries used by the control component (listed above).

To reduce the memory usage of Erika, the logging function-

ality is disabled, and hence the glog library is removed.

The other libraries, gflags, qpAOSES, and protobuf, are

therefore modified to be compiled with the bare-metal

toolchain.

In the case of the qpOASES library, the modifications

concern the change of the compiler, the addition of the paths

of the include files, and the paths of the libraries to link.

Conversely, running gflags on Erika required to properly

configure CMake, the build solution used for this library, to

use the bare-metal compiler required for Erika.

Finally, porting the protobuf library still required similar

efforts (e.g., properly configuring the bare-metal compiler in

the Makefile), but it also required resolving a dependency

with respect to the pthread library, used by protobuf.

Indeed, pthread is not available on Erika; therefore the

library has been modified to avoid any dependency on it. This

modification has been particularly challenging.

D. File system and configuration files

When the control component is initialized, it needs to read

several configuration files containing multiple configuration

options of the control algorithms, e.g., coefficients of PID

controllers and more sophisticated configurations of more

complex control strategies. To this end, a file system is needed,

but the standard configuration of Erika does not provide it.

However, Erika supports FatFS [30], a tiny library that

provides FAT/exFAT support for small embedded systems,

written in compliance with ANSI C (C89). Therefore, FatFS
has been used to develop the Erika domain.

Furthermore, it is necessary to provide the Erika domain

with all the needed files before the system’s startup to allow

the control module to read them during the initialization.

The control component never writes data to the file system

but only reads from it. Therefore, we create a static file system

of 1 MB with the following Linux commands:

$ dd i f = / dev / z e r o o f = f i l e . f s bs =1024 c o u n t =1024
mkfs . f a t f i l e . f s
mount f i l e . f s / mnt / tmp /

The first command creates the binary file, file.fs, with a

given size; the second command creates a FAT file system,

and the last command mounts the file system to allow adding

the configuration files.

To use this file system in Erika, we converted it from a

binary file to a C/C++ header file using the bin2header tool

[31]. In this way, the header file stores a character array, thus

allowing to pass the address of the file system to the FatFs

library and mounting it on Erika using the function provided

by the FatFs library.

Apollo’s control module configuration files are managed by

the protobuf library, which is based on a POSIX API. For

example, the API for reading and writing data from/to the file

systems are:

i n t r e a d (i n t fd , vo id * buf , i n t c o u n t)
i n t w r i t e (i n t fd , c o n s t vo id * buf , i n t c o u n t)

where fd is the file descriptor, a non-negative number

representing a file in a POSIX system.

Instead, the API of the FatFs library provides a much

different API, thus not allowing seamless integration with the

protobuf library. For example, the API for reading and

writing data with FatFs is:

77

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:13:49 UTC from IEEE Xplore. Restrictions apply.

FRESULT f r e a d (FIL * f , vo id * buf , UINT b t r , UINT* b)
FRESULT f w r i t e (FIL* f , vo id * buf , UINT btw , UINT* b)

To allow protobuf using FatFs, a POSIX-compliant

wrapper has been applied to it to provide the same interface

of a POSIX system.

Moreover, Erika already has some of the functions provided

by the POSIX API, i.e., write, read, close, fstat,

lseek and isatty functions, which are also needed in

the POSIX wrap. Erika uses these functions for the serial

communication. Therefore, these functions are modified to

keep their original functionality and serve as wrappers for the

FatFs functions. To this end, for example, at the beginning of

the read and write operations, the file descriptor is checked to

distinguish serial (UART) communication (i.e., C++ standard

input and output, stdin and stdout) from operations on

files: in the first case, the code provided within Erika is run;

otherwise, the FatFs function executes.

E. The control component on Erika

Next, we discuss how to move the control component on

Erika. Since it is a periodic activity, it has been implemented

by using the standard facilities provided by Erika for activating

a periodic task, i.e., by properly configuring a counter, an

alarm, and task object in the OIL file. The counter counts

1 ms for every tick, and the alarm triggers the task when the

counter reaches 10.

