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Abstract—Although Deep Neural Networks (DNNs) have shown incredible performance in perceptive and control tasks, several

trustworthy issues are still open. One of the most discussed topics is the existence of adversarial perturbations, which has opened an

interesting research line on provable techniques capable of quantifying the robustness of a given input. In this regard, the euclidean

distance of the input from the classification boundary denotes a well-proved robustness assessment as the minimal affordable

adversarial perturbation. Unfortunately, computing such a distance is highly complex due the non-convex nature of DNNs. Despite

several methods have been proposed to address this issue, to the best of our knowledge, no provable results have been presented to

estimate and bound the error committed. This paper addresses this issue by proposing two lightweight strategies to find the minimal

adversarial perturbation. Differently from the state-of-the-art, the proposed approach allows formulating an error estimation theory of

the approximate distance with respect to the theoretical one. Finally, a substantial set of experiments is reported to evaluate the

performance of the algorithms and support the theoretical findings. The obtained results show that the proposed strategies

approximate the theoretical distance for samples close to the classification boundary, leading to provable robustness guarantees

against any adversarial attacks.

Index Terms—Adversarial robustness, deep neural networks, trustworthy AI, verification methods

Ç

1 INTRODUCTION

IN the last decade, deep neural networks (DNNs) achieved
impressive performance on computer vision applications,

such as image classification [1] and object detection [2].
Despite their excellent results, all those models are liable to

adversarial attacks, defined as input perturbations intentionally
designed to be undetectable to humans but causing the model
to make a wrong output [3], [4]. Extensive studies have been
conducted for improving these attacks through effective techni-
ques thatminimize the distance from the original input tomake
the resulting adversarial input imperceptible to humans.

Finding the closest adversarial example, or in other terms,
the minimal perturbation capable of fooling the model, is a
notorious hard problem, because it involves the solution of a
non-convex optimization problem with highly-irregular con-
straints, due to the intrinsic nature of DNNs [4], [5], [6], [7]. At
present, this is still a hot research topic since it allows to deduce
useful information on the robustness of themodel under adver-
sarial attacks.

Almost all the powerful attacks presented in the literature
(e.g., [4], [5], [6], [7], [8], [9], [10]) rely on the loss function gradi-
ent to build up optimization methods for crafting those

perturbations. In a nutshell, their idea is tomove the adversarial
perturbation towards the direction thatmostly increases the loss
function, thus increasing the probability of amisclassification.

Although the above methods provide an affordable
empirical solution to the minimal perturbation problem, to
the best of our records there is no theoretical analysis that
estimates and bounds the error committed.

This Paper. Inspired by the known strategies that aim at
solving the minimal adversarial perturbation problem, this
work aims at providing an approximate solution, supported
by an analytical estimation of the error committed. The
motivation behind this work is to leverage the approximate
solution and the analytical findings to provide provable
statements regarding the trustworthiness of the classifica-
tion model with respect to a given input. In the following,
we first discuss the minimal adversarial perturbation prob-
lem for a binary classifier and then we extend the analysis
to a multi-class classifier. To solve the above problem, we
propose two new strategies that leverage a root-finding par-
adigm for computing the distance from the boundary.

Differently from the previous work, aimed at solving the
minimum perturbation problem, the proposed strategies
allow formulating an error estimation theory that quantifies the
quality of the computed distance with respect to the theoretical
optimum. More specifically, Section 4 provides provable
properties about the existence of a tubular neighborhood
with radius s, where the error between the approximate dis-
tance and the minimum distance from the classification
boundary can be bounded. Fig. 1 better clarifies the latter
point by illustrating an example of binary classification. If x
is the input vector and fðxÞ is the classification function
learned by the network, our formulation provides an esti-
mation of the radius s from the classification boundary B ¼
ffðxÞ ¼ 0g having some regularity property. The regularity
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is expressed in terms of the first and the second derivatives
of the classifier and measures the linearity of the classifica-
tion boundary.

Section 5 reports an extensive set of experiments carried
out to validate the theoretical findings with a list of tests
aimed at estimating the distance of an input from the classi-
fication boundary. The objective of such tests is to compare
the distance computed by the proposed strategies with the
approximate minimum distance obtained with a global-
search method. Therefore, we validate the theoretical find-
ings and we propose an empirical estimation of s.

Another set of experiments exploits the theoretical find-
ings presented in Section 4 to derive a lower bound on the
magnitude of any adversarial perturbation for a given
input. Such a lower bound is assessed by generating a set of
powerful adversarial attacks and showing that they are not
capable of finding adversarial examples of magnitude lower
than the estimated distance derived by the proposed line-
search methods. In summary, this paper makes the follow-
ing contributions:

� It proposes two strategies based on a root-finding
algorithm to solve the minimal adversarial perturba-
tion problem close to the classification boundary.

� It presents an analytical estimation of the error com-
mitted by solving the minimal adversarial perturba-
tion problem with the above strategies.

� It provides an analytical estimation of the neighbor-
hood in which the previous analysis holds by
leveraging a novel coefficient that measures the reg-
ularity of the classifier.

� It presents a rich set of experiments to validate the the-
oretical findings and a practical estimation of the
radius s that is used to deduce a provable robustness
against any adversarial attack bounded inmagnitude.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly reviews previous related work and the most
effective adversarial perturbation techniques. Section 3
introduces the strategies to derive an approximate solution
of the minimum adversarial perturbation problem. Section 4
provides the theoretical formulation of the error estimation.
Section 5 shows the experimental results. Finally, Section 6
states the conclusion and proposes ideas for future works.

2 BACKGROUND AND RELATED WORKS

This section aims at presenting the problem of finding the
closest adversarial example for a given input while discus-
sing the most related papers on this topic.

2.1 Challenges in Adversarial Robustness

The literature related to adversarial robustness is quite vast.
The problem of adversarial perturbations for DNNswas first
introduced by Biggio et al. [3] and independently by Szegedy
et al. [4]. Since then, a large number of works followed for
proposing more powerful attacks [5], [6], [8], [9], detection
mechanisms [11], [12], [13], and defense strategies [14], [15],
[16]. Most adversarial attacks use a gradient based approach
to craft adversarial perturbations. Although they generate
impressive human undetectable adversarial examples, the
reliability of the gradient direction is often taken for granted
and no bound was ever provided on the error committed,
with respect to theminimal theoretical perturbation.

2.2 Minimum Adversarial Perturbation Problem

We consider a neural classifier with n inputs and C outputs,
where C is the number of classes that can be recognized. Let
f : Rn ! RC be a continuous function such that an input x 2
Rn produces an output fðxÞ 2 RC . For a given input x, the
predicted class k̂ðxÞ is defined as the index corresponding to
the strictly highest component of fðxÞ; in formulas k̂ðxÞ is
such that fk̂ðxÞðxÞ > fkðxÞ for each k 6¼ k̂ðxÞ. If the maximum
component is not unique, that is, fk̂ðxÞðxÞ ¼ maxk6¼k̂ðxÞfkðxÞ,
then we define k̂ðxÞ ¼ 0 meaning that the classification can-
not be trusted.

It is also useful to define Rj :¼ fx 2 Rn : k̂ðxÞ ¼ jg as the
region of the input space corresponding to the class j, and Bj

as the classification boundary for class j (or the frontier ofRj).
Let x be a correctly classified sample with label l. The

problem of finding the minimal adversarial perturbation d�,
such that xþ d� is the closest adversarial example to x, can
be obtained by solving the following minimization problem

dðx; lÞ ¼ min
d2Rn

kdk
s.t k̂ðxþ dÞ 6¼ l; (MP)

where k � k represents the euclidean norm and the scalar
value dðx; lÞ represents the distance between x and the clos-
est adversarial example xþ d�, or, equivalently, the distance
of x from the classification boundary.

Note that, to practically apply the above formulation to
computer vision, two additional constraints are required:
box-constraint and integer-constraint. The box-constraint
ensures that the adversarial example xþ d is such that 0 �
xþ d � 1 (assuming images with pixel values normalized in
[0, 1]). The integer-constraint ensures that each pixel xi per-
turbed by di is encoded into an integer with Q gray levels
(e.g., Q ¼ 256), that is, Q � ðxi þ diÞ 2 ½0; Q� 1� \N. Never-
theless, this work focuses on the unconstrained formulation,
as done by Moosavi-Dezfooli et al. [5], since it is more com-
pliant for the proposed analytical study. Note that this does
not reduce generality, since the solution of MP provides a
lower bound of the constrained problem. Therefore, to
reduce clutter, unless differently specified, the domain of
the perturbation d is equal to Rn.

Fig. 1. Illustration of the addressed problem. The blue points are DNN
inputs, while the black line fðxÞ ¼ 0 is the classification boundary that
distinguishes points belonging to the class �1 (fðxÞ < 0) and class 1
ðfðxÞ > 0Þ. The dotted line starting from each point is the unknown opti-
mal perturbation, which is orthogonal to the classification boundary. The
black arrows represent the gradient directions. Observe that the gra-
dients computed on the points whose distance from the boundary is
closer than s provide a good approximation to the minimal adversarial
distance.
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The following paragraphs review relevant state-of-the-
art techniques for finding a practical solution of the previ-
ous minimum problem. For the sake of clarity, we group
them into different categories depending on the approaches
followed for solving MP.

