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Abstract— Over the past few years, convolutional neural
networks (CNNs) have proved to reach superhuman performance
in visual recognition tasks. However, CNNs can easily be fooled
by adversarial examples (AEs), i.e., maliciously crafted images
that force the networks to predict an incorrect output while being
extremely similar to those for which a correct output is predicted.
Regular AEs are not robust to input image transformations,
which can then be used to detect whether an AE is presented to
the network. Nevertheless, it is still possible to generate AEs
that are robust to such transformations. This article exten-
sively explores the detection of AEs via image transformations
and proposes a novel methodology, called defense perturbation,
to detect robust AEs with the same input transformations the
AEs are robust to. Such a defense perturbation is shown to
be an effective counter-measure to robust AEs. Furthermore,
multinetwork AEs are introduced. This kind of AEs can be
used to simultaneously fool multiple networks, which is critical
in systems that use network redundancy, such as those based
on architectures with majority voting over multiple CNNs.
An extensive set of experiments based on state-of-the-art CNNs
trained on the Imagenet dataset is finally reported.

Index Terms— Adversarial defense, adversarial examples
(AEs), convolutional neural network (CNN), deep neural net-
work, input transformation, redundant neural networks.

I. INTRODUCTION

DURING the past few years, convolutional neural net-
works (CNNs) have been used in many fields with

outstanding, and sometimes superhuman, performance [1]–[3].
At the same time, a lot of research has been devoted to
the robustness of such models, often focusing on adversarial
examples (AEs) [4], [5].

AEs are maliciously crafted inputs (in this case, images)
that have the power to fool a neural network by forcing its
prediction toward an erroneous class, by slightly changing the
intensity values of the pixels, keeping almost the same digital
representation. From the perspective of a human observer,
a typical AE has the same visual appearance as the original
image.
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Fig. 1. BASELINE architecture used to detect standard AEs.

AEs are a serious concern for the safety and security of
systems based on artificial intelligence (AI). For instance, they
could be used to attack a neural network for object recognition
in an autonomous (or even semiautonomous) vehicle, possibly
causing a catastrophic consequence [6]–[9].

These facts motivate the search for an effective defense
against AEs. For instance, Guo et al. [10] showed that stan-
dard1 AEs are not robust to input transformations, such as
translation, rotation, and other input changes. These findings
suggest that standard AEs can be detected by measuring
how the network prediction changes when an input image is
replaced with the same one processed with a given transforma-
tion. The two network predictions can then be compared using
the Kullback–Leibler (KL) divergence [11], so that an input
image is considered to be adversarial if the two predictions
are “distant” from each other and nonadversarial if the two
predictions are “close” to each other. A binary classification
can then be obtained by applying a threshold to the output
of the KL module. This approach can easily be implemented
using the architecture illustrated in Fig. 1, referred to as
BASELINE detection architecture.

Input transformations are attractive because they are simple,
require a limited computational cost (thus can be performed at
run time), and do not need any training procedure. Neverthe-
less, they suffer from two major problems: 1) they might not
have a good detection performance (also due to the accuracy
degradation they may cause) and 2) it has been shown [12]

1In this article, standard AEs refer to those AEs crafted without considering
image transformations, using the classical formulation presented in Section II
by (1).
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that it is still possible to construct AEs that are robust to input
transformations.

A. This Article

This work addresses the two problems mentioned above.
To evaluate how different input transformations affect the
performance of the detection system and the accuracy of
the network, an extensive experimental campaign is reported
both for adversarial and nonadversarial images. To the best of
our knowledge, a similar experimental study has never been
presented in the literature.

To cope with the second problem, different new methods
and architectures are proposed to include a novel counter-
measure for detecting robust AEs. The counter-measure is
based on the assumption that the defender is aware that the
attacker knows how to craft robust AEs and also has knowl-
edge about the transformations that are used. To counteract this
kind of attacks, a new defense method, called defense pertur-
bation, is introduced to “convert” robust AEs into nonrobust
ones. Such a defense perturbation is generated from robust
AEs, similar to how universal adversarial perturbations [13]
are generated.

As a further evolution, this work considers a multinetwork
architecture composed of three different state-of-the-art CNNs
for image recognition (trained on ImageNet [14]), which are
combined by means of a majority voting algorithm (two
out of three). For instance, this approach was proposed by
Biondi et al. [15] as a solution for adopting neural networks in
safety-critical control systems. Although there exist methods to
transfer AEs between different models and architectures [16],
multinetwork AEs are introduced as a new kind of AEs that are
capable of fooling multiple networks simultaneously without
applying any network-specific perturbation.

Contribution and Paper Structure: In summary, this article
makes the following novel contributions.

1) It reports an extensive experimental evaluation on the
detection capabilities of input transformations.

2) It presents a methodology for setting up a counter-
measure against robust AEs.

3) It introduces multinetwork AEs to systematically fool
multiple networks at once.

4) The proposed methods are finally combined to design
an effective architecture for detecting robust AEs.

The rest of this article is organized as follows. Section II
introduces the problem and the notation; Section III provides
a brief overview of background and related work; Section IV
describes the proposed approaches; Section V presents the
experimental results; and Section VI states the conclusions.

II. SYSTEM AND THREAT MODEL

This article considers CNNs for image recognition. Let
X = [0, 1]h×w×c be the image space (of dimensions w, h,
and c, namely, the width, height, and the number of channels
of the image, respectively). A CNN behaves as a function
f (·):X → [0, 1]n that takes as input an image of fixed dimen-
sions and outputs a discrete probability distribution vector with
dimension n equal to the number of classes considered for the

classification problem. The class predicted by a neural network
classifier is represented by the function f̂ (·) = arg max f (·).