However, to integrate the control component in Erika some

changes are required. First, in the header file, as well as in

the input and proc functions, it is required to remove

any interaction with the Cyber RT channels and substituting

them with an interaction with the shared memory provided

by KVM by means of IVSHMEM. The details of the adopted

inter-domain communication mechanism are discussed next in

Section IV-G.

To make the solution working, many problems needed to

be addressed. Indeed, in the beginning, Erika was not able to

boot. Using the gdb debugger of the toolchain, it has been

found out that the size of the application was too large for

Erika (the compiled control component resulted to be about

6 MB and the memory areas critical for the startup of the

RTOS were overwritten). Accurate modifications to Erika were

then required. They were related to the memory layout and,

in particular, to the size of the various memory regions.

F. Bridging component on Linux

On the Apollo side, it is necessary to manage the inter-

action between the inter-VM shared memory and the plan-

ning, localization, and CANBus modules. So, the control

component inside Apollo has been used to act as a “bridge”,

thus managing the communication between the actual control

component (called “external control component”, running on

Erika) and the remainder of Apollo (running on Linux). The

bridging component (i) writes the received messages from the

localization, CANBus, and planning modules in the shared

memories; and (ii) reads the output of the external control

component, still from the shared memory, and forward it to the

CANBus (remember that the CANbus module in our prototype

setting is just used to forward data to the simulator — in a

complete setting of the multi-domain architecture the CANBus

module should be moved to the critical domain).

A straightforward solution to implement the bridging com-

ponent would have been to leave it periodic with 10 ms

period, as the Apollo’s control component. However, this may

introduce additional delays in the worst-case: since the bridge

component on Linux and the external control component on

Erika are not synchronized, the latter may read the shared

memory just ε (with ε > 0 arbitrary small) times unit before

new data becomes available, therefore introducing a worst-case

sampling delay of one period [32] (i.e., 10 ms).

To avoid introducing additional delays in implementing

our solution, we leveraged the features offered by CyberRT

to execute event-driven computations. Specifically, a callback

function has been added to the reader object of each topic

to write the message in shared memory as soon it arrives, i.e.,

in a synchronous way.

Since callbacks are triggered upon message arrival on a

topic, this solution cannot be used to handle the data flows

starting in the external control component and ending in the

CANBus module.

Indeed, the external control component does not interact

directly with CyberRT, and it has to write in the inter-VM

shared memory. Therefore, a specific thread has been created

to check for the arrival of new messages. The thread constantly

checks the shared memory and, when the external control

component makes new control commands available, it reads

the commands and notifies the message to a write object

used by the bridging component to interact with the control

command topic.

In summary, the bridging component is implemented in

place of the original control component of Apollo, to: (i)
initialize the shared memories and the needed pointers; (ii)
create reader and writer objects for the topic, associating

a callback where needed; and (iii) create the thread to handle

the control command message.

Fig. 4 shows an overview of the implemented communi-

cation mechanism, where the differences with respect to the

original Apollo have been highlighted with a bold border.

G. Using IVSHMEM to restore communication

To restore the communication and receive and send the

messages to the other modules in Apollo, we leveraged the

IVSHMEM inter-domain communication mechanism provided

by KVM.

IVSHMEM offers the possibility to create a shared memory

device between virtual machines and the host. In this work, we

created a shared memory device with a size of 1 MB, which

is large enough to store the four messages exchanged by the

two domains.

Four shared memory regions have been used to commu-

nicate with Apollo: one to receive planning messages, one

for localization messages; one for chassis messages; and one

to send the control commands. Fig. 5 illustrates the internal

78

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:13:49 UTC from IEEE Xplore. Restrictions apply.

