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Abstract—In the last decade, enormous and renewed attention
to Artificial Intelligence has emerged thanks to Deep Neural
Networks (DNNs), which can achieve high performance in
performing specific tasks at the cost of a high computational
complexity. GPUs are commonly used to accelerate DNNs, but
generally determine a very high power consumption and poor
time predictability. For this reason, GPUs are becoming less
attractive for resource-constrained, real-time systems, while there
is a growing demand for specialized hardware accelerators that
can better fit the requirements of embedded systems. Following
this trend, this paper focuses on hardware acceleration for the
DNNs used by Baidu Apollo, an open-source autonomous driving
framework. As an experience report of performing R&D with
industrial technologies, we discuss challenges faced in shifting
from GPU-based to FPGA-based DNN acceleration when per-
formed using the DPU core by Xilinx deployed on an Ultrascale+
SoC FPGA platform. Furthermore, it shows pros and cons of
today’s hardware accelerating tools. Experimental evaluations
were conducted to evaluate the performance of FPGA-accelerated
DNNs in terms of accuracy, throughput, and power consumption,
in comparison with those achieved on embedded GPUs.

I. INTRODUCTION

During the last decade, renewed attention to Artificial Intel-

ligence has consistently emerged thanks to the impressive per-

formance achieved by Deep Neural Networks (DNNs) in sev-

eral applications, including computer vision, robotics, and au-

tonomous driving, reaching and overcoming human accuracy

in some specific tasks, [1], [2]. This is mainly due to the DNNs

capability of extracting high-level features from raw data after

exploiting learning algorithms over a large amount of data

to achieve an effective representation of the input space. This

comes at the cost of high computation complexity and memory

requirement, which challenge computing platforms to achieve

real-time performance combined with energy efficiency [3].

To obtain high throughput, Graphics Processing Units (GPUs)

are typically used as hardware accelerators (HAs) to accelerate

DNNs during training and inference phases. Nevertheless, their

power consumption (in the order of hundreds of watts) often

results to be prohibitive [4] for resource-constrained embedded

systems. Moreover, GPUs exhibit poor time execution pre-

dictability, which is instead a critical requirement in safety-

critical systems, such as autonomous vehicles.

A promising alternative to GPUs are FPGA SoCs. Such plat-

forms enable the deployment of problem-specific HAs meet-

ing the computational and memory requirements of complex

DNNs while maintaining a contained power consumption [5].

FPGA-based platforms proved their capabilities in power ef-

ficiency, combined with low latency, and timing predictability

in different deep learning (DL) applications [6], [7]. Although

great performance and power efficiency can be achieved by

customizing the FPGA hardware of a heterogeneous embedded

platform for a DNN execution [8], [9], significant efforts and

expertise are required to enable efficient acceleration, often

leading to long development times. DL algorithms are having

a big impact in the autonomous driving field and currently

represent its core technology for implementing perception

tasks. Autonomous vehicle technologies are progressively mi-

grating from research laboratories to public roads, promising

to decrease accidents and traffic congestion, as well as taking

automated mobility to the next level.

Contribution. This paper focuses on Baidu Apollo, a pop-

ular open-source autonomous driving framework [10], which

includes a set of Caffe-based [11] DNNs running on Nvidia

GPUs. We discuss all the challenges that we addressed to

accelerate the Apollo DNNs inference on a Xilinx SoC FPGA

embedded platform (Zynq Ultrascale+ MPSoC ZCU102),

hence offering a valid alternative to GPU acceleration. This

required analyzing in details the design of the Apollo DNNs

and their role in the Apollo Perception System. The Vitis AI

framework by Xilinx was adopted to accelerate the Apollo

DNNs. The paper individually addresses the acceleration of

each DNN, highlithing the issues that were encountered and

discussing the adopted solutions against other alternative ones.

It then provides an experimental evaluation of the accelerated

DNN performance that focuses on DNN accuracy, throughput,

and power consumption comparing FPGA-based against GPU-

based acceleration. This work represents a complex engineer-

ing effort to accelerate a complete and mature perception

system on an FPGA-enabled embedded device, also showing

the pros and cons of today’s acceleration tools.

II. RELATED WORK

DNN optimization for acceleration. The deployment of

DNNs on edge devices requires dealing with compression

techniques to address the typically limited resources available

on embedded devices. Several methods have been proposed to

compress DNNs. The compact model [12] technique aims at

designing smaller base models still achieving acceptable appli-

cation accuracy. Data quantization [13] aims at reducing the

number of bits with which weights and activations are repre-
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sented. Network sparsification [14] reduces the complexity of

the DNN by compressing the amount of connections/neurons.