An adversarial perturbation can be modeled as a tensor
r ∈ [−�, �]h×w×c, where � ∈ (0, 1) (typically small) is a
parameter typically named adversarial strength. Given a source
image x ∈ X , an AE is then an image x + r ∈ X such that if
f̂ (x) = t , where t is the correct target class of the image x ,
then f̂ (x + r) = tadv, where tadv �= t is the adversarial target
class.

AEs can be characterized by: 1) the knowledge level of the
attacker; 2) the target specificity; and 3) the similarity metric
used to minimize the distance of an AE from the source image.
The AEs considered in this article are as follows.

1) White-Box: The attacker has perfect knowledge of the
structure of the network and its parameters (this is the
strongest type of attack).

2) Targeted: They are crafted to force the prediction of the
network to a specific class.

3) Generated using the L2 norm, i.e., the Euclidean norm,
to express the distance of an AE from the source image.

An AE of this type can be crafted by optimizing

min
r

�L( f (x + r), tadv) + k�r�2
2

�
(1)

where L in the above equation is a loss function expressing
the distance between the target tadv and the output distribution
of the network, and k is a constant that reflects how much
the magnitude of the perturbation is weighted in minimiza-
tion. Typically, the loss function L is a cross-entropy, but it
can also assume other more complex forms (e.g., as in the
Carlini–Wagner (CW) attack [17], described in Section III).
The optimization is iteratively performed with a stochastic
gradient descent approach for a certain number of epochs:
this optimization strategy is used throughout the whole article
for the generation of AEs. When searching for the minimum-
perturbation AE, a further optimization is usually performed
to find the optimal k. This fine-grained optimization is out
of the scope of this work, and hence k is fixed to 0.01 for
all the AEs.

The AEs crafted with the procedure described above are
sensitive to input transformations and are referred to as
standard AEs. Conversely, robust AEs are generated with a
slightly modified optimization process based on the architec-
ture illustrated in Fig. 2, which is named ROBUST_ADV_GEN.
Let {g j(x; θ j), j = 1, . . . , N} be a set of N transformations
of the input image (e.g., translation, rotation), each of which
depends on a parameter θ j . AEs that are robust to each of
these transformations can then be generated by minimizing

min
r

⎡
⎣L( f (x +r), tadv)+

N�
j=1

L( f (g j(x + r; θ j)), tadv)+k�r�2
2

⎤
⎦.

(2)

Most image transformations depend on a parameter θ j

that varies in a known range. At each iteration step of the
optimization procedure, the parameters of the transformations
are uniformly sampled from their corresponding ranges, hence
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Fig. 2. ROBUST_ADV_GEN architecture used to craft robust AEs.

Fig. 3. VOTING_BASELINE architecture used in this work.

generating AEs that are robust to a wide spectrum of configu-
rations of image transformations. Details on the generation of
robust AEs used in this work are reported in Section V.

Since a deep neural network is naturally prone to classi-
fication errors, especially when considering gray cases (i.e.,
previously unseen, possibly harmful inputs), an ensemble of
networks can be used [15] to mitigate the errors of a single
network, by combining the outputs with a voting algorithm.
The resulting architecture is illustrated in Fig. 3 and consists
of applying a voting algorithm (such as majority voting)
over M different CNNs. This architecture is referred to as
VOTING_BASELINE. This article only considers M = 3 net-
works, which are described in detail in Section V. Standard
AEs, as those described above, result adversarial for a single
network. With this kind of voting architecture, an AE that fools
a single network is a less dangerous threat, since the voting
algorithm will cover for that mistake with the predictions from
the other two networks.

Note that single-network AEs may also fool other networks.
However, to assess the detection capabilities of such system,
it is more convenient to craft images that are adversarial
for the three networks simultaneously. Such AEs are also
adversarial for each single network and can be used to evaluate
the detection performance of input transformations for each
single network. For this reason, multinetwork AEs are intro-
duced. Given a set of M classifiers, each denoted by fi (·),
i = 1, . . . , M , and a set of N transformations of the input
image, denoted as {g j(x; θ j), j = 1, . . . , N}, multinetwork

robust AEs can be crafted by minimizing the following exten-
sion of (2):

min
r

	
M�

i=1

L( fi (x + r), tadv)

+
N�

j=1

M�
i=1

L( fi (g j(x + r; θ)), tadv) + k�r�2
2

⎤
⎦. (3)

If generated in this way, an image results to be adversarial
not only for all the M networks but also for all the N
transformations.

These AEs have been used for experimental evaluation and
proved to be more difficult to detect than single-networks AEs,
as they are adversarial for each of the selected networks. The
methodology presented above extends a series of state-of-the-
art attack methods, which are reviewed next.

III. BACKGROUND AND RELATED WORK

The literature concerning AEs has been growing exponen-
tially over the past years, and several different attack and
defense methods have been proposed. This section reviews
the most common attacks and defenses, highlighting how this
work is positioned within the published literature.

A. Attacks

1) L-BFGS Attack: Szegedy et al. [4] first introduced
AEs against deep neural networks. The approach is the
one described in (1). The loss function they used is a
cross-entropy.

2) CW L2 Attack: Carlini and Wagner [17] proposed a set
of more complex loss functions (and different threat models),
among which the most relevant is L = max(0, max{Z(x+r)k :
k �= tadv} − Z(x + r)tadv), where Z(x) is the output of the
logits layer (i.e., before the softmax layer), and Z(x)k is the
logit value corresponding to class k. The effect of using this
loss is that during the optimization process, this term falls
to zero as soon as the predicted class matches the adversarial
target, without considering the confidence associated with that
prediction. This allows minimizing the adversarial perturbation
only as soon as the first term drops to zero.