Apollo

Planning
component (PC)

Localization
component (LC)

CANBus
component (CBC)

Topic E reader
of CC

Topic G reader
of CBC

Topic A writer of PC
(ADCTrajectory)

Topic C reader
of CC

Topic A reader
of CC

Topic G writer of CC
(ControlCommand)

Callback function
of topic E reader

Topic B writer of PC

Topic C writer of LC
(LocalizationEstimate)

Topic D writer of LC

Topic E writer of CBC
(Chassis)

Topic F writer of CBC

Data to other
components

Data to other
components

Data to other
components

Linux - Host

Thread to receive
ControlCommand

Callback function
of topic C reader

Callback function
of topic A reader

IVSHMEM External control
component

KVM

Erika RTOS – Guest

Fig. 4: Architecture of the multi-domain Apollo prototype.

Offset of chassis

messages

Offset of planning

messages

Offset of

localization

messages

Offset of control

messages

Callback function of

the topic E reader

Callback function of

the topic A reader

Callback function of

the topic C reader

Thread to read

shared memory and

write to the topic G

External control

component

IVSHMEM deviceApollo environment

Erika with KVM

Fig. 5: Layout of the shared memory based on IVSHMEM.

scheme of the shared memory device. Although the reader
object stores messages in a queue of multiple elements, by

analyzing the behavior of Apollo and CyberRT we noted that

the new message is always stored in front of the queue, and

the control component always gets the most recent message,

i.e., it only accesses the top of the queue. This has also been

confirmed by the Apollo developers [33]. Therefore, for each

topic, a buffer has been created in shared memory to store the

most recent message.

To write or read a specific message in the shared memory

device, the offset where that message is located must be

known.

On the Linux side, IVSHMEM exposes a PCI device with

three base address registers discussed in Section II-C, where

BAR2 maps the shared memory. Conversely, Erika does not

have a device manager, and therefore it cannot access the

shared memory as a PCI device. Therefore, it has been

necessary to discover the address where KVM loaded the

device, specifically the address of BAR2, and map this address

at the Erika initialization.

To obtain this information, the qemu monitor has

been used. Then, to map the BAR2 in the address

space seen by Erika applications and let the memory re-

gion be accessible by the control task, we leveraged the

osEE_x86_64_map_range function offered by Erika.

Once mapped the device address, the shared memory becomes

accessible using a pointer, and pointer arithmetic is used to

switch among the four messages.

V. EVALUATION

The system described in Section IV has been implemented

in Apollo 5.0. Two Intel x86 64 machines have been used

in the evaluation, one to run Apollo and one for the LGSVL

simulator.

The Apollo machine is equipped with an Intel Core i7-

6700K with 8 logical cores running at 4.00 Ghz, an NVIDIA

GeForce GTX 1080-Ti, and 32GB of RAM. The LGSVL

machine is equipped with an Intel Core i9-9900 with 16 logical

cores running at 3.10 Ghz, an NVIDIA GeForce RTX 2080

Super, and 32GB of RAM.

In the evaluation, we compared the latencies of three paths

passing through the control component: the chassis to control

command message (chassis2command), the localization to

control command message (loc2command), and the plan-

ning to control command message (planning2command).

The latencies are computed as follows. First, a timestamp

is taken when the reader of the three topics, i.e., Chassis,

LocalizationEstimate, and ADCTrajectory (see

Fig. 4) arrives at the reader object of the control (bridge)

component. Then, the messages pass through the control

component, and a second timestamp is taken when the Con-

trolCommand message is ready to be sent by the corresponding

79

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:13:49 UTC from IEEE Xplore. Restrictions apply.