2.3 Penalty Methods

A well known technique to solve a minimum constrained
problem is given by thePenaltyMethod [17]. For instance, Szeg-
edy et al. [4] and Carlini andWagner [6] introduced a penalty
term c and solved the followingminimization problem

min
d

c � kdk þ Lðxþ d; lÞ; (1)

where the hyper-parameter c is selected through a line
search. The rationale of c is to balance the importance of the
two terms in the cost function. The second term L repre-
sents a specific loss function that is positive in region Rl and
zero in [j6¼lRj. Carlini and Wagner analyzed different loss
functions finding that Lðx; lÞ ¼ ðflðxÞ �maxj6¼lfjðxÞÞþ pro-
duces the most effective results, where fþ ¼ maxf0; fg. It is
worth observing that in both works [4] and [6], a box con-
straint is added to achieve an adversarial perturbation that
is feasible in the image domain. In particular, Szegedy et
al. [4] exploited the L-BFGS-B optimizer [17] to directly
solve the minimum problem with the box-constraint 0 �
xþ d � 1, while Carlini and Wagner [6] introduced a
change of variable to reduce to the solution of an uncon-
strained problem.

Although both the previous techniques allow crafting
accurate perturbations, they turn out to be expensive in
terms of memory usage and computational cost. Moreover,
they require to repeat the optimization procedure over mul-
tiple choices of the penalty c, causing a large number of for-
ward and backward network passes, thus resulting in a
slow convergence.

2.4 Toward Faster Methods

A key contribution towards less expensive solutions of MP
was given by the Decoupling Direction and Norm method
(DDN) presented by Rony et al. [9] (recently extended by
Pintor et al. [18] for different lp norms), where the authors
avoid searching for the best value of the penalty term c.
Instead, they search for an adversarial example in the euclid-
ean ball centered in xwith radius " by performing some gra-
dient descent steps with the loss function used to train the
model and projecting the result on the sphere. Depending on
whether the solution is an adversarial example, they adjust
the radius of the sphere and iterate the procedure.

Another approach, named Augmented Lagrangian Method
for Adversarial Attack (ALMA) [19], uses the same paradigm
but avoids searching for the best penalty c through a line-
search, by exploiting the Lagrangian duality theory [20].
Although both DNN and ALMA outperform the method by
Carlini and Wagner in terms of execution time (by making
less forwards and backwards passes), they do not provide a
theoretical estimation of the goodness of the solution.

2.5 Distance Dependent Attacks

Much closer to this paper, DeepFool (DF) [5] is a famous fast
method for finding a minimal adversarial perturbation. It

leverages the geometrical properties of a specific distance
(e.g., l2) to quickly generate accurate solutions for MP.

In short, the method provides an approximate solution
of MP by performing an iterative gradient based algorithm
with variable step size at each iteration. To be compliant
with the terminology used in Section 3, the problem solved
by DF can be rewritten by considering the minimal solution
of a list of less expensive minimum problems dðx; lÞ ¼
minj 6¼ldjðxÞ, where djðx; lÞ

djðx; lÞ ¼ min
d

kdk
s.t flðxþ dÞ � fjðxþ dÞ:

(2)

The main idea consists of building a sequence xð1Þ; xð2Þ;
. . . ; xðkÞ; . . . that converges to an approximate solution
of MP, which lies in the adversarial region [j6¼lRj.

Given xðkÞ, let ~fjðxÞ be the first order approximation of
ðflðxÞ � fjðxÞÞ in xðkÞ. Then, the next element of the sequence
xðkþ1Þ is obtained by considering the minimal solution
djðxðkÞ; lÞ of Problem 2 applied to ~fjðxÞ rather than ðfl �
fjÞðxÞ. Since ~fj is an affine function, the problem has an
exact solution of the form

xðkþ1Þ ¼ xðkÞ �
~fjðxðkÞÞ

kr~fjðxðkÞÞk
r~fjðxðkÞÞ
kr~fjðxðkÞÞk : (3)

The procedure turns out to reach convergence in K � 3
steps, resulting in 2CK forward and backward passes, if
applied to a classifier with C classes. The comparative study
reported in [9] empirically shows that the solution is close to
the one found by more expensive methods, as Carlini and
Wagner. However, it is crucial to point out that, since the
iteration is stopped when the adversarial region is reached,
there is no guarantee that the procedure provides a solution
of MP. Indeed, the procedure just ensures that a feasible
perturbation satisfying the constraint k̂ðxþ dÞ 6¼ l, is found.
In other words, to the best of our knowledge, there are no
theoretical point-wise estimations of the approximation
error, but only estimations of the average distance from the
classification boundary [21].

2.6 Verification of Deep Neural Networks

Verification methods aim at establishing whether, given a
sample x and a bound " 	 0, each sample in the lp-ball cen-
tered in xwith radius " is classified with the same class of x.
A verification can be performed by solving the following
problem

min cT z

s.t. kdkp � "

z ¼ fðxþ dÞ;
(VP)

where c depends on the task. Katz and Kochenderfer, [22],
showed that such a problem is NP-complete for ReLU net-
works, and hence formal complete verification strategies are
unfeasible for commonly large networks. Other works [23],
[24], [25], [26] bound the inner network activations to relax
the constraints and provide an incomplete verification. How-
ever, being computationally expensive, these strategies do
not scale to large networks and can be applied to multi-
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layer-perceptrons only or relatively small convolutional
neural networks.

A different approach is given by [27], in which the
authors search for the largest hyper-rectangle S", centered
in x and with semi-sides of length " 2 Rn

þ, such that k̂ðxþ
dÞ ¼ l for each d 2 S"ðxÞ. However, as in [23], solving such a
problem requires estimating the bounds of the internal acti-
vations so that the method does not scale well to large
networks.

More scalable approaches have been provided in [28],
[29]. Krishnamurthy et al. [28] leverage dual optimiza-
tion theory, which enables the verification of neural net-
works capable of accurately classifying images from the
MNIST and CIFAR10 datasets. Recently, Wang et al. [29]
proposed b-CROWN, which improves the computation
of the inner activation bounds in the case of ReLU acti-
vation by splitting the verification problem in two easier
problems based on the neuron outcome sign. Differently
from this work, both the strategies are more suited for
l1-bounded attacks and limit their analysis to ReLU acti-
vations only.

Another scalable verification method, named CLEVER,
was proposed by Weng et al. [30]. CLEVER considers
l2-bounded attacks and provides a lower bound bL of
dðx; lÞ (as defined in Problem (MP)) by evaluating the
gradient of the network f on random samples in a
neighborhood of x. However, the accuracy of the bound
strongly depends on the number of gradient evaluations:
the higher the number of evaluations, the narrower the
bound. Hence, achieving accurate results requires a long
computational time.

Cohen et al. [31] and its recent generalization [32] pro-
posed a method for constructing a new “smoothed” classi-
fier hs from an arbitrary base classifier h. The classification
of a sample x through hs is performed by evaluating h
using many perturbed versions of x. Classifier hs is then
proved to be robust against adversarial attacks with a cer-
tain magnitude. However, observe that the robustness is
proved on the new classifier hs and not on the black-box
one h.

2.7 This Work

Although the reviewed methods can craft accurate adver-
sarial perturbations, they do not provide an estimation of
the error committed with respect to the optimal distance.
Differently from the methods described above, this work
presents two methods for finding an approximate solution
of MP that simplifies a complex global computation by
treating it as a root-finding procedure. This allows formulat-
ing an error estimation theory that is formally illustrated in
Section 4 and validated in Section 5. Moreover, a final test
leverages the estimated error for deriving provable robust-
ness guarantees of a given input x against any adversarial
attack.

3 BOUNDARY DISTANCE VIA ROOT ALGORITHM

This section illustrates two main strategies that provide an
approximate solution to problem MP by reducing it to a
minimal root problem. A theoretical analysis for evaluating
the approximation error is provided in Section 4. The most

frequent symbols used throughout the paper are summa-
rized in Table 1.

Both strategies leverage two main observations:

1) the gradient of f suggests the fastest direction to
reach the adversarial region; and

2) due to the objective function, the minimal perturba-
tion lays on the classification boundary.

The two considerations above naturally bring to searching
the minimal perturbation as the intersection between the
classification boundary and the direction of the gradientrf .

3.1 The Case of Binary Classifiers

Differently from a multi-class classifier, a binary classifier can
be modeled as a scalar function f : Rn ! R that provides a
classification based on its sign, i.e., for each x 2 Rn, k̂ðxÞ ¼
sgnðfðxÞÞ. Let x be a correctly predicted sample of class l 2
f1;�1g. Due to the objective, the minimal perturbation d�

that solves MP is such that the perturbed sample xþ d�

belongs to the classification boundary, i.e., xþ d� 2 B ¼
fp 2 Rn : fðpÞ ¼ 0g. This can easily be proved by contradic-
tion by observing that, if d� is a solution of MP, but
sgnðfðxÞÞ 6¼ sgnðfðxþ d�ÞÞ 6¼ 0, then, due to the continuity
of f , there exists 0 < t < 1 such that fðxþ td�Þ ¼ 0, which
is a contradiction because ktd�k < kd�k.