3) FGSM Attack: The fast gradient sign method was
introduced by Goodfellow et al. [18], and it is a nonitera-
tive, untargeted method for adversarial examples’ generation.
It is sufficient to compute the gradient with respect to the
image of a certain loss function ∇xL( f (x), t) (usually cross-
entropy). The adversarial perturbation is then generated as
� sign(∇xL( f (x), t)). Although this type of AE is one of the
most popular for its simplicity and fast generation, the focus
of this article is on AEs that are able to simultaneously
fool multiple networks, and targeted AEs are more suited for
this purpose. Hence, this kind of attack is not considered in
this work since, for an accurate assessment of the detection
capabilities of this multinetwork system, it would require an
accurate filtering of the perturbations that resulted adversarial
for the ensemble of the three networks.
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4) Robust AEs: AEs can be made robust (in expectation)
to a certain transformation distribution T [12] by randomizing
the parameters of the transformation during optimization of
adversarial perturbation. This kind of AEs are, by construction,
not easily detectable with the BASELINE architecture (Fig. 1).

5) Universal Adversarial Perturbation: This kind of attack
crafts an image-agnostic adversarial perturbation [13], which
is generated to result adversarial for a set of different images
belonging to different classes. A universal perturbation has the
property of making regular images become AEs, even when
considering images that were not used for the optimization of
the perturbation. Although this kind of attack is not considered
in this work because it is weaker than the ones presented
above, it is worth citing it since it inspired the defense pertur-
bation presented in this article, as described in Section IV.

6) Other Attacks: The literature presents many other dif-
ferent attacks that are not considered in this article for space
limitations. Among these, the most relevant to us are Deep-
Fool [19] and JMSA [20].

B. Defenses

The defenses proposed in the literature can be divided into
three categories, briefly described in the following.

1) Modifying Data: The defenses that fall in this category
are the ones that modify the input data at run time to defend
from AEs. Possible approaches are based on data compression
and filtering [10], [11], [21] or data randomization [22]. The
underlying idea is similar to the one presented in this work.
However, the objective of this work is to detect AEs rather
than predicting the correct class; moreover, it presents an
extensive experimental evaluation of the most common image
transformations.

2) Modifying Model: This type of defenses includes the
ones that act on the classifier to prevent attacks. For instance,
regularization (i.e., adding a penalty term to the loss function
during training to improve generalization) is a widely diffused
method. Adversarial training [4] was the first defense to be
proposed. It consists of enlarging the original dataset with a
set of AEs, which is used to retrain the network. It has been
criticized because it just shifts the problem to find new AEs.
Among others, it is worth citing defensive distillation [23],
which trains a second, simpler network over soft targets (i.e.,
the output values of the original network) and deep contractive
networks [24], which improve the defense performance of
denoising convolutional autoencoders.

3) Auxiliary Tools: These approaches make use of an exter-
nal tool to defend or detect AEs. Among these, Defense-
GAN [25] and MagNet [26] present good performance.

Many other works are present in the literature. The
interested reader may refer to the reviews presented by
Yuan et al. [27] and Xu et al. [28].

C. This Work

Although many of the defenses listed above show good
performance, the work presented in this article focuses on data
modification techniques, since they are simple and computa-
tionally cheap to detect AEs, without changing or retraining

the neural network. The proposed detection system can also be
seen as an external tool aimed at detecting AEs, but without
considering complex models (such as generative adversarial
networks or additional neural networks) as previous works do.

Previous work used input transformations [10], [11], [21],
[22] but, to the best of our records, none of them presented an
extensive experimental evaluation to determine which trans-
formations are the most effective in terms of detection rate.
Furthermore, still to our records, no counter-measure for robust
AEs has been presented before. This latter aspect is crucial,
since any defense based on differentiable input transformations
(as in the work of Xie et al. [22]) can be completely fooled
by robust AEs.

This article presents a novel method to detect robust AEs
with input transformations, which, to our records, was never
proposed in the literature. An experimental comparison with
similar state-of-the-art methods is performed in Section V.

IV. DETECTION ALGORITHMS

The objective of this work is to detect different kinds of AEs
and evaluate the detection performance of four different archi-
tectures. The AEs considered in this work can be classified
into: 1) standard, i.e., those generated by the attacks reviewed
at the beginning of Section III), and 2) robust ones, i.e., those
that cannot be detected by input transformations. Orthogonally,
they can also be classified as: 1) single-network, i.e., those
generated to attack just a single CNN, and 2) multinetwork,
i.e., those that are capable of attacking multiple CNNs subject
to majority voting. Note that this taxonomy allows defining
four classes of AEs.

The BASELINE and VOTING_BASELINE architectures
(Figs. 1 and 3) are suited for the detection of standard AEs
only, as they fail in detecting robust ones. The former is suited
for single-network AEs, while the latter for multinetwork ones.

Other two architectures are proposed to detect both standard
and robust AEs by leveraging a defense perturbation that is
assumed not be known by the attacker. The ENHANCED archi-
tecture is designed to detect single-network AEs, while the
VOTING_ENHANCED architecture is designed to detect multi-
network AEs by combining voting and defense perturbations.

A. Baseline Detection Architectures

The BASELINE architecture has been considered to evaluate
the detection performance of a set of input transformations.
The input image x ∈ X (that might be an AE) is transformed
by means of the chosen input transformation, producing x �.
Then both the images are fed into the network, and the
distance between the two output probability distributions is
computed using the KL divergence. Since the KL divergence
is not symmetric, it is not a proper distance. Hence, the actual
distance is computed as the maximum KL of the two possible
combinations

D( f (x), f (x �))=max


KL( f (x), f (x �)), KL( f (x �), f (x))

�
.

(4)

The computed distance is then thresholded to classify the
image as adversarial or not. Note that this is different from the

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 15,2023 at 12:24:38 UTC from IEEE Xplore.  Restrictions apply. 