(a) Apollo Standard

(b) Proposed Approach

Fig. 6: Histograms of the planning2command latencies.

writer object. The timestamps are then used to compute the

latencies. Fig. 6, Fig. 7, and Fig. 8 report the distributions of

the observed delays for the three topics. For each of them,

inset (a) targets measurements obtained with the standard

version of Apollo 5.0, while inset (b) considers the multi-

domain Apollo prototype discussed in this paper. In each chart,

the y-axis reports the number of samples for which a given

delay on the x-axis has been observed. The samples have

been obtained by running the two configurations, i.e., standard

and multi-domain Apollo, for 15 minutes each. For all the

three latencies chassis2command, loc2command, and

planning2command, the distribution of the delays is very

similar between standard Apollo and the proposed solution,

thus showing that the adoption of our multi-domain approach

does not introduce considerable delays. Indeed, thanks to the

usage of the callback mechanism provided by CyberRT, each

new message is synchronously placed in the shared memory

buffer provided by IVSHMEM as soon it becomes available to

the reader object of each topic, as discussed in Section IV-F.

VI. RELATED WORK

Recent work [22] proposed a safe, secure, and predictable

software architecture for adopting deep learning in safety-

critical systems. While our work shares the multi-domain

architecture with it, the work in [22] is not explicitly designed

for autonomous driving, and it provides no implementation.

The recent work by Alcon et al. [34] discussed the challenges

(a) Apollo Standard

(b) Proposed Approach

Fig. 7: Histograms of the chassis2command latencies.

(a) Apollo Standard

(b) Proposed Approach

Fig. 8: Histograms of the loc2command latencies.

80

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:13:49 UTC from IEEE Xplore. Restrictions apply.

in analyzing the timing of Apollo and studied the execution

time variability observed when running it on a GPU-based

platform.

Other papers targeted the Autoware autonomous driving

framework [1]. Bateni et al. [35] implemented a predictable

data-driven resource manager in Autoware. In another work,

Bateni et al. [36] proposed a method to co-optimizing

performance and memory footprint by jointly managing the

CPU and GPU memory management, showing the benefits of

their approach on Autoware.

Other works focused on the predictability of middleware

frameworks [37]–[41]. Most relevant to us are those regard-

ing ROS [41]–[46], which implements the publish-subscribe

paradigm in a similar way as CyberRT does.

Other works studied methods to improve the reliability of

autonomous driving from an orthogonal perspective, i.e., by

improving the reliability of deep neural networks. Several

results aimed at addressing the problem of adversarial attacks:

for example, Nesti et al. [47] proposed a method to detect them

via input transformation, defense perturbations, and voting. A

complete overview on the topic would require much more than

the space provided with this paper: therefore, we leave the

interested reader to the surveys by Chakraborty et al. [48] and

Zhang and Chen [7].

To improve the safety in autonomous driving, Kelly et al.

[49] proposed a tool to verify the safety of trajectories of

autonomous cars.

Finally, it is worth mentioning the Elisa project [50]

launched by the Linux Foundation, which aims at enabling

Linux for safety-critical applications, thus being of potentially

great interest for autonomous driving.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a multi-domain software architecture

for autonomous driving based on the Apollo framework.

First, we discussed the proposed software architecture, which

allows leveraging multiple domains with different levels of

criticality. We debated several non-trivial shortcomings that

need to be addressed when implementing a prototype of

such an architecture, targeting the specific case in which the

critical domains handle the control module. In particular, we

illustrated the library dependencies of the control component

and how support them on the Erika RTOS, although they are

originally designed for Linux. Then, we discussed how to

restore the communication between components on the critical

and non-critical domain by leveraging the inter-domain com-

munication mechanism provided by the hypervisor, making

sure that no significant additional delays are introduced due

to sampling issues. Finally, our evaluation showed how the

proposed system can be efficiently implemented, introducing

almost negligible additional latencies.

While the proposed implementation shows a practical ex-

ample of how to instantiate a multi-domain architecture for

autonomous driving in a real (but simulated) system, much

further work is required to realize a proper multi-domain

architecture for autonomous driving.

Some of the future works include:

Time-predictable and isolated acceleration of DNNs. An-

other interesting research direction includes making Apollo

more predictable by acting on the perception module, which

strongly relies on deep neural networks. Currently, Apollo

accelerates them through NVIDIA GPUs, which scheduling

behavior is hard to predict due to many due to the many

internal details undisclosed by NVIDIA [51]. Ongoing work

is targeting the usage of way more predictable FPGA-based

accelerators [52], which can also enable a proper isolation

of the memory traffic generated by DNN inference. An-

other interesting future research direction involves using more

predictable GPU designs recently proposed in the research

community [53], or the usage of AMD GPUs [54].