Regarding data quantization techniques, the numerical preci-

sion with which weights are stored and computed strongly

impacts the accuracy and efficiency of the network. Typically,

the training step is performed leveraging high numerical

precision representations: 32-bit floating-point (FP32). Nev-

ertheless, quantization to integer is crucial for obtaining high-

performance and power efficiency in the inference phase: FP

operations are computationally demanding and require plenty

of energy [15]. Lower numerical precision representations are

reasonably effective during inference, e.g., 8-bit integer (INT8)

[16]. Various quantization techniques have emerged. They can

be classified as belonging to 1) post-training quantization

(PTQ) [17] or 2) quantization-aware training (QAT) [18]

techniques. PTQ is performed after a high-precision model has

been trained. Firstly, a floating-point model has to be evaluated

using a small dataset representative of the task’s real input

data. Statistics about the interlayer activation distributions

are collected. As a final step, the quantization scales of the

model’s activation tensors are determined using optimization

objectives. This process is well known as calibration, and

the representative dataset used is the so-called calibration

dataset. Sometimes PTQ is not able to achieve acceptable task

accuracy. This is when you might consider using QAT. QAT

can improve the accuracy of quantized models including the

quantization error in the training phase. It enables the network

to adapt to the quantized weights and activations.

FPGA acceleration of DNNs. Multiply-and-accumulate are

DNNs fundamental operations, easily parallelized. To achieve

high performance, highly parallel computing paradigms are

used, including both temporal and spatial architectures [5].

The temporal one appears mostly in CPUs or GPUs, and

employ a variety of techniques to improve parallelism such as

vectors (SIMD) or parallel threads (SIMT). Whereas, spatial

architectures are employed for DNNs acceleration in ASIC

and FPGA-based designs. This paradigm is based on dataflow

processing, i.e., ALUs form a processing chain so that they

can pass data from one to another. The architecture increases

data reuse from low-cost memories in the memory hierarchy in

such a way to reduce energy consumption. Dataflow process-

ing and compression techniques have given researchers and

industries the possibility to propose multiple frameworks for

porting floating-point DNNs to FPGA-based platforms: Xilinx

Vitis AI [19], CHaiDNN [20], and FINN [21]. In this work,

we take Vitis AI as our reference framework that, to the best

of our records, is the most mature solution of this kind for

Xilinx platforms. Unfortunately, dealing with Vitis AI is not

always straightforward: using the framework with modern and

complex DNNs often requires dealing with the limitations of

the tools and the architecture of the accelerators.

DNN for autonomous systems. Shaheen et al. [22] dis-

cussed the limits of DNN models in adapting to changing

environments (to make an example, in autonomous systems),

and showing methods and techniques for continuous learning

in autonomous systems. Putra et al [23] proposed a method

for unsupervised continual learning applicable to autonomous

systems based on Spiking Neural Network (SNN). Viale et

al. [24] proposed CarSNN, an 8-bit-weight SNN model for

autonomous driving. To the best of our knowledge, this work

represents the first comprehensive attempt to accelerate DNN

models of a real-world perception system on an FPGA SoC

embedded platform.

III. MOTIVATION AND BACKGROUND

A. FPGA SoC platforms

FPGA SoCs are heterogeneous computing platforms typ-

ically composed of two subsystems: a Processing System

(PS), incorporating multiple ARM-based processors combined

with an FPGA Programmable Logic. These devices provide

Fig. 1: Illustration of a typical FPGA SoC architecture.

higher integration, lower power consumption, and higher time

predictability compared to GPU-based ones. Moreover, they

can leverage high bandwidth communication bus between

the processors and the FPGA. This is achieved through the

standard (multi-manager and multi-subordinate) interface for

interconnections, i.e., the ARM Advanced Microcontroller Bus

Architecture Advanced eXtensible Interface (AMBA AXI) [25],

known simply by the name of AXI. Software tasks run on the

processors in PS. The FPGA logic can host custom hardware

devices or peripherals, such as HAs, i.e., hardware components

designed to perform specific functionality more efficiently than

standard software. HAs are activated by software tasks, issuing

an AXI request, whenever a hardware acceleration is needed.

The PS and the FPGA subsystems communicate through two

interfaces: the PS-FPGA interface and the FPGA-PS interface.

Communications between HAs and processors can also occur

through a shared DRAM memory controller located in PS

and directly accessible by the HAs. For our purposes, DNN

inference execution is a combination of executions on both

HAs and on processors. Note that software task execution is

typically required whenever the execution of a layer is not

supported by HAs (see Section IV).