NESTI et al.: DETECTING AEs BY INPUT TRANSFORMATIONS, DEFENSE PERTURBATIONS, AND VOTING 1333

approach proposed by Kantaros et al. [11], where the mini-
mum of the two KL divergences is used. This is because all
our experiments showed that the detection algorithm obtains a
significantly better classification accuracy using the maximum,
rather than the minimum. This can be explained by considering
that the maximum is a more conservative estimate of the
distance and has more impact on AEs, as they are characterized
by more asymmetrical KL divergences than regular images.

The VOTING_BASELINE architecture is also considered to
assess the performance of a multinetwork ensemble in detect-
ing AEs. In particular, three pretrained state-of-the-art CNNs
are used, as shown in Fig. 3. The three networks are subject to
majority voting, which is a common algorithm for fault detec-
tion and exclusion and in general for fault-tolerant systems.
Here, it is used to decide whether an input image is adversarial
for the majority of the networks, meaning that as long as there
are two networks detecting potential AEs, the voting algorithm
classifies the input as adversarial. The detection performance
of such an architecture is discussed in Section V.

These two architectures are based on image transformations
only and both fail in detecting robust AEs. Section IV-B
introduces new architectures to overcome this limitation.

B. Enhanced Detection Architectures: Counter-Measures
Against Robust AEs

AEs have great fooling power. During the experimental
campaign conducted for this work, it was possible to find
AEs that were robust to any kind of differentiable input
transformation and even robust to any possible combination
of four consecutive transformations, chosen between three
different transformations. Also, randomization does not help:
during the experiments, it was possible to find AEs that are
robust to additive Gaussian noise.

Since AEs have such great fooling power, the key idea of
this work is to use the same crafting procedure to generate a
defense perturbation, which is basically a mask of pixels added
to the input image at run time. This perturbation is optimized
to make robust AEs sensitive again to input transformations.

The idea behind the generation of the defense perturbation
is inspired by the one used to compute universal adversarial
perturbations [13]. This generation process is aimed at produc-
ing an image-agnostic pixel mask that is capable of removing
the robustness to specific transformations, once it is added to
a robust AE. The defense perturbation is generated using the
architecture shown in Fig. 4, which is named DEFENSE_GEN,
and takes as input a dataset constructed as follows. Given a
set of L original images and a set of N input transformations
{g j(x, θ j), j = 1, . . . , N}, a robust AE is generated for each
of the L images and for each of the N input transformations.
All images, i.e., both the original and the adversarial ones, are
then added to a dataset. For each of the images x̃ in such a
dataset, the following optimization procedure is performed for
kmax steps:

min
d

⎡
⎣L( f (x̃ + d), t̃) +

N�
j=1

L( f (g j(x̃ + d; θ j)), t)+k�d�2
2

⎤
⎦
(5)

Fig. 4. DEFENSE_GEN architecture used to craft the defense perturbation.

where t is the original (nonadversarial) target and t̃ is the target
associated with image x̃ . If x̃ is an AE, t̃ is the adversarial
target, whereas if x̃ is a regular image, t̃ is the original target.
This iterative procedure outputs a mask d that, when added to
a robust AE x̃ , produces a new image that is no longer robust
to input transformations, and therefore can be used to detect
AEs, just as in the standard case.

This property comes from the fact that the generation
process of the defense perturbation follows the same logic for
generating robust AEs, but reversed. The ROBUST_ADV_GEN

[(2)] optimizes a perturbation, added to the original image,
which pushes the prediction of the network toward the same
label for both the nontransformed and the transformed images.
Conversely, DEFENSE_GEN [(5)] does the opposite: it pushes
the prediction of the transformed image toward the original
label (as it actually is with standard AEs), and the nontrans-
formed image toward the corresponding label. Since the input
images are both AEs and non-AEs, the corresponding label
would be the adversarial label for AEs, and the original label
for non-AEs. In this way, the defense perturbation learns the
“opposite average robust perturbation” that, added to a robust
AE, removes its robustness.

If the optimization described in (2) is used to generate an
AE for each network and for each transformation, then the
minimization of (5) is aimed at finding the perturbation that
is able to do the opposite, which is inhibiting the patterns that
make the AEs robust to input transformations.

The downside of this method is that the generation of a
dataset of robust AEs and the training of a defense pertur-
bation are computationally expensive. Another problem of
this method is that it is suited only for robust AEs, while
it has been experimentally found that it has the property of
making standard AEs robust. This happens because the role
of the defense perturbation is to counteract the adversarial
perturbation that makes an AE robust to input transformations.
When adding the defense perturbation to a standard AE,
it introduces a perturbation that transforms standard AEs into
robust ones, hence having a negative effect for the detection
architecture.

Nevertheless, standard AEs are sensitive to any kind of
perturbation, meaning that just the application of the mask
is sufficient to discriminate AEs. Given these observations,
the detection of both standard and robust AEs can be per-
formed using the ENHANCED architecture illustrated in Fig. 5,
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Fig. 5. ENHANCED architecture for detecting robust AEs.

where the mask is used as a first transformation (to detect
standard AEs and to make robust AEs sensitive to input
transformations), and a second transformation is used to detect
robust AEs. Each of the two KL divergences is computed by
(4), taking the maximum between the two results. With this
counter-measure, robust AEs can be detected with simple input
transformations at run time and three inference operations with
the same network.

Note that since the defense perturbation d is a differentiable
transformation, an attacker could generate AEs that are robust
to that specific mask. Being the mask not known in advance,
the attacker might follow the same procedure described in this
section to generate another defense mask, which has the same
defensive properties, and then use it to craft AEs that are robust
to that mask. However, as one may expect, experiments show
that different datasets used as input to the above procedure lead
to different defense perturbation masks. Hence, the attacker
should also know the exact data distribution used to generate
the defense perturbation, which can easily be kept secret.