Based on this observation, we can replace the original
problem with the following minimization problem with an
equality constraint

dðx; lÞ ¼ min
d

kdk
s.t fðxþ dÞ ¼ 0; MP-Eq

equivalent to a minimum distance problem from set B.
It is worth observing that the gradient rfðpÞ is orthogo-

nal to the boundary B for each p 2 B, and that, if x is close to
the boundary, then rfðxÞ � rfðp�Þ (where p� ¼ xþ d�)
provides the fastest direction to reach the boundary. Hence,
it is reasonable to approximate MP-Eq with the following
minimal root problem (a formal proof of this is reported in
Section 4):

tðx; lÞ ¼ min
t2Rþ

t

s.t fðxþ tnðxÞÞ ¼ 0 (RP)

where n ¼ �sgnðfðxÞÞ rfðxÞ
krfðxÞk represents the direction that

best approximatesrfðp�Þ at the first order.

TABLE 1
Summary of the Most Frequent Symbols

Symb. Dimensionality Meaning

f : Rn ! RCðRÞ classifier (binary classifier)
dðx; lÞ 2 R solution of MP
tðx; lÞ 2 R solution of RP
B 
 Rn classification boundary (binary classif.)
Vs 
 Rn tubular neighborhood of B of radius s
r 2 R coefficient of Inequality 8
sðrÞ 2 R radius in which Inequality 8 holds.
s� 2 R significant lower bound of s
ŝ� 2 R empirical estimation of s�
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3.2 Extension to Multi-Class Classifiers

The extension of the binary case to a multi-class classifier is
not unique. This section presents two different strategies to
tackle the problem.

3.2.1 The Closest Boundary

The Closest Boundary strategy (CB) leverages the idea that
the minimum problem related to a classifier with C classes
can be reduced to a list of minimum problems for binary
classifiers.

Algorithm1.Pseudocode Implementing the Closest Bound-
ary Strategy Depending on a Root-Finding Algorithm

Data: Zero !The root-finding algorithm.
Input: x, l, f !The safe sample and the DNN.
Output: t, n !The distance and the direction
1 t =1;
2 for j ¼ 1; . . . ; c and j 6¼ l do
3 F ðxÞ :¼ flðxÞ � fjðxÞ;
4 grad ¼ rF ðxÞ;
5 nj = -grad=kgradk;
6 gðtÞ :¼ F ðxþ t � njÞ;
7 tj= Zero(g);
8 if tj < t then
9 t ¼ tj;
10 n ¼ nj;
11 return t; n;

In detail, let x be a sample, correctly classified by f with
label l 2 f1; . . . ; Cg, and let

djðx; lÞ ¼ min
d

kdk
s.t flðxþ dÞ � fjðxþ dÞ:

(4)

Then, we observe that dðx; lÞ ¼ minj6¼ldjðx; lÞ, where dðx; lÞ
solves MP. This can be proved by reformulating the state-
ment with the following inequalities

min
j 6¼l

djðx; lÞ � dðx; lÞ � min
j 6¼l

djðx; lÞ:

Let dðjÞ be the solution of djðx; lÞ. The second inequality is
a consequence from the fact that dðjÞ satisfies the con-
straint of MP and that, by construction, dðx; lÞ is lower
than kdk for each feasible d. The first inequality, instead,
can be proved by observing that Problem MP is equiva-
lent to

dðx; lÞ ¼ min
d

kdk
s.t flðxþ dÞ � max

j6¼l
fjðxþ dÞ: (5)

Hence, if d� is the solution of Problem MP and if j� 2
argmaxj 6¼lfjðxþ d�Þ, then, by construction, d� satisfies the
constraint of Problem 4 for j�, and so minj6¼ldjðx; lÞ �
dj� ðx; lÞ � dðx; lÞ. In conclusion, if tjðx; lÞ is the solution
of RP with fðxÞ ¼ flðxÞ � fjðxÞ, then dðx; lÞ can be approxi-
mated by tðx; lÞ ¼ minj 6¼ltjðx; lÞ. More informally, if Bjl :¼
fp 2 Rn : flðxÞ ¼ fjðxÞg is the classification boundary of the
binary classifier fl � fj, we can reduce MP to the problem of
finding the closest intersection between the boundary Bjl

and the straight line passing through x with the direction
provided by the gradient of f . A good aspect of this strategy
is that it reduces to the solution of a sequence of minimum
problems by preserving the regularity of f . In fact, it is
important to anticipate that the regularity and the differen-
tiability of f has a big impact on the accuracy of the approxi-
mation (see Section 4). For the sake of clarity, the procedure
described above is summarized in Algorithm 1, where func-
tion Zero, called at Line 7, is any root finding algorithm for
univariate functions that solves RP.

3.2.2 Fast Outer Boundary

The CB algorithm presented in the previous section can
bring to a large computational cost for a classifier f that dis-
tinguishes a large number of classes. In fact, if Oj is the
amount of forward and backward passes required to
compute each tjðx; lÞ, then the total cost O can be estimated
as

P
j 6¼l Oj. The Fast outer Boundary strategy (FOB) is hence

proposed here to contain the computational cost. The mini-
mum problem MP can be reduced to the minimal root
problem RP by considering Lðx; lÞ ¼ flðxÞ �maxj6¼lfjðxÞ
and observing that L acts like a binary classifier that takes
positive values in the region Rl and negative values in the
outer region [j6¼lRj. Hence, the approximation of dðx; lÞ can
be deduced by solving the minimal root problem obtained
by substituting f with L in Problem RP. Observe that, differ-
ently from the previous strategy, this one requires the solu-
tion of a single minimal root problem. The pseudocode
formulation of the FOB strategy can easily be obtained as a
variant of Algorithm 1 by replacing F with L and removing
the for loop.

3.3 Root-Finding Algorithms

In this work, the above strategies are tested by solving the
root problem RP with a customized version of the Bisection
Algorithm and the vanilla Newton Algorithm, which return
the approximate distance tðx; lÞ for each sample ðx; lÞ. The
bisection method has been adapted to better fit the task. A
more detailed illustration is provided below. In general, the
bisection method allows finding a zero of a scalar univariate
continuous function g : ½a; b� ! R under the assumption
that gðaÞ > 0 and gðbÞ < 0, without requiring the computa-
tion of the derivative of g. Note that in our case a ¼ 0
because in Problem RP the variable t is positive.

Solving RP requires finding the minimal positive root of
the g function, which, in general, is not a solution of the
vanilla bisection algorithm. In fact, in the searching interval
½0; b�, function g is not guaranteed to be monotone and it can
change sign, from positive to negative and vice-versa. To
tackle this issue, we apply a pre-processing to the initial
searching interval ½0; b� that is inspired by Armijo rule for
line search methods [17].

In details, given a maximum number of attempts R, we
consider ~b ¼ b � 2�~k, where

~k ¼ max i 2 N : gðb � 2�iÞ < 0; i ¼ 0; 1; . . . ; R
� �

; (6)

and we start the bisection in ½0; ~b�.
The pseudocode that implements the Closest Boundary

strategy is shown in Algorithm 2. Line 20 reduces the
amount of forward passes of the model by stopping the
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inner iteration if the lower bound t_curr_low of the cur-
rent label is higher than the actual overall minimal estima-
tion t.

Algorithm 2. Pseudocode for Bisection Algorithm, With
Armijo-Like Upper Bound Estimation, Applied to the
Closest Boundary Strategy

Data: t_up, MaxIter, MaxAttempt
Input: x, l, f !The sample and the DNN
Output: t; n !The distance and the direction
1 Tol = 5e-5;
2 t =1;
3 for j ¼ 1; . . . ; c and j 6¼ l do
4 F ðxÞ :¼ flðxÞ � fjðxÞ;
5 grad =rF ðxÞ;
6 nj ¼ �grad=kgradk;
7 !Starting of the bisection algorithm;
8 t_curr_low = 0;
9 t_curr_up = Armijo(g, b=t_up);
10 for step = 1,..., MaxIter do
11 t_curr = (t_curr_low + t_curr_up) /2;
12 x_curr = x + t_curr * nj;
13 out = F(x_curr);
14 if out > 0 then
15 t_low = t_curr;
16 out_low = o;
17 else
18 t_up = t_curr;
19 out_up = o;
20 if t_curr_low > t then
21 Break !Reduce the amount of iterations;
22 if 0 > o_up > -Tol then
23 Convergence;
24 if t up < t then
25 t ¼ t up;
26 n ¼ nj;
27 return t; n;

4 BOUNDING THE DISTANCE FROM THE

CLASSIFICATION BOUNDARY

This section formally addresses the problem of estimating
the euclidean distance from the classification boundary. The
case of a binary classifier is first considered, while multi-
class classifiers are addressed later in Section 4.4.

The objective is to leverage the error estimation to prove
whether an input is far enough from the classification boundary,
hence guaranteeing that is provably safe with respect to
adversarial perturbations bounded in euclidean norm. To
this end, this section provides an estimation of the error
obtained by approximating the distance from the boundary
dðx; lÞ, i.e., the solution of MP, with tðx; lÞ, i.e., the solution
of the minimal root problem RP.