B. Vitis AI

Vitis AI is a framework for Xilinx platforms that aims at

providing a set of tools for running complex DNN models on

FPGA SoC platforms. The framework comprises a quantizer

tool and a compiler tool, as shown in Figure 2. The quantizer

converts FP32 weights and activations to INT8 fixed-point

format representation, using a PTQ algorithm. The conversion
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is performed at the cost of minimal accuracy loss [19](Vitis

AI Quantizer). The quantized model is then parsed by the

compiler, which builds a control-data flow representation of

the operations. The compiler optimizes instructions scheduling

and data reuse and produces an executable file containing

specialized instructions for executing the model. Quantization

and compilation steps are executed on powerful host machines.

Then, the executable file is loaded by a software application,

running on the target platform, developed through the Vitis

AI RunTime (VART) API. The accelerated DNN execution is

performed on the Deep Learning Processor Unit core (DPU

core), a specialized HA to be deployed on FPGA. The com-

piler reports issues whenever it finds operations not supported

for the DPU core. Following the official guidelines provided

by Xilinx, unsupported layers must be executed by deploying

software implementations running in the PS. This step can

require to split the network into multiple subnets. Under some

Fig. 2: The Vitis AI workflow and its two main tools (Quantizer and Compiler).

circumstances, we were able to execute unsupported DNN

layers on the DPU core by converting them to equivalent

layers compatible with the DPU core (see Section IV-B for

more details).

C. The Apollo Perception Module

Autonomous driving is a challenging task that requires

accurately sensing the environment to enable safe navigation.

The Baidu Apollo platform, designed for the deployment of

fully autonomous driving systems, has been implemented as

a modularized architecture. Modules are described by their

input/output (I/O) relationship to other modules. The per-

ception module is responsible for perceiving the surrounding

environment by analyzing sensor data (i.e., cameras, LiDAR,

etc.). The Apollo perception system relies on six DNNs: 1)

Lane Mark detector, to detect lanes in camera scenes; 2)

Denseline lane tracker, to track lanes, taking as input the

output of the lane detector; 3) Traffic light detector, to identify

traffic lights in camera scenes; 4) Traffic light recognition, to

classify lights status, starting from the output of the traffic

light detector; 5) Obstacle detector, to detect 3D objects in

camera scenes; 6) LiDAR-based detector, to complement the

information of the obstacle detector using LiDAR data.

Figure 3 reports a graphical representation of the perception

module. Models (1-5) input images coming from cameras,

while (6) inputs cloud points coming from the LiDAR [26].

Following the Caffe standard [11], each DNN is represented

through two files: a .prototxt describing the model struc-

ture and a .caffemodel containing weights and biases.

Fig. 3: Block diagram of the Apollo Perception Module.

IV. ACCELERATING APOLLO’S DNNS ON FPGA SOC

In the following we illustrate the Apollo DNNs and discuss

the challenges that were faced in moving them from GPU-

based to FPGA-based acceleration. The Vitis AI tool quantizes

DNNs using an 8-bit precision for both weights and activa-

tions. The quantization process requires a calibration dataset.

Unfortunately, the complete original Apollo dataset used for

training its DNNs is not publicly available. Nevertheless, we

found a valid alternative on the Apollo Scape website [27],

which contains a reasonable amount of unlabeled camera-

based images and LiDAR point-cloud data. An unlabeled

dataset is anyway enough to perform the calibration (as also

acknowledged by the Vitis AI documentation [19](Calibration

process)) because the calibration process is based on analyzing

the layer activations distribution. Next, we describe the steps

required for accelerating each of the DNN models on FPGA-

based platforms.

A. Denseline-lane tracker (DT)

Description. DT model is leveraged by the perception module

to detect and predict roadway lines. The model includes more

than 70 layers. It takes as input an RGB image acquired by

the camera and it outputs a tensor representing 9 feature maps,

with shape (80 x 192) each. The feature maps are then post-

processed by other components of the Apollo framework (not

analyzed in this paper).

Challenges. This DNN shows a simple architecture composed

of standard operation layers, such as convolutions, decon-

volutions, pooling, and simple element wise operations. No

particular challenges emerged in dealing with this model as

these layers are particularly suitable to the Vitis AI framework

– the functionalities of the standard Xilinx Vitis AI quantizer

and compiler were enough to accelerate the DNN.