A further evolution of the detection architecture is finally
proposed by combining the ENHANCED architecture with
majority voting, hence obtaining the architecture illustrated
in Fig. 6, which is named VOTING_ENHANCED. Under this
latter architecture with voting over M networks, the defense
perturbation is generated as for the ENHANCED architecture but
optimizing

min
d

	
M�

i=1

L( fi (x̃ + d), t̃)

+
N�

j=1

M�
i=1

L( fi (g j(x̃ + d; θ j)), t) + k�d�2
2

⎤
⎦. (6)

The defense perturbation generated in this way results to be
effective for multinetwork robust AEs.

V. EXPERIMENTAL RESULTS

This section presents the results obtained from an extensive
experimental evaluation carried out to test the performance
of the approaches proposed in this article to detect AEs.
After describing the experimental setting, the input trans-
formations used for the evaluations are introduced, together

Fig. 6. VOTING_ENHANCED detection architecture for detecting
robust AEs.

with each characteristic parameter and their range. Then,
the effect of each transformation on the accuracy of the net-
works is reported. The performance of the different detection
methods is presented by first considering the BASELINE and
VOTING_BASELINE architectures, and then the ENHANCED and
VOTING_ENHANCED architectures, which include the defense
perturbation.

A. Experimental Setting

Three CNNs were selected for the experiments: 1) VGG-19
[29]; 2) Resnet-v2-152 [30]; and 3) Inception-v4 [31]. These
networks were chosen as they are among the most used, top-
performing CNNs for visual recognition. They were pretrained
on the ImageNet dataset and downloaded from the tf-slim
library [32].

All the experiments presented in this article were performed
on an Nvidia DGX station, composed of 4 Tesla-v100 GPUs,
with 32 GB of RAM each. The code for the experiments was
written in Python 3 using Tensorflow 1.15 (configured to use
GPUs). The ImageNet dataset was downloaded from Kaggle.
Under this setting, the generation of a single multinet robust
AE took 250 s.

B. Input Transformations

The image transformations considered in this work are
several and can be divided into three different groups. Each
transformation comes with a parameter that varies in a certain
range.

1) Topological Transformations: They include the basic
affine transformations that can be expressed in the form of
a warping matrix T ∈ IR3×3. Each of such transformations
can be defined as ν � = T ν, where ν = [u, v, 1]T and
ν � = [u�, v �, 1]T represent the homogeneous coordinates of a
pixel of the original and the transformed images, respectively.
The transformations of this type considered in this work are
as follows.

1) Translation: Horizontal and vertical translation
parameters are combined into a single diagonal
translation to simplify the parametric search.
Range: [−45 px,+45 px].

2) Rotation: Range: [−25◦, 25◦].
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3) Horizontal Shear: It is expressed by the transformation

T =
⎡
⎣1 sx 0

0 1 0
0 0 1

⎤
⎦, where sx is the shear parameter with

range [−0.175, 0.175].
4) Scale: It is expressed by the transformation T =

diag([s, s, 1]), where s is the scale parameter with range
[0.875, 1.175].

5) Mirror: (no parameter).

2) Appearance Transformations: They include those trans-
formations that change the appearance of the image, with no
topological changes. The ones considered in this work are as
follows.

1) Average Blur: Range: [2 × 2 kernel, 6 × 6 kernel]).
2) Brightness Change: It adds the value of the parame-

ter to the intensity of the image, pixelwise. Range:
[−35,+35].

3) Contrast Change: It scales the pixelwise intensity of the
image by the parameter value. Range: [0.875, 1.125].

3) Special: They include two uncategorized transforma-
tions.

1) Bit Depth Reduction: It changes the number of bits used
to represent the intensity of the pixels. Range: [4 bits,
7 bits].

2) Gaussian Noise: It adds a Gaussian noise to each pixel
of the input image (no parameters2).

It is worth noting that all the transformations used are
differentiable with respect to the input image. This is crucial,
since this work assumes white-box robust AEs. Other more
complex nondifferentiable transformations were used in the
literature, but they are out of the scope of this work, since a
black-box approach should be used to craft AEs that are robust
to those transformations.

C. Performance Metrics

AEs’ detection is a binary classification problem. A classical
way to evaluate the performance of balanced binary classifiers
with a decision threshold is through the receiver operating
characteristic (ROC), which expresses, for different values of
the threshold, the fraction of true positives (TPs), i.e., AEs
detected as AEs, against the fraction of false positives (FPs),
i.e., non-AEs detected as AEs.

The baseline performance, i.e., the performance of a random
classifier that detects as many TPs as FPs for any value of the
threshold, is represented in an ROC plot by the linear pattern
with slope 1 [passing through (0, 0) and (1, 1)], while the
best performance is reached when the classifier achieves TP
rate 1 and FP rate 0. A more compact way to represent the
performance is through the area under curve (AUC) of an ROC
graph: perfect classification performance has AUC of 1, while
baseline performance has AUC equal to 0.5.

When using this performance indicator, the information
about exact TP/FP ratio is lost. However, this is not important
when dealing with detection systems with AUC close to 1,

2The additive Gaussian noise is with 0 mean and standard deviation set equal
to the adversarial strength � = 0.05 of the AEs, to obtain a fair comparison
between attacker and defender capabilities.

Fig. 7. Accuracy of VGG-19 when using input transformations.

since they will produce very similar-looking ROC graphs, all
passing close to the point (1, 0). Conversely, when the classi-
fication performance is poor, the ROC curve has much more
“freedom” and could assume several different shapes with the
same AUC result. Since the focus of this work is to achieve a
high-performance AE detection, there is no interest in studying
the actual ROC curve of poorly performing detection systems.
Solutions with AUC ≥0.95 can be considered satisfying for
our purposes.