Formally, by adopting the notation from Section 3.1,
given a radius s > 0, let Vs :¼ fx 2 Rn : dðxÞ < sg be the
tubular neighborhood of B of radius s, where

dðxÞ :¼ min
p2B

kx� pk; (7)

i.e., Vs is the set of all samples whose distance from the clas-
sification border B is less than s.

The proposed method provides an upper bound and a
lower bound of dðx; lÞ depending on tðx; lÞ and a coefficient
r 	 1, which quantifies the quality of the estimation (the
lower the better). In particular, we formally prove the exis-
tence of a radius sðrÞ such that the approximation error is
bounded as follows, for each r 2 ð ffiffiffi

2
p

; 2�
1

r
tðx; lÞ < dðx; lÞ � tðx; lÞ; (8)

where the first inequality holds for each x in VsðrÞ. Such an
estimation is only valid in a neighborhood of B depending
on the magnitude of r. However, the lower r the smaller the
tubular neighborhood in which the inequality holds. In
other words, the conditions under which the estimation
error can be bounded become more and more difficult to be
satisfied as the quality of the bound provided by Inequal-
ity (8) increases.

Given a distance " < sðrÞ, we say that f is an "-robust
classifier with respect to ðx; lÞ if the sample x does not admit
an adversarial perturbation of magnitude lower than ", i.e.,
if for each perturbation dwith kdk < " then k̂ðxÞ ¼ k̂ðxþ dÞ.

Thus, by only computing tðx; lÞ, it is possible to deduce
the robustness of a classifier with respect to a sample x
according to the following rules:

� If tðx; lÞ < ", then the classifier is not "-robust with
respect to ðx; lÞ.

� If tðx; lÞ > r", then the classifier is "-robust with
respect to ðx; lÞ.

4.1 Preliminaries

Before going deeper in the mathematical aspects, it is neces-
sary to introduce three assumptions on the function f of the
classifier.

Assumption A. The function f is of class C1ðRnÞ.
Assumption B. The function f is strictly positive outside some

Bð0;MÞ (the open ball centered in 0 with radiusM).

Assumption C. The gradientrf is not zero in B (i.e., 0 is a reg-
ular value of f).

Although the three assumptions above are not valid in
general, they are not restrictive for a neural classifier. In par-
ticular, for a feed forward deep neural network with a one-
dimensional output, Assumption B is not verified by f .
However, being the samples of our interest always in some
closed limited set K, we can theoretically substitute f in the
following proofs with another function ~f that coincides
with f in the compact set K and that satisfies AssumptionB.
More details can be found in Appendix C, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3195616.
Similarly, Assumptions A and C are not valid in general,
but we can assume that, in a practical domain, f is the quan-
tized representation of another function ~f that satisfies the
conditions. Observe that Assumptions A and C ensure that
B is a smooth manifold of dimension n� 1 (this can be
proved by applying the implicit function theorem [33]).
Assumption B, instead, ensures that B is a compact set.

Since B is a compact set, then the minimum distance
problem formulated in Equation (7) admits a solution for
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each x 2 Rn. Nevertheless, there is no guarantee that for
each x 2 Rn there exists a unique closest point in B. The fol-
lowing result ensures the existence of a unique solution in a
tubular neighborhood of B (refer to [34] for more details).

Theorem 1 (Unique Projection [34]). If B 
 Rn is a compact
manifold, then there exists a maximum distance s0 such that
for each x in the open tubular neighborhood Vs0 there exists a
unique pðxÞ 2 B that solves Eq. (7). Moreover, d is differentia-
ble in the neighborhood, and rdðxÞ ¼ x�pðxÞ

kx�pðxÞk for each
x 2 Vs n B.
Following this result, the lemmas below explain in a for-

mal fashion that, close to the classification boundary, the gradi-
ent of f in x provides a fast direction to reach B.

Observe that this is the main idea behind all the gradient-
based attacks and, in particular, DeepFool [5], which exploits
the gradient of f to rapidly reach the adversarial region.

4.2 Bounding the Estimation Error

Let Bðx; rÞ be the open ball in the euclidean norm centered
in x with radius r. Furthermore, for each set A 
 Rn, let A
be the closure of A, i.e. the smallest closed set containing A.

Lemma 1. Let s0 be the distance for which Theorem 1 holds.
For each x 2 Vs0 nB, the direction x� pðxÞ is parallel to
rfðpðxÞÞ, where pðxÞ is the unique closest point in B to x. In
particular

rdðxÞ ¼ x� pðxÞ
kx� pðxÞk ¼ sgnðfðxÞÞ rfðpðxÞÞ

krfðpðxÞÞk : (9)

Proof. By construction, pðxÞ is the solution of the minimum
problem on Eq. (7). Then, by the Necessary Condition
Theorem in [17, p. 278], because of Assumption C, there
exists �� 2 R such that rLðpðxÞ; ��Þ ¼ 0, where Lðp; �Þ ¼
kx� pk þ �fðpÞ. Observe that rLðpðxÞ; ��Þ ¼ 0 implies
that

rdðxÞ ¼ x� pðxÞ
kx� pðxÞk ¼ ��rfðpðxÞÞ: (10)

From the above equation, because krdðxÞk ¼ 1, we
deduce that j��j ¼ 1

krfðpðxÞÞk . It remains to prove that

sgnð��Þ ¼ sgnðfðxÞÞ. To prove this statement, we proceed

in three steps:

1) we prove that the segment pt that connects x to
pðxÞ is such that sgnðfðptÞÞ ¼ sgnðfðxÞÞ for t > 0;

2) we show that for t � 0, the sign of sgnðfðptÞÞ is
equal to the sign ofrfðpðxÞÞT ðx� pðxÞÞ;

3) by leveraging identity Eq. (10), we show that the
sign of �� is equal to the sign of rfðpðxÞÞT ðx�
pðxÞÞ.

Let pt :¼ pðxÞ þ tðx� pðxÞÞ where t 2 ½0; 1�. Observe
that sgnðfðxÞÞ ¼ sgnðfðptÞÞ for each t 2 ð0; 1�. In fact, by
contradiction, if there exists t with sgnðfðxÞÞ 6¼
sgnðfðptÞÞ, then, by the Bolzano Theorem applied to
function f , it would exist a t� 2 ð0; 1Þ such that fðpt�Þ ¼
0. This would imply that

kx� pt�k ¼ kð1� t�Þðx� pðxÞÞk < kx� pðxÞk;

which is a contradiction because kx� pt�k < dðxÞ but
pðxÞ solves Problem 7.

Based on this fact, observe that, since f is differentia-
ble in p0, then

fðptÞ ¼ fðp0Þ þ rfðp0ÞT pt � p0ð Þ þ oðptÞ
¼ trfðpðxÞÞT x� pðxÞð Þ þ oðptÞ;

where oðptÞ=t ! 0 when t ! 0, from which we deduce
that for small t, sgnðfðptÞÞ ¼ sgnðrfðpðxÞÞT ðx� pðxÞÞÞ.

In conclusion, multiplying each term of Eq. (10) by
rfðpðxÞÞT , we deduce that the sign of the first term of
the equivalence is equal to sgnð��Þ, which proves the
lemma. tu
The above result can be seen as a particular case of the

following lemma, which states that the angle between
rfðxÞ and the optimal direction rdðxÞ can be bounded in a
neighborhood of the boundary.

Lemma 2 (Angular Constraint). For each angle bound a 2
ð� p

2 ;
p
2Þ, there exists a distance s1ðaÞ, such that, for all x 2

Vs1ðaÞ, the following inequality holds

rfðxÞTrfðpðxÞÞ
krfðxÞkkrfðpðxÞÞk > cos ðaÞ; (11)

where pðxÞ is the unique projection of Theorem 1.

Proof. From Assumption A, we deduce the continuity of
rf . From Assumption C and the compactness of B, we
deduce that there exists a distance d such that krfðxÞk 6¼
0 in Vd (the closure of Vd), and so we deduce that rf

krfk is
uniformly continuous inVd. Hence, for each ", there exists
a distance s" � d such that, for each x; y 2 Vd and kx�
yk < s", the following inequality holds

rfðxÞ
krfðxÞk �

rfðyÞ
krfðyÞk

����
���� < ": (12)

By remembering that kv� wk2 ¼ kvk2 þ kwk2 � 2vTw for
each v; w 2 Rn we can deduce the following inequality

1� 1

2
"2 <

rfðxÞTrfðyÞ
krfðxÞkkrfðyÞk : (13)

In conclusion, by taking y ¼ pðxÞ and by selecting " ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos ðaÞp

, we deduce Eq. (11) where s1ðaÞ ¼
minðs0; s"). tu
Intuitively, by the geometrical properties of a manifold, a

small portion of the boundary can be enclosed between two
affine parallel hyperplanes. This is the aim of the following
lemma.