Fail-safe controller and safe perception module. In Sec-

tion III, we discussed the possibility of extending the Guardian

module of Apollo to switch the system to use a safe con-

troller providing minimal perception features based on legacy

sensors, thus not relying on non-critical modules that can

potentially be compromised or faulty. Future work may inves-

tigate methods to implement such a controller starting from the

existing literature (e.g., [55, 56]), to bring the system into a

safe state or do the best to avoid accidents/collisions when

a failure is detected. Even more ambitious future research

can develop a minimal safe perception module (based on

verified/safe artificial intelligence techniques) in the critical

domain.

End-to-end analysis of CyberRT. Timing predictability is a

key feature for making a system safer by guaranteeing that all

the tasks are completed within their deadlines. In the context of

complex automotive software characterized by chains of tasks,

end-to-end latency analysis techniques are usually developed

to predict worst-case latencies. However, when dealing with

autonomous driving frameworks, the situation is much more

complicated: a proper analysis should consider the joint effect

of the operating system and middleware frameworks, which

can substantially affect the application timing behavior. For

example, this has been demonstrated in the context of ROS 2,

used by Autoware, for which end-to-end analyses have been

derived [41]. Similarly, deriving an end-to-end analysis of

CyberRT would be highly beneficial for analytically bounding

the latencies in Apollo. Another interesting research direction

involves modifying the scheduling policy provided by the

middleware layer to favor predictability [44].

Porting to an embedded platform. Currently, the Apollo

prototypical cars embed an industrial PC: to address the so-

called SWaP problem (space, weight, and power), it would be

advisable to move Apollo to embedded platforms. To this end,

modern heterogeneous platforms equipped with hardware ac-

celerators are good candidates. Due to the high-computational

requirements of AD software, a multi-SoC (system on a chip)

solution may be required [57]. At the time we are writing

this paper, there are ongoing efforts in our group for porting

Apollo on a Xilinx Ultrascale+ platform.

81

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:13:49 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This work has been partially supported by Huawei and the
Department of Excellence in Robotics and Artificial Intelli-
gence of Scuola Superiore Sant’Anna, Pisa, Italy. The authors
would like to thank Bruno Morelli and Claudio Scordino from
Evidence/Hauwei, Pisa, for their support in configuring the
Erika RTOS for applications with large memory requirements.

REFERENCES

[1] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kit-
sukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware on
board: Enabling autonomous vehicles with embedded systems,” in 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS). IEEE, 2018, pp. 287–296.

[2] [Online]. Available: https://apollo.auto
[3] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Ng, “ROS: An open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[4] [Online]. Available: https://cyber-rt.readthedocs.io/en/latest/
[5] TensortRT. Https://developer.nvidia.com/tensorrt.
[6] Z. Peng, J. Yang, T.-H. P. Chen, and L. Ma, “A first look at the

integration of machine learning models in complex autonomous driving
systems: A case study on apollo,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, p. 1240–1250.

[7] J. Zhang and C. Li, “Adversarial examples: Opportunities and chal-
lenges,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 31, no. 7, pp. 2578–2593, 2020.

[8] [Online]. Available: https://www.baidu.com
[9] [Online]. Available: http://www.erika-enterprise.com

[10] [Online]. Available: http://www.evidence.eu.com/products/erika-
enterprise.html

[11] [Online]. Available: https://github.com/ApolloAuto/apollo
[12] D. B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta,

“Demystifying the Real-Time Linux Scheduling Latency,” in 32nd
Euromicro Conference on Real-Time Systems (ECRTS 2020), 2020.