The results are presented for multiple transformations. In all
the following plots, the performance value (accuracy or AUC
of ROC) is on the y-axis, while the x-axis refers to the
normalized value of the parameter used to control the trans-
formations. Note that some transformations are controlled by
a parameter that varies in a symmetric range (e.g., see the
case of translation), while others are not. The ranges of the
former are of the form [γ − α, γ + α] and each parameter
θ ∈ [γ − α, γ + α] is reported on the x-axis as (θ − γ )/α,
i.e., obtaining a normalized representation that varies from
−1 to +1. Conversely, nonsymmetric ranges are of the form
[α, β], with α < β, and each parameter θ ∈ [α, β] is reported
on the x-axis as θ/β, hence obtaining a normalized value
that varies from α/β to 1 only. Mirror and Gaussian noise
are parameter-free transformations and their performance is
represented by a single point with value 0 on the x-axis.

D. Accuracy Drop

A major drawback of using input image transformations
for AEs’ detection is that they cause an accuracy drop for
the classifier. The baseline accuracy is evaluated without input
transformation on a validation subset of ImageNet composed
of ten images for each class, for a total of 10k images. For each
transformation, the accuracy is computed for discretized values
within the ranges of each parameter and reported in Fig. 7 for
VGG-19. The results obtained with the other networks show
a very similar pattern for all the transformations, hence they
are not reported for space limitations.

E. AEs Datasets

Several datasets of AEs have been produced to test the
performance of the proposed approaches and generate the
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defense perturbations. Each dataset consists of multinetwork
AEs. For standard AEs, two datasets have been generated,
one with the L-BFGS attack and one for the CW attack, each
containing 1000 samples, one for each class of the ImageNet
dataset. For robust AEs, four different datasets have been
generated, each serving a different purpose.

1) Mtest: It is generated to test the performance of
the ENHANCED and VOTING_ENHANCED architectures.
It includes adversarial samples generated starting from
nine samples of the first 100 classes and two for the other
900 classes, for a total of 2700 AEs. This dataset is much
larger than the others because it is crucial to evaluate
whether the proposed counter-measure is effective in
general, meaning that it has to generalize both for a
wide distribution of AEs belonging to the same class
and for each class.

2) Mdef-gen: It is the one used to generate the defense
perturbation, referred to as Ddef in the following, used
in the ENHANCED and VOTING_ENHANCED architectures,
as detailed in Section IV-B.

3) Matt-gen: This dataset is used to simulate the case in
which an attacker tries to attack the ENHANCED and
VOTING_ENHANCED architectures. In this case, since the
attacker is assumed not to know Ddef, he/she has to
first generate its own defense perturbation (referred to as
Datt) before attempting at generating AEs that are robust
to enhanced detection architectures. The Matt-gen dataset
serves the purpose of generating Datt with the approach
detailed in Section IV-B.

4) Matt: It is the dataset generated to be robust to both
input transformations and defense perturbation Datt. It is
used to experimentally confirm that it is not possible
to generate AEs that are robust to the ENHANCED

and VOTING_ENHANCED architectures, provided that the
attacker does not know the exact AEs used to generate
the defense perturbation Ddef.

All the multinetwork robust AEs are generated by con-
sidering: 1) one transformation for each class discussed in
Section V-B, namely, translation, blur, and Gaussian noise and
2) the cross-entropy loss function (as for the L-BFGS attack).

These three transformations proved to be sufficient to make
the AE robust to the entire set of considered transformations,
hence making possible to generate robust AEs with a limited
computational effort.

All the generated datasets are summarized in Table I. The
actual size of the dataset is twice the one showed in the table,
since it also includes the original images.

Except for the L-BFGS dataset, which was optimized
over 250 epochs, all the other datasets were optimized over
500 epochs. For every dataset the Adam optimizer was used,
with a learning rate of 0.1, and a fixed adversarial strength
� = 0.05 was chosen.

F. Detection of AEs With Only Input Transformations

This section discusses the performance of the VOT-

ING_BASELINE architecture (Fig. 3). When dealing with stan-
dard AEs, this architecture exhibits a very good performance,

TABLE I

AES’ DATASETS GENERATED. DP1 REFERS TO THE DEFENSE PERTURBA-
TION USED FOR DETECTION, WHEREAS DP2 REFERS TO THE DEFENSE

PERTURBATION GENERATED TO CRAFT DEFENSE-ROBUST AES

as it can be seen from Fig. 8 (L-BFGS attack) and Fig. 9 (CW
attack). The AEs generated with the CW attack resulted to be
harder to detect and, for some transformation, the performance
degrades quicker for higher parameter values. Clearly, some of
the transformations are less suitable than others for this kind
of detection. Contrast and brightness change, color reduction,
and rotation show poorer performance with respect to other
transformations (e.g., other topological transformations, blur,
and Gaussian noise).

Very different results are obtained when presenting robust
AEs to the VOTING_BASELINE architecture. These results are
summarized in Fig. 10. As expected, the detection performance
is much worse. What is interesting is that even if the AEs were
chosen to be robust to three transformations, the performance
of all the other transformations drops, especially when dealing
with small parametric values. This can be explained with the
fact that transformations with small parameter values are simi-
lar to each other, especially when dealing with transformations
of the same category (e.g., scale and shear have comparable
detection performance with respect to translation).

Some transformations resulted to be even worse than a
random detection algorithm, meaning that even a coin toss
shows better AE detection performance. The experiment shows
that when dealing with robust AEs, differentiable input trans-
formations cannot be used in this naive detection system. Not
even noise (Gaussian in this case) is a safe choice: even
though it showed better performance with respect to other
transformations, its AUC drops to about 0.82, with a ROC
curve that saturates (i.e., 100% of TP) for about 50% of FP.