B. Lane Mark detector (DarkSCNN or LMD)

Description. DarkSCNN is a YOLOv3-based model aiming

at visual localization. It exploits spatial relationships among

pixels to identify straight-shaped objects, even if partially

obstructed (such as lanes). This model has more than 700

layers, including convolutions, concatenations, fully connected

(FC), slices, and softmax. It inputs RGB images and outputs

detected objects shapes and the corresponding classification.
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Challenges. The quantization process was successfully com-

pleted using the Vitis AI quantizer. Unfortunately, the compi-

lation process was not straightforward and reported four major

issues: (1) a compiler bug for a slice layer, (2) unsupported

axis concatenation for a concat layer, (3) limitations related

to the size of an FC layer, and (4) unsupported softmax

operations. To solve these issues, we proposed novel algo-

rithmic solutions that aim at converting DNNs to make them

compatible with Vitis AI. They are described next.

Slice2Conv algorithm. A slice layer is intended for splitting

an input tensor into multiple outputs along a given axis with

certain section indices (i.e., points where input tensor must

be divided), each named slice point. This first compilation

issue is caused by a bug discovered in the compiler. The

compiler checks that the number of slice points is equal to

the output tensors number. If not, the compilation process is

aborted. However, the official Caffe documentation [11](Slice

Layer) indicates that the number of slice points must be equal

to the output tensors number minus one. This bug has been

reported and confirmed by Xilinx in [28]. Thus, we were not

able to directly implement slice layers for the DPU. Analyzing

the operations available on the DPU, we realized that the

slice layer could be equivalently implemented through a set

of 60 convolution operations. Therefore, we conceived the

Slice2conv algorithm. To make the operations equivalent, we

Fig. 4: Example of the Slice2conv algorithm in action.

should find the correct dimension for the convolution kernels

and the value of their weights. Note that the output tensor

dimensions of a out W x out H convolution layer are:

out w =
in w − k w + 2p

s
+ 1, (1)

out h =
in h− k h+ 2p

s
+ 1, (2)

where in w and in h are the input tensor dimensions, k w
and k h are the kernel dimensions, and p and s are the padding

and stride of the convolutional kernel, respectively. The slice

input dimensions of the LMD are (60 x 80), while the required

output dimensions for the slice are (1 x 80). To implement the

slicing as a convolution we can then consider a convolutional

kernel with stride s = 1 and zero padding (p = 0), hence

obtaining the equivalent kernel size (k w x k h) by just

rearranging the above formulas as follows:

k w = in w + 1− out w = 80 + 1− 80 = 1, (3)

k h = in h+ 1− out h = 60 + 1− 1 = 60. (4)

Besides kernel dimensions, kernel weights must be properly

selected. A simple example can be used to explain this con-

cept. Figure 4 shows a convolution operation between a tensor

and a kernel to realize slicing. The output vector represents

the tensor row extrapolated by setting to 1 the kernel weight

in the same row position of that which must be extracted

by slicing (in this case the first one, i.e., D0, D1, D2, D3),

leaving the others set to 0. Unfortunately, this first attempt

was not successful due to a limitation of the DPU core, which

is capable to deal with kernels with a maximum dimension

equal to 16, [19](DPU operations), while we required (1 x

60) kernels.

Slice2MulConv algorithm. To overcome this limitation, we

replaced each of the 60 Slice2Conv convolutions with 5
convolution layers, having reduced kernel dimensions, thus

respecting the DPU constraints. We rearranged the slice opera-

tion by means of 300 convolutional layers, organized in 60 sets

of convolutions. Each set takes as input the same slice input

tensor with dimensions (60 x 80) and follows a 5-convolution

hierarchical fashion. The hierarchical organization means that

the convolutional layers execute one after the other. Each set is

responsible to output one of the 60 original slice layer output

tensor. Unlike the Slice2Conv algorithm, here, in each set,

the first four convolutional layers share the same kernel and

attempt at dividing the height dimension (60) of the input

tensor into 15 groups of 60/15 = 4 slice output tensors. The

shared kernel has dimension (15 x 1) and serves the purpose

of reducing the size of the input tensor, leading to a partial

output tensor with dimensions (4 x 80). The shared kernel has

all the weights set to 0, except for the weight corresponding

to the row labeled by a parameter named GroupID, which

is set to 1. The GroupID value is calculated as the integer

part of the division between the number of the output tensor

slice to be produced (a number in the range [0, 59]) and

4. Whereas, the fifth and last convolutional layer has kernel

dimensions (4 x 1) and all its weight values are set to 0, except

for the weight corresponding to the kernel row with index

slice index, which is set to 1. The slice index parameter

is calculated as the remainder of the previously-mentioned

division. To better clarify this behavior, an example is reported

in Figure 5, where the slice number 26 is obtained as output.