[13] [Online]. Available: http://www.evidence.eu.com
[14] P. Modica, A. Biondi, G. Buttazzo, and A. Patel, “Supporting temporal

and spatial isolation in a hypervisor for arm multicore platforms,” in
2018 IEEE International Conference on Industrial Technology (ICIT),
2018, pp. 1651–1657.

[15] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo, “Axi
hyperconnect: A predictable, hypervisor-level interconnect for hardware
accelerators in fpga soc,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1–6.

[16] D. Casini, A. Biondi, G. Cicero, and G. Buttazzo, “Latency Analysis
of I/O Virtualization Techniques in Hypervisor-Based Real-Time Sys-
tems,” in 2021 IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021, pp. 306–319.

[17] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance iso-
lation in multi-core platforms,” in 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), April 2013.

[18] L. Abeni, A. Biondi, and E. Bini, “Hierarchical scheduling of real-
time tasks over linux-based virtual machines,” Journal of Systems and
Software, vol. 149, pp. 234–249, 2019.

[19] D. Casini, L. Abeni, A. Biondi, T. Cucinotta, and G. Buttazzo, “Constant
bandwidth servers with constrained deadlines,” in Proceedings of the
25th International Conference on Real-Time Networks and Systems, ser.
RTNS ’17, 2017.

[20] Kvm. [Online]. Available: https://www.linux-kvm.org/page/Main Page
[21] Nahanni: a shared memory interface for kvm. [On-

line]. Available: https://www.linux-kvm.org/images/e/e8/0.11.Nahanni-
CamMacdonell.pdf

[22] A. Biondi, F. Nesti, G. Cicero, D. Casini, and G. Buttazzo, “A safe,
secure, and predictable software architecture for deep learning in safety-
critical systems,” IEEE Embedded Systems Letters, vol. 12, no. 3, pp.
78–82, 2020.

[23] LGSVL simulator. [Online]. Available: https://github.com/lgsvl/apollo-
5.0

[24] [Online]. Available: https://github.com/ApolloAuto/apollo/issues/13109
[25] [Online]. Available: http://www.erika-

enterprise.com/wiki/index.php?title=Bare-metal x86-64 image
[26] [Online]. Available: https://github.com/coin-or/qpOASES
[27] [Online]. Available: https://developers.google.com/protocol-buffers
[28] [Online]. Available: https://github.com/gflags/gflags
[29] [Online]. Available: https://github.com/google/glog
[30] [Online]. Available: http://elm-chan.org/fsw/ff/00index e.html
[31] [Online]. Available: https://antumdeluge.github.io/bin2header

[32] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli, “Period optimization for hard real-time
distributed automotive systems,” in 2007 44th ACM/IEEE Design Au-
tomation Conference, June 2007.

[33] [Online]. Available: https://github.com/ApolloAuto/apollo/issues/13265
[34] M. Alcon, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J.

Cazorla, “Timing of autonomous driving software: Problem analysis and
prospects for future solutions,” in 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2020, pp. 267–280.

[35] S. Bateni and C. Liu, “Predictable data-driven resource management:
an implementation using autoware on autonomous platforms,” in 2019
IEEE Real-Time Systems Symposium (RTSS), 2019, pp. 339–352.

[36] S. Bateni, Z. Wang, Y. Zhu, Y. Hu, and C. Liu, “Co-optimizing
performance and memory footprint via integrated cpu/gpu memory
management, an implementation on autonomous driving platform,” in
2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2020.

[37] D. Casini, A. Biondi, and G. Buttazzo, “Analyzing parallel real-time
tasks implemented with thread pools,” in Proceedings of the 56th Annual
Design Automation Conference 2019, ser. DAC ’19, 2019.

[38] R. Vargas, E. Quinones, and A. Marongiu, “Openmp and timing pre-
dictability: A possible union?” in 2015 Design, Automation Test in
Europe Conference Exhibition (DATE), 2015, pp. 617–620.