Further tests were conducted to explore the effect of cas-
caded transformations: the usage of a series of randomly
selected transformations can help when dealing with this
kind of robust AEs, but it is also still possible to craft
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Fig. 8. Performance of the VOTING_BASELINE architecture in detecting
standard AEs (L-BFGS) for each input transformation.

Fig. 9. Performance of the VOTING_BASELINE architecture in detecting
standard AEs (CW) for each input transformation.

Fig. 10. Performance of the VOTING_BASELINE architecture in detecting
robust AEs (translation, blur, Gaussian noise) for each input transformation.

AEs that are robust to any possible combination of cascaded
transformations. In our experiment, this has been verified via
cascades of four randomly selected transformations (picked
from the three transformations used before, i.e., translation,

Fig. 11. Performance of the VOTING_ENHANCED architecture in detecting
standard AEs (L-BFGS) for each input transformation.

Fig. 12. Performance of the VOTING_ENHANCED architecture in detecting
standard AEs (CW) for each input transformation.

Fig. 13. Performance of the VOTING_ENHANCED architecture in detecting
robust AEs (set Mtest) for each input transformation.

blur, and Gaussian noise). These results were omitted for space
limitations.

G. Detection of AEs Using the Defense Perturbation

The results of Section V-F showed that an attacker unaware
of the specific input transformation used for detection can
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Fig. 14. Performance of the VOTING_ENHANCED architecture in detecting
robust AEs (set Matt) for each input transformation.

still craft robust AEs that jeopardize the detection system.
This section reports the results achieved by applying the
defense perturbation with the VOTING_ENHANCED architecture
illustrated in Fig. 6.

As explained in Section IV, the defense perturbation is
effective not only for detecting standard AEs but also for
making robust AEs sensitive to input transformations again.
The AEs used to craft the defense perturbation are generated
from images different than those used to test the performance
of the detection system. The same three transformations were
chosen (translation, blur, and Gaussian noise).

The performance of the VOTING_ENHANCED architecture in
detecting standard AEs with a defense perturbation is shown
in Fig. 11 for the L-BFGS attack, and in Fig. 12 for the CW
attack, while the results for robust AEs are shown in Fig. 13.
Interestingly, as observed for the results shown in Fig. 10,
although only three transformations were used to craft the
defense perturbation, all the other transformations exhibited
a performance boost from the use of the defense perturbation.

Another set of experiments has been performed to assess
the robustness of the defense perturbation. As mentioned in
Section IV-B, the attacker does not have access to the defense
perturbation Ddef nor to the specific dataset Mdef-gen used to
generate it. Anyway, he/she can still try to generate another
defense perturbation Datt from a different (but presumably
similar) dataset Matt-gen with the purpose of generating a set
Matt of AEs that are robust to Ddef.

The results of the detection of Matt are reported in Fig. 14,
which shows that the AEs prepared by the attacker can still
be detected with Ddef in the VOTING_ENHANCED architecture.
This makes the VOTING_ENHANCED architecture an effective
counter-measure for robust AEs, making them sensitive to
input perturbations, while maintaining good detection perfor-
mance on standard AEs.

H. Effect of Voting

This section evaluates the effect of voting used in the
VOTING_ENHANCED architecture and shows how, in most
cases, it increases the detection accuracy with respect

to the ENHANCED architecture, which considers a single
network.

To present the results in a compact way, the effect of
voting is reported as the minimum improvement of the AUC
computed over the parametric range, for each transformation
and for each network. The change is reported as a percentage
of the total area (i.e., 1) for an easier reading. Positive values of
the AUC change are to be considered as improvements of the
VOTING_ENHANCED architecture with respect to the ENHANCED

architecture (i.e., with a single network). Conversely, negative
values represent worse AUC. The minimum change in perfor-
mance over the parametric range is chosen because it indicates
the worst case improvement due to voting.

The results of this test are summarized in Table II. It is
worth observing that voting helps in most of the cases, except
for rotation, where the performance of the resulting voting
system is heavily affected by the difference in performance
between the networks.

I. Comparison With State-of-the-Art Defenses

To the best of our records, the detection method presented
in this article is the first attempt to defend CNNs against
attacks from robust AEs in a white-box setting with input
transformations. Previous work that used input transformations
to detect white-box AEs did not consider robust AEs. This is
the case of two works: Prakash et al. [21] and Xie et al. [22],
which used randomization and pixel deflection, respectively.
Randomization3 consists of concatenating two input trans-
formations, namely, rescaling and padding; pixel deflection
is an image transformation that swaps nearby pixel values.
We compared two versions: the white-box version (naive) and
the full defense with Wavelet Denoiser.4

Furthermore, our comparison also considered
VisionGuard [11], which uses an architecture similar to
BASELINE, with JPEG compression as input transformation
(which is not differentiable).

For a fair comparison, the evaluation was carried out on a
single network (Inception-v4), as the existing methods did not
consider multinetwork architectures. The transformation used
in our method is Gaussian noise, as it proved to be the best-
performing among the evaluated ones. The evaluation metric
is a tuple representing the TP and FP rates. This choice is
motivated by the fact that pixel deflection and randomization
are not merely detection methods but defenses (i.e., they
modify the input image to correctly classify it). The TP and FP
rates for the two detection methods (ours and VisionGuard),
are computed by just selecting the threshold that provides the
best rate (instead of computing the AUC of the ROC graph).