After computing the GroupID and slice index parameters,

the shared and last kernels weights are set. The input tensor

goes through the first convolution. The output of this phase

is an intermediate tensor with dimensions (46 x 80), which is

also the input of the second convolution. The same happens for

the third and fourth convolution, until we have an intermediate

tensor with dimension (4 x 80), which contains the slice output

number 26. Afterwards, the fifth convolution is performed to

extrapolate the right slice output tensor.

Regarding challenge (4), according to the Vitis AI man-

ual [19], the DPU incorporates a softmax core able to acceler-

ate softmax operations. Unfortunately, the softmax core is sep-

arated from the DPU core and is not managed directly by the

Vitis compiler. This means that it should be explicitly managed

through the VART APIs. The softmax core is designed to take

as input a tensor represented as INT8 values. This generated a

format representation mismatch since in this case the outputs

are in FP32 format. We were forced to address challenge (4) by
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Fig. 5: Example of the Slice2MulConv algorithm in action. Dashed lines denote parts of the tensors that are not illustrated.

Fig. 6: In blue subnets running on DPU, in orange software operations.

implementing the softmax operation in software. For efficiency

reasons, this has been done by employing a LookUp Table

(LUT). This was feasible because the Quantizer provides the

range of fixed-point values processed by the DPU. For the

case of the LMD model, the range of 8-bit-width fixed-point

values is in the interval [-8.00, 7.9375], with a step precision of

0.0625. The LUT data structure contains precomputed values

of the 28 = 256 possible softmax values for inputs in the

range [-8.00, 7.9375]. It is implemented as a regular floating

point array (of dimension 256) and it is accessed by simply

taking into account the unsigned value of the input in two’s

complement representation. The choice of adopting a LUT

proved to be effective in drastically improving the performance

with respect to a standard software solution computing the

multiple exponential functions required by the softmax at

runtime. Finally, we were forced to implement equivalent

software layers also to solve challenges (2)-(3). Both concat

and FC layers required about 50 lines of C++ code. Overall,

this required to split the network into three subnets. The final

solution is graphically depicted in Figure 6.

C. Traffic Lights Detection (TLD)

Description. TLD model executes a detection task of traffic

lights through a YOLOv3-based network counting more than

80 layers. The network inputs images from the camera and

a Region of Interest (ROI) and outputs bounding boxes for

the detected traffic lights. As there might be more lights in

the ROI, the DNN leverages three custom layers to select the

proper ones according to their position and shape. If no lights

are detected, the status is marked as unknown.

Challenges. This DNN relies on custom layers whose imple-

mentation is unfortunately not publicly disclosed by Baidu.

Also, these networks were deployed using a modified version

of the Caffe framework to handle such custom layers, which

is not publicly available. Our attempts in retrieving any infor-

mation about these custom layers failed. The custom layers

are located in the final part of the model. Thus, we decided

to exclude them as a temporary solution and focus on the

rest of the network. The quantization phase passed with no

errors. Conversely, the compilation raised two issues related

to (1) a reshape layer and (2) a softmax layer – both of them

unsupported by the DPU (see Section IV-B for the softmax

layer). From the official Caffe documentation [11](Reshape

Layer), a reshape layer is meant for changing dimensions of a

tensor. Unfortunately, both (1) and (2) cannot be accelerated

on the DPU core. Thus, we were forced to deploy them in

software. Both layers are in the final part of the model. Thus,

no network split was required. The softmax was implemented

using the same LUT-based data structure discussed in the

section IV-B. Whereas, the reshape layer required a very few

lines of code to adjust the tensor dimensions.

D. Traffic Lights Recognition (TLR)

Description. TLR model aims at recognizing the color of

traffic lights. It includes around 20 layers, among convolution,

pooling, scale, and softmax ones. It inputs camera images, an

ROI, and the bounding boxes coming from the Traffic Lights

Detection model. The final softmax function outputs a vector

of size 4n (with n being the number of bounding boxes),

representing four scores for each bounding box related to the

classes ’unknown’, ’red’, ’yellow’, and ’green’. The highest

scores, if large enough, determines the traffic lights’ status.

Otherwise, the status is set to ’unknown’.