Lemma 3 (Thickness Constraint). For each thickness factor
b 2 ð0; 1Þ, there exists a maximum distance s2ðbÞ such that,
for all p 2 B, the open set

GrðpÞ :¼ pþ v : jvTrfðpÞj < brkrfðpÞk; v 2 Rn
� �

;

contains B \Bðp; rÞ for all r < s2ðbÞ.
Proof. Let p 2 B. Because f is differentiable in p, there exists

a radius dp such that for all points q 2 Bðp; dpÞ \ B the
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following identity holds

oðkp� qkÞ ¼ fðqÞ � fðpÞ þ ðp� qÞTrfðpÞ ¼ ðp� qÞTrfðpÞ;
and oðkp� qkÞ=kp� qk ! 0 for kp� qk ! 0. Observe that
the same limit holds by dividing each term by krfðpÞk,
which is not zero due to Assumption C. By definition of
limit, there exists sp < dp such that for each q 2 Bðp; spÞ

p� qð ÞTrfðpÞ
��� ��� < bkp� qkkrfðpÞk; (14)

with b 2 ð0; 1Þ. This proves that for each r � sp, if q 2
Bðp; rÞ \ B, then q 2 GrðpÞ by considering v ¼ q � p and
observing that kp� qk < r as p; q 2 Bðp; rÞ.

So far we proved that the statement holds locally, i.e.,
for each p there exits sp such that Bðp; rÞ \ B 
 GrðpÞ for
each r � sp. In conclusion, the thesis follows by observ-
ing that the existence of a global s2ðbÞ such that the con-
dition above holds for all p and for all r � s2ðbÞ is a
consequence of the compactness of B. In fact, the family
fBðp; spÞgp2B is an infinite cover of B that, by definition
of a compact set, admits a finite sub-cover indexed by
p1; . . . ; pk such that B 
 [k

i¼1Bðpi; spiÞ. By taking s2ðbÞ ¼
minispi we deduce the thesis. tu
The Lemma above shows that the boundary B can be

locally bounded by the open set GrðpÞ for each point p and
for each radius r not larger than s2ðbÞ. Furthermore, the
border B splits the set Bðp; rÞ \ GrðpÞ in a way that f keeps
a constant sign in the two hyperplanes R� :¼ fpþ v :
vTrfðpÞ ¼ �brkrfðpÞk; v 2 Rng which coincide with the
frontier of GrðpÞ.

The geometrical intuition behind this statement is con-
densed in the following corollary of Lemma 3.

Corollary 1. Let b 2 ð0; 1Þ and s2ðbÞ of Lemma 3. Let x 2
Vs2ðbÞ, p such that dðxÞ ¼ kx� pk and r ¼ dðxÞ, then the
hyperplane

R :¼ pþ v : vTrfðpÞ ¼ �sgnðfðxÞÞbrkrfðpÞk; v 2 Rn
� �

;

is such that

8y 2 R \Bðp; rÞ; sgnðfðyÞÞ ¼ �sgnðfðxÞÞ: (15)

Proof. Let us prove the statement for fðxÞ < 0 first. The
proof can be decomposed in two steps:

1) Prove that pþ :¼ pþ rb rfðpÞ
krfðpÞk 2 R and fðpþÞ > 0;

2) Prove that if y 2 R \Bðp; rÞ, then sgnfðpþÞ ¼
sgnfðyÞ.

The first statement can be proved by using a procedure
similar to the one adopted in Lemma 1. In particular, let

pt :¼ pþ tbr rfðpÞ
krfðpÞk for t 2 ½0; 1� be the segment going from

p to pþ; first, we prove that f takes positive values for

small values of t; and then we prove that f does not

change sign in pþ. Since f is differentiable in p, then

fðptÞ ¼ trrfðpÞT rfðpÞ
krfðpÞk

� �
þ oðptÞ;

and because oðptÞ=t ! 0, we can deduce that sgnðfðptÞÞ ¼
sgnðrkrfðpÞkÞ ¼ 1 for small t. Let us now prove by

contradiction that if f changes sign in pþ, then Lemma 3

would be not valid in p. If fðpþÞ � 0, then there exist t� �
1 such that fðpt� Þ ¼ 0. Hence, kp� pt�k ¼ jt�rbj; from

which pt� 2 Bðp; t�rÞ. Let us consider the smaller radius

r� ¼ t�r and observe that pt� 62 Gr� ðpÞ. In fact,

t�br rfðpÞT
krfðpÞkrfðpÞ ¼ br�krfðpÞk shows that pt� lays on

the topological border of the set Gr� ðpÞ. This brings to a
contradiction for Lemma 3 being pt� 2 B n Gr� ðpÞ.

Finally, if y 2 Bðp; rÞ \R, the second statement can be
proved by contradiction observing that, if fðyÞ � 0, then
there exists p0 2 R \Bðp; rÞ for which fðp0Þ ¼ 0. Further-
more, this would implies that p0 2 B and p0 62 GrðpÞ,
which brings to a contradiction by Lemma 3.

In conclusion, the case fðxÞ > 0 can be deduced
by following the steps above, but considering p� :¼
p� tbr rfðpÞ

krfðpÞk , to prove that fðp�Þ < 0. tu
Lemma 2 and Lemma 3 are linked by the following intui-

tive connection. In a geometrical sense, dðxÞ represents the
length of the shortest path needed to reach the boundary,
which is obtained by moving from x along �rdðxÞ.

Similarly, let tðxÞ be the length of the path (if there exists
one) required to reach the boundary by following the direc-
tion nðxÞ ¼ �sgnðfðxÞÞ rfðxÞ

krfðxÞk , in formulas xþ tðxÞnðxÞ 2 B.
To ensure the existence of such a tðxÞ, we can leverage two
conditions. If we admit that nðxÞ is not similar to the optimal
one (i.e., we assume a a 6� 0 in Lemma 2), then the existence
of tðxÞ would only be guaranteed by an almost straight
boundary B, which requires a thickness factor close to zero,
b � 0. Vice versa, if we admit a highly irregular boundary
(i.e., b 6� 0), then the existence of tðxÞwould only be guaran-
teed by a direction nðxÞ close to the optimal one. This would
require a � 0.

This is the main idea of the following theorem, which, by
balancing the two parameters a and b, ensures:

1) The existence of tðxÞ; and
2) The estimation of dðxÞ through tðxÞ defined in

Eq. (8).
A graphical idea of the proof is depicted in Fig. 2.

Theorem 2 (Distance Estimation). For each angle a 2 ð� p
4 ;

p
4Þ

there exists a maximum distance s ¼ minfs1ðaÞ; s2ð cos ð2aÞÞg

Fig. 2. A graphical proof of Theorem 2. Lemma 3 ensures that in Bðp; rÞ
the boundary belongs in the green area. Lemma 2 ensures that nðxÞ (in
red) lays in the brown area. In conclusion, there exists a solution T of RP,
i.e. an intersection between the boundary and the direction provided by
the gradient.
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such that the error in approximating dðxÞ with tðxÞ can be
bounded as

8x 2 Vs; dðxÞ � tðxÞ � 2 cos ðaÞdðxÞ; (16)

where tðxÞ 2 Rþ is the smallest value such that

x� tðxÞ sgnðfðxÞÞ rfðxÞ
krfðxÞk 2 B:

Proof. Let b ¼ cos ð2aÞ. Let s1ðaÞ and s2ðbÞ be the maxi-
mum distances of Lemmas 2 and 3, respectively, and let
s ¼ minðs1ðaÞ; s2ðbÞÞ. Note that in this way Lemmas 2
and 3 hold for x 2 Vs . Let p ¼ pðxÞ 2 B the closest projec-
tion, r ¼ kp� xk ¼ dðxÞ the minimum distance from the
boundary, and let ’ðtÞ ¼ xþ t rfðxÞ

krfðxÞk be the straight line
passing through x with direction rfðxÞ. Observe that, by
definition of Vs , it holds r < s. Without loss of general-
ity, we can assume that fðxÞ < 0.

The proof strategy consists in proving that the straight
line ’ðtÞ intersects the hyperplane Rþ :¼ fpþ v :
vTrfðpÞ ¼ brkrfðpÞk; v 2 Rng (which is one of the bor-
ders of the set GrðpÞ of Lemma 3) in a point ’ðt�Þ, in
which f assumes a positive value. This would imply the
existence of some point ’ðtðxÞÞ such that fð’ðtðxÞÞ ¼ 0.