The results are summarized in Table III. As it can be noted
from the table, our method exhibits comparable performance
with respect to the other methods for the detection of standard
AEs (L-BFGS and CW columns). On the contrary, none of
the other methods is capable of properly detecting robust AEs

32017 NIPS adversarial defense competition runner-up—code
available at https://github.com/anishathalye/obfuscated-gradients/tree/
master/randomization

4The code for this part was taken from https://github.com/anishathalye/
pixel-deflection
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TABLE II

MINIMUM CHANGE IN AUC OF ROC (PERCENTUAL OF TOTAL AUC =
1) INTRODUCED BY THE VOTING_ENHANCED ARCHITECTURE

WITH RESPECT THE ENHANCED ARCHITECTURE. RESULTS ARE

SHOWN FOR EACH TRANSFORMATION AND FOR EACH DATASET

OF AES; THE ROWS IN EACH CELL REPRESENT THE
MINIMUM CHANGE IN AUC WITH RESPECT TO

EACH NETWORK (VGG-19, RESNET-V2-152,
AND INCEPTION-V4, RESPECTIVELY)

(Mtest column), while our method provides a high detection
performance. Note that the AEs in Mtest have not been gener-
ated to be robust to pixel deflection (with Wavelet denoiser)
and VisionGuard (i.e., they have been generated to be robust
to translation, blur, and Gaussian noise), which are even based
on nondifferentiable functions. This suggests that there exists
a sort of transferability effect for robust AEs: future work will
investigate in this direction.

J. Discussion and Future Work

In the light of the above experimental results, some aspects
are worth to be discussed.

1) Best Transformation: Among the transformations that
were tested, some performed better than others. For example,
rotation shows poor performance for all kinds of adversarial
datasets. Others, such as contrast and brightness changes, and

TABLE III

COMPARISON WITH STATE-OF-THE-ART METHODS USING INPUT TRANS-
FORMATIONS AGAINST THE SAME THREAT MODEL. THE TWO VALUES

IN EACH CELL DENOTE THE TP AND FP RATES, RESPECTIVELY

bit depth color reduction, show poor performance in detect-
ing robust AEs, even though the AEs were not specifically
robust to those transformations. Blur is not among the best-
performing either, while scale, translation, shear, mirror, and
Gaussian noise consistently show good performance.

In general, by the results of Section V-I, it emerges that to
use our method with the ENHANCED architecture, one has to
accept slightly lower performance in detecting standard AEs
to be effective against all types of AEs. This happens because
it has been experimentally found that the defense perturba-
tion makes standard AEs robust to the input transformations
considered in this work.

2) Results Cannot be Generalized to Any CNN: It is not
possible to state that translation will perform well as an AEs’
detector for any CNN, trained on any dataset. Performance
will likely depend not only on the architecture and the dataset
used but also on the data augmentation techniques used during
training. Further experimental evaluations should be performed
in this direction.

Nevertheless, the analysis presented in this article showed
that networks with different architecture, but trained on the
same dataset,5 present similar results for this kind of AEs’
detection system: the best and the worst performing trans-
formations are the same, and in general the patterns of the
detection performance of the transformations as functions of
their parameters are similar.

3) Robust AEs Are Robust to Nondifferentiable Transforma-
tions Too: The reason why robust AEs are not detected with
randomization or naive pixel deflection is evident: all those
kinds of differentiable transformations are fooled by robust
AEs because of the similarity of the transformations with
respect to the ones used to craft them. However, the reasons
why VisionGuard and pixel deflection with wavelet denoiser
are not able to detect robust AEs is still unclear and it is surely
worth investigating. The input transformations used by these
works are JPEG compression and wavelet denoiser, which are
nondifferentiable input transformations and, therefore, cannot
be used to generate robust AEs, at least as defined in this
work. Our hypothesis (to be validated by future experiments)
is that there exists some kind of transferability of AEs not only

5ImageNet was chosen to provide real-world images; synthetic datasets as
MNIST will surely show different results.
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between different architectures of neural networks but also in
robustness between transformations.

4) Open Issues: The following aspects require further inves-
tigation to be generalized.

1) Due to space limits, not all the most common kinds
of AEs were considered in the evaluation. Although
the results of this experimental evaluation cannot be
generalized to the entire spectrum of AEs, this work
can be considered as a starting point to exhaustively
test the detection potentiality of input transformations.
The loss function used to optimize the robust AEs is the
cross-entropy loss. Other losses would certainly lead to
different results. However, the process for generating the
defense perturbation is general enough to account for
robust AEs crafted with different loss functions, which
will be explored in a future work.

2) This article considered a detection system using
threshold-based binary classification. By varying the
threshold, it is possible to plot ROC graphs that help
understand which transformations are best suited for
this kind of detection. However, at run time a cer-
tain threshold must be chosen (one for each network).
The thresholds should take into account all the pos-
sible kinds of AEs that one wants to detect, to aver-
age the performance over the entire possible range of
different AEs.

3) The reason why nondifferentiable input transformations
are not able to detect robust AEs is still not clear and
should be investigated in detail.

VI. CONCLUSION

This article introduced a methodology to detect AEs for
CNNs. The method exploits the detection power of input
image transformations for standard AEs, which have been
extensively tested to discover those transformations that are
more suitable for this kind of detection problem.

Although robust AEs can significantly degrade the per-
formance of simple detection architectures (BASELINE and
VOTING_BASELINE), this article presented a counter-measure
against robust AEs based on the generation of a defense
perturbation. This perturbation allows making robust AEs
sensitive again to input transformations and it can be used to
achieve very good detection performance for both standard and
robust AEs. Majority voting for multi-CNN systems has also
been introduced to further improve the detection performance.

Future work will investigate extensions of the approaches
presented in this article to understand whether different kinds
of attacks can fool the proposed detection systems. Also,
further tests will be conducted to clarify the role of data
distribution used to generate the defense perturbation, to better
comprehend whether it is possible for an attacker to fool the
proposed detection systems without knowing the exact data
distribution used to craft the defense.
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