Challenges. After solving a minor issue related to the lack

of a bias parameter, which we found to be possible to be

safely set to zero after checking the Caffe manual [11](Scale

Layer), two major issues were reported by the compiler. They

were related to (1) a global average pool (GAP) layer and

(2) the unsupported softmax layer. Again, we were forced

to implement such layers in software. Since the GAP layer

is placed in the middle of the model, we split the network
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into two sub-networks that can run on the DPU core. The

Fig. 7: TLR solution: in blue subnets on DPU, in orange software operations.

two sub-networks are connected by the software GAP layer.

Figure 7 reports a graphical representation of the proposed

solution. Finally, the software softmax inputs the output of

the second sub-network and was implemented using another

LUT, as discussed in Section IV-B. Whereas, the GAP layer

required a simple 15-line C++ function.

E. LiDAR-based Segmentation (LS)

Description. LS model is a CNN and performs obstacle detec-

tion by analyzing the point-cloud data provided by LiDARs. It

consists of around 30 layers. It inputs a feature map obtained

by a pre-processing conversion of the LiDAR point-cloud. The

network outputs 6-edge bounding boxes, where each bounding

box completely wraps an obstacle.

Challenges. The network takes as input a (6 x 672 x 672)
tensor. Unfortunately, the Vitis AI quantizer supports only gray

scale (1-channel) or RGB (3-channel) images—6-channels

tensors (as the one under analysis) are not supported by the

current implementation [19]. To overcome this limitation, we

Fig. 8: LS model input layers: A) original network, B) proposed solution.

replaced the 6-channel input layer of the network with two

3-channel input layers, each having shape (3 x 672 x 672).
Then, we deployed a concatenation layer on the channels to

restore the original input size of the network (6 x 672 x 672).
A graphical representation of the solution is reported in Figure

8). Thanks to these modifications we were able to successfully

quantize the network.

Proceeding with the compilation, two issues arose due to

(1) a slice unsupported layer and to (2) sigmoid unsupported

operations. In this case, to solve issue (1) we opted for

not employing the Slice2Conv or Slice2MulConv algorithms

presented in Section IV-B. This is because such a slice layer

has a simple structure that is not particularly computationally

intensive, while the implementation through equivalent DPU-

accelerated convolutions would have required the usage of

considerable logical resources on FPGA. Concerning issue (2),

no equivalent operations supported by the DPU were available

to accelerate sigmoid layers. Hence, they were implemented in

software using LUTs, following the same procedure described

for handling the softmax layer in the section IV-B.

F. Obstacle detection (OD)

Description. OD model aims at detecting 3D obstacles. It is

a YOLOv3-based DNN consisting of more than 70 layers. It

inputs images acquired from cameras and outputs bounding

boxes and the corresponding classifications for stationary and

dynamic object classes (cars, pedestrians, traffic cones, etc.)

Challenges. The quantization phase was completed success-

fully without issues. The compiler then reported two issues:

(1) unsupported parameter group for six convolution layers

(2) unsupported power, sigmoid, and reshape layers. Concern-

ing issue (1), the DPU supports only nominal convolution

(group=1) or depthwise-like convolution (group=number of

input channels). No approaches for converting these convo-

lutional layers to make them compatible with the DPU were

available to us. The same holds for issue (2). We were hence

forced to solve these issues by excluding the unsupported

layers from the compilation process and deploying them in

software, similarly as done for other DNNs.

In this case, to solve issue (1) we implemented the grouped

convolutions through a C++ function consisting of about 50

lines. To do so, we retrieved and employed the quantized

weights from the quantized model: this allowed us to perform

the convolution operations among fixed-point integers only,

avoiding expensive floating-point operations. The power and

sigmoid layers of the issue (2) were implemented in software

using LUTs, following the same procedure already described

for handling the softmax and sigmoid layers in Sections IV-B

and IV-E. Finally, the reshape layer was implemented as a C++

function according to its description from the Caffe manual

[11](Reshape Layer), as already discussed in section IV-C.

V. EXPERIMENTAL EVALUATION

This section reports the experimental evaluation we con-

ducted to assess the performance of the accelerated DNN

models. Our target platform is the Xilinx Zynq Ultrascale+ on

a ZCU102 board. The performance of the quantized networks

running on the FPGA SoC were also compared with the same

DNNs running on the Nvidia Xavier AGX SoC platform. Our

evaluation is based on three performance metrics: network

accuracy (Section V-B), throughput (Section V-C), and power

consumption (Section V-D). While, the DPU configuration we

adopted is reported in Section V-A. We deployed floating-point

DNNs on GPU platforms when evaluating accuracy to assess

the best achievable performance implied by our network mod-

ifications. To obtain a fair comparison, we evaluated floating-

point and quantized (INT8) DNNs running on GPU when

evaluating throughput and power. Models quantization for

GPU has been carried out using the TensorRT framework [29].