Observe that the intersection between the support of ’
and Rþ is realized for

t� ¼ krfðxÞk
rfðxÞTrfðpÞ rbkrfðpÞk � ðx� pÞTrfðpÞ

	 

: (17)

Moreover, observe that, multiplying each term of
Eq. (10) in Lemma 1 by rfðpÞT , we deduce that ðx�
pÞTrfðpÞ ¼ �rkrfðpÞk, from which, by substituting in

the second term of Eq. (17), we deduce that

t� ¼ krfðxÞkkrfðpÞk
rfðxÞTrfðpÞ 1þ bð Þr: (18)

Note that with b ¼ cos ð2aÞ, the intersection ’ðt�Þ is
realized inside the closed ball Bðp; rÞ (details can be
found in Appendix D.1, available in the online supple-
mental material). From Lemma 2, krfðxÞkkrfðpÞk

rfðxÞTrfðpÞ < 1
cos ðaÞ ,

thus by Eq. (18) we deduce the right-hand side of the fol-

lowing inequality

dðxÞ � t� <
1þ b

cos ðaÞ r ¼ 2 cos ðaÞdðxÞ; (19)

while the left-hand side is trivial by construction of dðxÞ.
In conclusion, by observing that x ¼ ’ð0Þ, if we prove

that fð’ð0ÞÞ < 0 < fð’ðt�ÞÞ, we can deduce the existence
of tðxÞ < t� such that fð’ðtðxÞÞÞ ¼ 0, which finally
implies Eq. (16). The condition fð’ð0ÞÞ < 0 holds by
assumption. Moreover, by construction, ’ðt�Þ 2 Rþ and
so by Corollary 1fð’ðt�ÞÞ is strictly positive. Hence the
theorem follows. tu

4.3 A Significant Lower Bound of s

This section presents an analysis of the magnitude of the
radius of the tubular neighborhood Vs in which Eq. (16)
holds and provides a lower bound of the largest s. In

particular, the following lemmas provide an analytical esti-
mation of two lower bounds ~s1 and ~s2 for s1 and s2, respec-
tively, depending on the gradient of f and on the Hessian
r2f . Henceforth, we make use of the following notation

kr2fkK :¼ max
x2K

kr2fðxÞk;

where K is a compact set and kr2fðxÞk is the operator norm
of the matrixr2fðxÞ inducted by the euclidean norm.

Lemma 4 (Lower bound of s1). Let V ¼ Vd of Lemma 2. For
each a 2 ð� p

4 ;
p
4Þ

~s1ðaÞ :¼ 1

2

infx2V krfðxÞk
kr2fk

V

ð1� cos ðaÞÞ � s1ðaÞ; (20)

where s1ðaÞ is the same of Lemma 2.

Proof. See Appendix B.1, available in the online supple-
mental material tu

Lemma 5 (Lower bound of s2). For each b 2 ð0; 1Þ

~s2ðbÞ :¼ 2b � infp2B krfðpÞk
kr2fkB

� s2ðbÞ; (21)

where s2ðbÞ is the same of Lemma 3.

Proof. See Appendix B.2, available in the online supple-
mental material tu
The lemmas above provide a lower bound ~s of s by con-

sidering ~sðrÞ ¼ minf~s1ðaÞ; ~s2ðbÞg, where a and b are such
that r ¼ 2 cos ðaÞ and b ¼ cos ð2aÞ.

Therefore, observe that the lower bounds ~s1 and ~s2

depend on two main parameters that measure the linear-
ity of the function f . In fact, for an affine function fðxÞ ¼
wTxþ b, these bounds diverge to þ1 due to the Hessian
of f that is zero. This is in line with the properties of an
affine classifier f , for which the direction provided by
the gradient is parallel to the optimal direction needed
to reach the boundary.

Moreover, for a highly irregular function, with many sta-
tionary points close to the boundary, the bound ~s could be
close to zero, resulting in an extremely small tubular neigh-
borhood for which the distance estimation holds.

In this section, we are interested in finding a value of r
that provides the theoretically larger VsðrÞ for which
Inequality (8) holds. In practice, this problem is hard to
solve — it would require the complete knowledge of all the
stationary points of f . However, the following observation
brings to an interesting value r� that provides a lower
bound of the form

0 < ~s1ðr�Þ � maxffiffi
2

p
< r< 2

~sðrÞ � maxffiffi
2

p
< r< 2

sðrÞ; (22)

where ~s1ðr�Þ represents a lower bound of the largest s for
which Inequality (16) holds.

Observation 1 (Lower bound of largest s). Let V ¼ Vd of
Lemma 2, and let a� solving 1

2 ð1� cos ða�ÞÞ ¼ 2 cos ð2a�Þ.
Then r� ¼ 2 cos ða�Þ satisfies Eq. (22).

Proof. Let V ¼ Vd of Lemma 2, let s1, s2 those in Lem-
mas 4 5, and let ~sðrÞ ¼ minf~s1ðaÞ; ~s2ðbÞg, where a and b
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are such that r ¼ 2 cos ðaÞ and b ¼ cos ð2aÞ. Observe that,
since B 
 Vd, then infx2V krfðxÞk � infx2B krfðxÞk, and
kr2fk

V
	 kr2fkB. Hence, we can consider the lower

bound of ~sðrÞ

infx2V krfðxÞk
kr2fk

V

min
1

2
ð1� cos ðaÞÞ; 2 cos ð2aÞ

� �
; (23)

where r ¼ 2 cos ðaÞ. And since function uðaÞ :¼
minð12 ð1� cos ðaÞÞ; 2 cos ð2aÞÞ has maximum in a�, the
statement follows. tu
In summary, the above results show that, given a neigh-

borhood V ¼ Vd in which Equation (7) has unique solution
(see Theorem 1) and there are no stationary points of classi-
fier f (see Lemma 2), Inequality (8) holds for r� � 1:461, and
s� :¼ s1ðr�Þ is given by the observation above.

4.4 Error Estimation for Multi-Class Classifiers

The analysis above can be extended to a multi-class classi-
fier by leveraging the two strategies presented in Section 3.
In fact, if f : Rn ! RC is a classifier with C classes, both
strategies reduce to a search for a solution of the minimal
root problem RP for one or more binary classifiers in which
the analysis above can be applied.

The Fast-Outer-Boundary strategy presented in Sec-
tion 3.2.2 consists in solving ProblemRP for a binary classifier
of the form LðlÞ : Rn ! R where LðlÞðxÞ :¼ Lðx; lÞ ¼ flðxÞ �
maxj6¼lfjðxÞ. Thus, by applying Theorem 2 to LðlÞ, we deduce
the existence of a sðlÞðrÞ such that the estimation holds for
each sample xwith k̂ðxÞ ¼ l. Therefore, by considering sðrÞ ¼
minls

ðlÞðrÞ, we obtain the same extension of Eq. (8).
The Closest-Boundary strategy presented in Section 3.2.1

consists instead in solving Problem RP for a list of minimal
root problems relative to binary classifiers of the form fjl ¼
fl � fj. In particular, for each r, Theorem 2 ensures the exis-
tence of a neighborhood with radius sjlðrÞ such that the fol-
lowing inequalities holds

1

r
tjðx; lÞ � djðx; lÞ � tjðx; lÞ; 8j;

wherewe keep the notation of Section 3.2.1. By taking themini-
mum over j 6¼ lwe deduce the estimation in Eq. (8) for every x
with k̂ðxÞ ¼ l and x 2 VslðrÞ, where slðxÞ ¼ minj6¼lsjlðrÞ. In
conclusion, by considering sðrÞ ¼ minl;j6¼l sjlðrÞ, we deduce
an extension of the desired inequality for themulti-class case.

5 EXPERIMENTS

This section presents a set of experiments aimed at validating
the strategies proposed in Section 3. They are executed on
four neural classifiers, each trained on a different dataset. The
approximate distances provided by the tested strategies are
compared in Section 5.3 with the Iterative Penaltymethod (Sec-
tion 5.1),whichprovides the ground-truthdistance. Section 5.4
reports an empirical estimation of s for three noticeable values
of r. Finally, Section 5.5 discusses the case inwhich all the clas-
sifiers are attacked with different known methods. The mag-
nitude of each attack is bounded to be lower than tðxÞ=r� in
order to show that the attack success rate drops to zero for
samples inVŝ� , where ŝ� is an estimation of s�.

5.1 Ground Truth Distance Estimation

In order to compare the approximate distances that solve
Equation (RP), we need an accuratemeasure of the theoretical
distance dðxÞ, which is practically unknown in the general
case. To tackle this problem, based on the ideas presented
in [35] and [6], we solve Equation (MP) by reducing to the fol-
lowingminimumproblemwith penalty analogous to Eq. (1)

dðx; l; cÞ ¼ min
d2Rn

kdk þ c � Lðxþ d; lÞþ; (24)

where Lðx; lÞ ¼ flðxÞ �maxj 6¼lfjðxÞ and Lþ ¼ maxf0; Lg.
For each sample ðx; lÞ and for each penalty value c, we

perform a gradient descent with the Adam optimizer [36],
with default parameters, up to 104 iterations, stopping the
procedure when �Tol < LðxðkÞ; lÞ � 0, where the tolerance
Tol is set to 5e�5. Note that this convergence criterion
ensures that the solution lays close to the boundary and it is
contained in the adversarial region [j6¼lRj.

Similarly to [6], the best penalty c is selected through a
bisection-like search. In details, let clow ¼ 0 and cup such that
dðx; l; clowÞ ¼ 0 and dðx; l; cupÞ does not converge for all the
samples x in the dataset. In our experiments, we discovered
that cup ¼ 100 is large enough to satisfy this definition.
Then, through successive bisections, we can define ccurr ¼
1
2 ðclow þ cupÞ and either (i) set cup ¼ ccurr (i.e., decreasing cup)
if the optimization for dðx; l; ccurrÞ does not converge, or (ii)
set clow ¼ ccurr (i.e., increasing clow) if it converges. We stop
the search for c after 12 bisections. The whole procedure is
implemented in batch mode to exploit GPU acceleration.