[39] D. Casini, A. Biondi, and G. Buttazzo, “Timing isolation and improved
scheduling of deep neural networks for real-time systems,” Software:
Practice and Experience, vol. 50, no. 9, pp. 1760–1777, 2020.

[40] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and
E. Quiñones, “Timing characterization of openmp4 tasking model,” in
2015 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), 2015.

[41] D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg, “Response-
Time Analysis of ROS 2 Processing Chains Under Reservation-Based
Scheduling,” in 31st Euromicro Conference on Real-Time Systems
(ECRTS 2019), 2019.

[42] Y. Tang, F. Zhiwei, N. Guan, X. Jiang, M. Lv, Q. Deng, and W. Yi,
“Response Time Analysis and Priority Assignment of Processing Chains
on ROS2 Executors,” Proceedings of the 41st IEEE Real-Time Systems
Symposium (RTSS), 2020.

[43] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg,
“Automatic Latency Management for ROS 2: Benefits, Challenges,
and Open Problems,” in Proceedings of the 27th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2021.

[44] H. Choi, Y. Xiang, and H. Kim, “PiCAS: New Design of Priority-Driven
Chain-Aware Scheduling for ROS2,” in Proceedings of the 27th IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2021.

[45] Y. Suzuki, T. Azumi, S. Kato, and N. Nishio, “Real-Time ROS Extension
on Transparent CPU/GPU Coordination Mechanism,” in Proceedings
of the 21st IEEE International Symposium on Real-Time Distributed
Computing (ISORC), 2018.

[46] Y. Saito, T. Azumi, S. Kato, and N. Nishio, “Priority and Synchro-
nization Support for ROS,” in 4th IEEE International Conference on
Cyber-Physical Systems, Networks, and Applications), 2016.

[47] F. Nesti, A. Biondi, and G. Buttazzo, “Detecting Adversarial Examples
by Input Transformations, Defense Perturbations, and Voting,” IEEE
Transactions on Neural Networks and Learning Systems.

[48] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopad-
hyay, “Adversarial Attacks and Defences: A Survey,” arXiv e-prints, p.
arXiv:1810.00069, Sep. 2018.

[49] M. O’Kelly, H. Abbas, S. Gao, S. Shiraishi, S. Kato, and R. Mangharam,
“Apex: Autonomous vehicle plan verification and execution,” 2016.

[50] Elisa project (Linux Foundation).
[51] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,

“GPU scheduling on the NVIDIA TX2: Hidden details revealed,” in
2017 IEEE Real-Time Systems Symposium (RTSS), Dec 2017.

[52] B. B. Seyoum, M. Pagani, A. Biondi, S. Balleri, and G. Buttazzo,
“Spatio-temporal optimization of deep neural networks for reconfig-
urable fpga socs,” IEEE Transactions on Computers, 2020.

[53] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru,
“Deadline-based scheduling for gpu with preemption support,” in 2018
IEEE Real-Time Systems Symposium (RTSS), 2018, pp. 119–130.

[54] N. Otterness and J. H. Anderson, “AMD GPUs as an Alternative to
NVIDIA for Supporting Real-Time Workloads,” in 32nd Euromicro Con-
ference on Real-Time Systems (ECRTS 2020), ser. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 165, 2020, pp. 10:1–10:23.

[55] K. Angelopoulos, A. V. Papadopoulos, V. E. S. Souza, and J. Mylopou-
los, “Engineering self-adaptive software systems: From requirements to
model predictive control,” vol. 13, no. 1, 2018.

[56] S. Shevtsov, D. Weyns, and M. Maggio, “Simca*: A control-theoretic
approach to handle uncertainty in self-adaptive systems with guarantees,”
vol. 13, no. 4, 2019.

[57] A. Biondi et al., “SPHERE: A Multi-SoC Architecture for Next-
Generation Cyber-Physical Systems Based on Heterogeneous Plat-
forms,” IEEE Access, vol. 9, pp. 75 446–75 459, 2021.

82

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:13:49 UTC from IEEE Xplore. Restrictions apply.