Just like the Vitis AI quantizer, the TernsorRT quantizer

leverages a PTQ quantization algorithm. However, note that

the algorithms used by the two quantizers may differ – no

public information is avaiable about their internal behavior.

A. DPU core configuration

In our experiment, the DPU was configured with the param-

eters recommended by Xilinx – the DPU operating frequency
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Fig. 9: DNNs MSE and KL-Divergence evaluations for statistical mathematical results

is set to 325MHz, corresponding to the maximum frequency

guaranteed to meet the timing constraints [30]. The DPU

has two cores of the B4096 architecture, low RAM usage,

channel augmentation, and depthwise convolution enabled.

Since DNN models can have different independent processing

flows, the 2-core architecture has been chosen in order to

exploit processing parallelism. The report generated by the

Xilinx Vivado tool provides the following resource utilization

for the selected DPU configuration:

• 87.56% of Look-up-Tables (LUT): used to buffer data;

• 96.41% of LUT distributed RAM (LUTRAM): used as

small data buffers;

• 93.76% of flip-flops (FF): used to describe logic circuits;

• 98.68% of built-in RAM (BRAM): to store data;

• 76.43% of Digital Signal Processing (DSP): used to

process signals inside the FPGA;

Note that about more than 93% of the FPGA logic fabric is

used for deploying the DPU core. Due to this high resource

utilization, it is difficult to deploy other HAs on the FPGA fab-

ric. This is the reason for which we were forced to implement

DPU-unsupported layers using software approaches.

B. Accuracy

As mentioned above, the Apollo datasets are not publicly

available. Therefore, the accuracy of the original DNN models

cannot be directly compared with the accuracy of the quantized

ones. Thus, we opted for evaluating the accuracy of the net-

works using the unlabeled Apollo Scape dataset. Our accuracy

comparison is based on retrieving outputs from the quantized

networks running on FPGA SoC and comparing them with the

results obtained with the non-quantized networks running on

GPUs, using statistical metrics for evaluating accuracy in the

absence of the original labeled dataset [31], [32]. For com-

parison, we leveraged two evaluation metrics: Mean Squared

Error [33] (MSE) for comparing bounding box coordinates

and Kullback–Leibler Divergence [34] (KLD) for comparing

probability distributions of classifiers – the lower their values,

the better. The comparison results are reported in Figure 9. The

plots report MSE or KLD (y axis) for each of the 1000 test

images (x axis). We report only the most meaningful metrics

for each DNN model. Note that the fluctuation of the metrics

is very limited, and the same behavior was observed by testing

more than 1000 images per setting/metric. For each DNN, we

also report average, standard deviation and quantile (10% and

90%) values of the 1000 MSE or KLD samples.

Figure 9(a) regards the DT model. In this first case, the

results show that the MSE ranges between [0.00580, 0.00615].
Figure 9(b) reports the results for the LMD model. This

network has two outputs: one coming from an FC layer

(detection) and one from a softmax layer (classification). The

KLD metric was employed for evaluating the output of both

layers. The results for FC layer output show KLD values in the

range [0.00084, 0.0026]. Regarding the softmax output, KLD

values are in the range [0.061, 0.0625] (not reported in the

charts). Figure 9(c) shows the results for the TLD network.

The figure reports the metrics comparison for the bounding

box coordinates prediction. MSE values are in the range

[0.0011, 0.0016]. Figure 9(d) regards the TLR model. For this

network, the output vector represents a probability distribution.

Thus, here we used the KLD metric. We measured them in the

range [0.00008, 0.00082]. Figure 9(e) regards the LS network.

In this case, the comparison was carried out through MSE

evaluation. The results show that MSE values are quite stable

around 0.004343. Figure 9(f) regards the camera-based OD

network. Also, this comparison was carried out through MSE

calculation. The results range between [0.002418; 0.002449].

Take-away message. For all the tested scenarios, the evaluated

metrics showed how the quantized networks on FPGA SoC

well approximate the original floating-point networks.

C. Throughput

Table I, II and III report the average, peak and standard

deviation throughput performance in terms of Frames Per

Second (FPS), respectively. Three scenarios are reported for

each DNN under analysis: (1) INT8-quantized models running

on FPGA SoC (ZCU102 platform), (2) INT8-quantized models

running on GPU SoC (Xavier AGX platform), and (3) floating-

point (32-bit) models running on GPU SoC (Xavier AGX

platform). Each model was tested on 1000 images or 1000

LiDAR point-clouds.