During the experiments, we noted that the Iterative Pen-
alty (IP) method can provide, for a few of the tested sam-
ples, an estimation of dðxÞ that is slightly higher than other
global methods, such as DeepFool (DF) [5] and Decoupling
Direction Norm (DDN) [9]. Thus, in order to adopt a more
precise ground truth, we decided to consider for each sam-
ple x the ground-truth distance dðxÞ as the minimum dis-
tance obtained with IP, DF, and DDN.

5.2 Experimental Settings

As done by Carlini and Wagner [13], the proposed techni-
ques were evaluated on different datasets, each associated
with a different neural network. In the following, we use the
name of the dataset to refer to the experimental setting com-
posed of the dataset itself and the corresponding network.

MNIST
The MNIST handwritten digits dataset [37] was used to

train a vanilla LeNet [38] within a 2� 2-MaxPool, 2 convo-
lutional, and 3 fully connected layers, achieving a 1% error
rate on the test set. The training was performed without
data augmentation, using the Adam optimizer [36] (default
hyper-parameters) to minimize the Cross Entropy Loss
with a 128 batch size for 5 epochs.

Fashion MNIST
This dataset includes 50,000 training images and 10,000

test images (28� 28 greyscale pixels) grouped in 10 clas-
ses [51]. Compared to MNIST, this dataset is less trivial and
requires a finer tuning to craft a model with a good accuracy.
It was used to train a vanilla LeNet with the same structure of
the previous one. The training was performed without data
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augmentation, byminimizing the Cross Entropy loss with the
Adam optimizer for 30 epochs (with a batch size of 128) to
achieve a 91% accuracy on the test set.

CIFAR10
This dataset contains 60,000 RGB images of size 32� 32

pixels divided in 10 classes [39]. Inspired by [11], it was used

to train a Resnet32 model [40] over the first 50,000 images of

the dataset with data augmentation, as described in the origi-

nal paper. In details, the images were randomly cropped and

horizontally flipped. The training was performed by mini-

mizing the Cross Entropy loss for 182 epochs by the stochastic
gradient descent with Nesterov momentum (SGD) [41] with a

starting learning rate of 0.1, momentum of 0.9, and a weight

decay of 1e� 4. The learning ratewas decreased using amul-

tiplicative factor of 0.1 after the 90th and the 135th epoch,

achieving a 8.8% error rate over the test set. This is in-line

with the original results of [11].

GTSRB
The German Traffic Sign Recognition Benchmark [42] con-

tains about 51,000 traffic signs RGB images of various shapes
(from 15� 15 to 250� 250), grouped in 43 classes. It was
used to train a MicronNet [43], a compact network similar to

LeNet that classifies pixel-wise standardized 48� 48 images.
The training was performed over the first chunk of the data-
set, containing �39,000 images with a data augmentation
technique. During training, each image was randomly
rotated by an angle in �5, translated towards a random
direction with magnitude lower than 10%, and finally scaled
with a factor between 0.9 and 1.1. Each transformed image
was then scaled to have a dimension of 48 pixels per side.
The model was trained to minimize the Cross Entropy loss
by the SGD optimizer with a learning rate of 7e� 3, a
momentum of 0.8, and a weight decay of 1e� 5, for 100
epochs. The learning rate was decreased every 10 epochs
with a multiplicative factor of 0.9. We achieved a 1.2% error
rate over the test set, which is comparable with the state-of-
the-art classification performancewith this dataset.

5.3 Comparing Distances

This section focuses on comparing the estimated distances
to the ground-truth distance for the four network models
and corresponding data sets. For each sample ðx; lÞ, the
approximate distances tðx; lÞ are obtained by applying the
zero finding algorithms (Bisection and Newton) to the strat-
egies CB and FOB presented in Section 3. The ground-truth

Fig. 3. Comparison of the approximate distance tðx; lÞ, computed by the Bisection CB strategy, and the ground-truth distance dðx; lÞ, for the four mod-
els considered in Section 5.2. Each dot represents the pair ðdðx; lÞ; tðx; lÞÞ where x is a sample with label l. The region between the green line (slope
1) and the other lines (slope

ffiffiffi
2

p
; r�; 2), highlights the samples for which the Inequality 8 holds. Observe that, according to the theoretical results, the

closer the boundary (small dðx; lÞ) the higher the number of dots in the region of interest.

TABLE 2
Average Distance From the Boundary and Average Number of Evaluations of the Models for the Four Datasets Obtained

With Different Methods

Strategy Algorithm MNIST FMNIST CIFAR10 GTSRB

Avg.Dist. # Evals Avg.Dist. # Evals Avg.Dist. # Evals Avg.Dist. # Evals

FOB Bisection 1.645 17 0.455 16 0.508 17 2.221 17
CB Bisection 1.467 17*y 0.385 16*y 0.483 17*y 1.667 17*y
FOB Newton 1.641 3 0.442 3 0.496 4 2.169 4
CB Newton 1.466 3* 0.385 3* 0.481 3* 1.668 3*

DF 1.526 2* 0.318 3* 0.346 3* 1.516 3*

DDN 1.287 1000 0.281 1000 0.338 1000 1.343 1000
IP 1.198 30162 0.261 32774 0.289 50609 1.262 34769
GT 1.172 - 0.255 - 0.283 - 1.204 -

* Average number of evaluations for each class of the datasets.
y Only one backward for each run. The remaining evaluations just perform forwards of the model.
The behaviour of the tested methods for samples close to the boundary is detailed in Fig. 4. Columns ’# Evals’ report the number of times the method requires a for-
ward and a backward pass thorugh the model.
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distance dðx; lÞ is computed through the technique pre-
sented in Section 5.1.

Fig. 3 shows a comparison between the approximate dis-
tance tðx; lÞ, computed by the Bisection CB strategy, and the
ground-truth distance dðx; lÞ for the four models considered
in Section 5.2. For each sample x of label l, each dot in a
graph represents the pair ðdðx; lÞ; tðx; lÞÞ. The dashed green
line with slope 1 represents the points in which dðx; lÞ ¼
tðx; lÞ. The other three lines have slopes ffiffiffi

2
p

, r� and 2, where
r� is defined in Section 4, and represent the estimation of
Equation (8) for different values of r. Observe that almost
all the points close to the boundary (i.e., those with a small
ground-truth distance to the boundary) are located above
the green line and below the others, confirming that the esti-
mation tðxÞ � rdðxÞ holds.

Table 2 reports the average distances from the boundary
for each dataset and for each tested strategy, and the aver-
age number of evaluations for a timing comparison. The sta-
tistics are computed over all the samples in the test set that
satisfy the following conditions:

1) the sample is correctly predicted by the model;
2) the algorithms reach the convergence;
3) the ground-truth distance is lower than 2.0 for

MNIST and GTSRB, and lower than 0.5 for FMNIST
and CIFAR10 (threshold values were selected to
include a large part of the test set while still focusing
on the region close to the boundary).

The amount of tested samples is detailed in Table 3. As
one may expect, DF, DDN and Iterative Penalty (IP) provide
lower distances with respect to our strategies CB and FOB.

However, the distances computed by CB and FOB are asso-
ciated with a bound on the approximation error relative to
the theoretical distance dðxÞ. The boxplot in Fig. 4 provides
a comparison of the approximate distances computed by
the Bisection method applied to the CB strategy, DeepFool,
IP, and DDN. The ground truth distance reported on the x-
axis is partitioned, differently for each dataset, into four
intervals, whose dimensions are summarized in Table 3.

Again, note that for points near the boundary, our
method provides an accurate estimation of d, whereas, far
from the boundary, a global techniques result to be more
accurate, returning a better approximation of the ground-
truth distance.

5.4 Estimation of sðrÞ
Theoretically, Theorem 2 ensures that for each r 2 ð ffiffiffi

2
p

; 2Þ
there exists a sðrÞ for which Inequality (8) holds. In practice,
however, for an arbitrary classifier f , such a sðrÞ cannot be
deduced explicitly. Nevertheless, we can empirically esti-
mate its value. In particular, given a data set X , we can
define ŝðrÞ, an estimation of sðrÞ, as follows:

ŝðrÞ ¼ min dðx; lÞ :
tðx; lÞ
dðx; lÞ > r; ðx; lÞ 2 X

� �
; (25)

which corresponds to the maximum distance for which
Inequality (8) holds for the samples in X .

Table 4 reports different estimations of s for different val-
ues of r, in accordance with Section 5.3. For each r, the esti-
mation ŝðrÞ is deduced on a subset of the testset built by
randomly sampling 60% of the images. Observe that the val-
ues of s provided by CB are larger than or equal to those
provided by FOB. In terms of algorithms, the customized
bisection algorithm (augmented with the armijo-like rule)
provides more reliable results with respect to the Newton
method. We believe this is due to the fact that there is no
guarantee that the Newton algorithm provides the smallest posi-
tive zero of the function. These values can be seen as a mea-
sure of the regularity of the models: the higher ŝ, the higher
the regularity of the model (or the boundary). Also observe
that these results are in line with Table 2, in which the
model for FMNIST has an average distance that is lower
than the one of the LeNet for MNIST (on which the images

TABLE 3
Summary of the Number of Samples in Each Interval for

Each Dataset

MNIST FMNIST CIFAR10 GTSRB

n1 722 1198 849 576
n2 2200 1723 1311 1347
n3 3669 1767 1628 1696
n4 2184 1350 1636 1866
Tot. 8775 6038 5424 5485

The MNIST and GTSRB are partitioned into intervals of length 0.5 from 0 to
2. The FMNIST and CIFAR10 are partitioned into intervals of length 0.125
from 0 to 0.5.

Fig. 4. Comparison of the distances computed by the Bisection CB strategy, DeepFool, Decoupling Direction Norm (DDN), and Iterative Penalty with
respect to the ground-truth distance. For a clearer representation, the ground-truth distance is partitioned into four intervals that contains a number
of samples summarized in Table 3. For each method, the lower and the upper side of each box represent the first and the fourth quartile Q1 and Q2,
respectively; the lower and the upper whisker represent the quantiles Q1 � 1:5 � Iq and Q3 þ 1:5 � Iq, respectively, where Iq is the interquartile range.

BRAU ETAL.: ON THE MINIMAL ADVERSARIAL PERTURBATION FOR DEEP NEURAL NETWORKSWITH PROVABLE ESTIMATION ERROR 5049

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 15,2023 at 12:17:11 UTC from IEEE Xplore.  Restrictions apply. 



have the same dimension and have been normalized with
same mean and standard deviation).

5.5 Adversarial Robustness Below ŝ

This section evaluates the goodness of the empirical estima-
tion ŝ� of the theoretical s� (defined in Observation 1) to
assess the model robustness against adversarial examples
bounded in magnitude by tðxÞ=r�.

In formulas, let ~x ¼ Adv"ðx; lÞ an adversarial example
crafted with an unknown attack techniqueAdv" that for each
sample ðx; lÞ provides a new sample ~x (if exists) such that
k̂ðxÞ 6¼ l and k~x� xk � ". Wewant to empirically show that

x 2 Vs� : 9Adv"ðx; k̂ðxÞ; "Þ; " <
tðxÞ
r�

� �
¼ ;: (26)

In other words, we empirically assess that for each sam-
ple distant from the boundary less than ŝ�, there are no
adversarial perturbations with a magnitude smaller than
tðx; lÞ=r�. For this purpose, we only test the approximation
tðxÞ provided by the CB strategy with the bisection method.
In fact, higher values of ŝ represent a worst case to be tested,
since there are more samples with a distance lower than ŝ.

By using FoolBox [44], we generated adversarial exam-
ples for the four datasets with the following techniques:
Decoupling Norm Direction (DDN) [9], Deep Fool (DF) [5],

Projected Gradient Descent (PGD) [8], Fast Gradient Method
(FGM) [44].

For each dataset X , and for each sample ðx; lÞ 2 X , we
considered the clipped output of FoolBox that is guaran-
teed to have magnitude lower than ", i.e., k~x� xk < ".
Observe that in this test the magnitude of the attack " is
never computed by using the ground-truth distance dðx; lÞ,
but by setting " ¼ tðx; lÞ=r�.

The results of this experiment for the four datasets are
shown in Fig. 5, in which each graph reports the number of
adversarial examples found with magnitude tðxÞ=r� as a func-
tion of the ground-truth distance dðx; lÞ. In detail, each stepped
line reports, as a function of d, the cardinality of the set fðx; lÞ 2
X : 9Adv"ðx; lÞ; " ¼ tðxÞ

r� ; dðx; lÞ � dg rescaled to be one for the
maximum value of d, i.e, the fraction of points that are out of
the bound for the tested attack. All graphs show that the higher
d, the higher the number of samples that escapes the bounds (a
sample escapes the bounds if tðx; lÞ=r� is higher than real dis-
tance from the boundary). In each plot, the values of ŝ� com-
puted in Table 4 are represented by the dashed red lines. It is
important to observe that the estimation of ŝ� was deduced as
explained in the previous section, i.e., by applying Eq. (25)
without knowing the results of the attacks in advance.

The result of this test shows that the two datasets
FMNIST and CIFAR10 have a different behavior with
respect to MNIST and GTSRB. In particular, for MNIST and
GTSRB, the estimation of s� is more selective, meaning that
the estimation done by Inequality (8) holds for distances
slightly larger than ŝ�. Moreover, for FMNIST and CIFAR10
datasets, the estimation of s� results to be less accurate, and
for few samples (1 sample for each dataset) the attacks suc-
ceed even if the ground truth distance is lower than ŝ, prov-
ing that the the estimation in Inequality 8 does not hold in a
neighborhood of radius ŝ� at least for one example.

5.6 Comparison With CLEVER

This section compares the estimation tðx; lÞ=r�, obtained by
the bisection method with the CB strategy, with the lower
bound bL obtained by CLEVER implemented by IBM in [45].
Note that both CLEVER and the CB strategy can provide esti-
mates of different quality depending on the number of evalu-
ations of the model. To fairly compare the quality of the

Fig. 5. Attack success rate cumulative curve for attacks bounded in magnitude less than tðxÞ=r� obtained with Bisection method and Closest Bound-
ary strategy. The dashed red line represent ŝ�, which approximates s� of Theorem 2. For MNIST and GTSRB, none of the samples with distance
from the boundary less than ŝ� can be perturbed by the tested bounded attacks, in accordance with the theoretical results. For the FMNISTand the
CIFAR10 dataset, instead, the estimation ŝ� results to be less accurate, failing in a tiny portions of the tested samples (3 and 5 samples overall
respectively).

TABLE 4
Comparison of All the ŝ Estimated by the Different Techniques

MNIST FMNIST CIFAR10 GTSRB

r Algo. Strategyffiffiffi
2

p
B FOB 0.34 0.06 0.04 0.15

CB 0.37 0.06 0.13 0.58
N FOB 0.34 0.06 0.04 0.15

CB 0.37 0.01 0.00 0.58
r� B FOB 0.37 0.06 0.04 0.15

CB 0.59 0.08 0.13 0.58
N FOB 0.37 0.06 0.04 0.15

CB 0.59 0.01 0.00 0.58
2 B FOB 0.37 0.12 0.11 0.49

CB 0.72 0.12 0.17 0.87
N FOB 0.37 0.12 0.11 0.49

CB 0.72 0.01 0.00 0.87
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results provided by the two methods, it is hence required to
bound the maximum number of evaluations that they per-
form. In our experiments, this bound was set to 20, which
was empirically selected by observing that the CB strategy
requires only one gradient evaluation and (on average) at
most 17 forward passes per class to converge. Note that the
recommended amount of gradient evaluations of CLEVER is
500 � 1024, which is clearly far from the bound we imposed.
It is also worth remembering that, for a given sample, the
Bisection method with CB strategy only performs one gradi-
ent evaluation at the first step (for each class), while all the
following steps of the algorithm only require a forward pass
of themodel (and no gradient computations).

Table 5 provides a close comparison between the two
lower bounds tðx; lÞ=r� and bL. The metric named ”Failure
[%]” represents the percentage of samples for which the
expected lower bounds are higher than dðx; lÞ. The metric
named ”Eval [#]” counts the mean number of evalua-
tions of the models for each class. Observe that, for all
the datasets, the amount of failures of the CB strategy is
much lower than the one of CLEVER (bL). To consider
only the scenarios supported by our theoretical analysis
from Section 4, only samples with a ground-truth dis-
tance lower than the corresponding empirical lower
bound ŝ� are considered.

6 CONCLUSION

This paper addressed the problem of estimating the minimal
adversarial perturbation by presenting a novel strategy based
on root-finding algorithms and providing theoretical guaran-
tees on the goodness of the estimation. Indeed, differently
from the state-of-the-artmethods,which only focus onfinding
the minimal adversarial perturbation, the main contribution
of this work is the derivation of a theoretical estimation of the
error committed. Such a theoretical finding can be leveraged
to verify the robustness of a classifier for a given input x close
enough to the classification boundary. Furthermore, the
approximate distance tðx; lÞ obtained with the proposed
approaches results to be less computationally expensive to
compute than the distance dðx; lÞ obtainedwith the aforemen-
tioned methods, enabling a fast verification of the "-robust-
ness of a classifier for the sample x. The presented results
open two interesting research directions to be addressed in
future work. First, the estimated value ŝ only provides an
empirical upper bound of the theoretical s on a validation set,
while there are no findings on the accuracy of such an

empirical estimation with respect to the theoretical one. Sec-
ond, as shown in Section 4.3, the theoretical bound s� depends
on the first and the second derivatives of the model, which
cannot be easily deduced for general DNN classifiers. Hence,
future works should focus on leveraging s� to design more
regular models, for which our analytical estimations hold for
a larger amount of samples (i.e., for a largerVs) while preserv-
ing the classification accuracy. Towards this direction, prom-
ising recent works [46], [47], [48] focus on networks that have
bounded krfk by design. Based on this, we believe that a for-
mal estimation of s� is a fundamental step for a fast and tight
estimation of the boundary distance.
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