The results show that the DNNs that rely most on DPU ac-

celeration, such as DT, TLD, and TLR models, provide consid-

erable performance improvements with respect to GPU-based
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TABLE I: Average FPS on FPGA and GPU platforms.

DT LMD TLD TLR LS OD

INT8 FPGA 9.43 1.35 92.36 680.4 0.3 3.35

INT8 GPU 7.57 13.24 51.45 401.92 13.41 6.17

FP32 GPU 3.09 4.96 19.79 125.6 4.5 2.66

TABLE II: Peak FPS on FPGA and GPU platforms.

DT LMD TLD TLR LS OD

INT8 FPGA 9.43 1.43 95.22 713.31 0.34 3.37

INT8 GPU 8.43 13.96 52.17 404.32 14.04 7.46

FP32 GPU 3.26 5.62 21.67 127.21 4.97 2.67

TABLE III: Std deviation for FPS on FPGA and GPU platforms.

DT LMD TLD TLR LS OD

INT8 FPGA 0 0.04 1.47 13.11 0.02 0.01

INT8 GPU 1.44 2.52 5.49 18.22 0.58 0.9

FP32 GPU 0.27 0.47 2.12 2.38 0.25 0.031

acceleration (with and without quantization). Conversely, the

other networks that rely less on DPU acceleration exhibit

decreased performance on FPGA SoC with respect to GPU

SoC. This is mainly connected with the presence of DPU-

unsupported layers, which we were forced to run in software.

For instance, this is the case of the LS model.

Take-away message. As long as the majority of the layers

are able to execute on the DPU accelerator, FPGA SoCs are

a valid alternative to GPU SoCs for the execution of complex

DNNs for autonomous driving, and they can even achieve

better throughput performance.

D. Energy consumption

We evaluated the energy consumption of quantized and

non-quantized models. The measurements were conducted by

leveraging the on-board sensors available on the platforms

(both platforms share the very same energy sensor [35] [36]).

Figure 10 compares: (a) average and (b) peak power consump-

tion of each model for the same scenarios considered in the

previous experiment. The results show how the FPGA SoC
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Fig. 10: Average and peak power consumption for FPGA and GPU SoCs

platform is more power efficient compared to the GPU SoC

for both INT8-quantized and FP32 models. By comparing the

power consumption of INT8-quantized DNNs on GPU and

FPGA SoCs, it is possible to observe how the latter is capable

of providing an improvement of at least 75% and 59% for

average power consumption and peak power consumption,

respectively. As one may expect, the results are even better

when comparing against FP32 models running on GPUs. In

this case, the FPGA SoC platform can provide an improvement

of at least 77% and 72% for average power consumption and

peak power consumption, respectively.

Take-away message. FPGA SoC platforms are definitively

much more power efficient than GPU SoC ones for accelerat-

ing the tested DNN models.

VI. CONCLUSION

This work addressed the problem of accelerating modern

DNN models with FPGA technology. Specifically, we accel-

erated the DNNs of Baidu Apollo, a popular open-source

framework for autonomous driving, using an FPGA SoC

heterogeneous platform. This required to address a series of

challenges and propose new algorithmic solutions to deal

with the limitations of commercial tools and accelerators. The

performance of the FPGA-accelerated DNNs were compared

with the one obtained by leveraging GPU-based acceleration,

which is the standard approach used by Apollo and many

other systems. FPGA SoCs have shown improvements in terms

of power consumption and, in most cases, also throughput,

while providing comparable results for the DNN accuracy.

Future work will focus on improving the performance of the

accelerated DNNs by implementing the unsupported software

layers in FPGA logic. In conclusion, according to the authors’

experience, it must be noted that FPGA-based hardware ac-

celeration tools still seem to be too immature to handle the

acceleration of complex DNNs without excessive efforts, as it

is instead the case for GPU-based embedded platforms. In fact,

there are still many shortcomings in terms of supported layers

and operations. Nonetheless, given the considerable benefits

that FPGA acceleration can provide, it is advisable to continue

pushing on improving these DNN acceleration tools as their

limitations do not pertain to the FPGA technology itself but

rather to the maturity level of the surrounding ecosystem of

software and programmable logic modules. Overcoming these

issues would most likely drastically reduce the energy footprint

of embedded DNN-enabled systems, which are not limited to

autonomous vehicles and are expected to be ubiquitous in the

near future.
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