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Abstract—The great performance of machine learning algorithms and deep neural networks in several perception and control tasks is

pushing the industry to adopt such technologies in safety-critical applications, as autonomous robots and self-driving vehicles. At

present, however, several issues need to be solved to make deep learning methods more trustworthy, predictable, safe, and secure

against adversarial attacks. Although several methods have been proposed to improve the trustworthiness of deep neural networks,

most of them are tailored for specific classes of adversarial examples, hence failing to detect other corner cases or unsafe inputs that

heavily deviate from the training samples. This paper presents a lightweight monitoring architecture based on coverage paradigms to

enhance the model robustness against different unsafe inputs. In particular, four coverage analysis methods are proposed and tested in

the architecture for evaluating multiple detection logic. Experimental results show that the proposed approach is effective in detecting

both powerful adversarial examples and out-of-distribution inputs, introducing limited extra-execution time and memory requirements.

Index Terms—Neural networks coverage, DNNs robustness, adversarial examples detection

Ç

1 INTRODUCTION

RECENT developments of machine learning algorithms
exhibited superhuman performance to solve specific

problems, as image classification, object detection, control,
and strategy games. However, most of the AI algorithms
developed today have been used for non-critical applica-
tions, as face aging, speech recognition, text prediction,
gaming, image restoration and colorization, etc. Due to their
excellent performance, there is a great industrial interest in
using deep neural networks (DNNs) and, more in general,
machine learning algorithms in autonomous systems, as
robots and self-driving vehicles. When moving to such
safety-critical application domains, several questions arise:
can we trust machine-learning algorithms as they are? Are
they prone to cyber-attacks? What to do if they fail? Are out-
puts generated within bounded response times? To address
these questions, several issues need to be addressed at dif-
ferent levels of the architecture, as security, safety, explain-
ability, and predictability.

This paper focuses on security and safety, which are quite
intertwined. Several works have shown that DNNmodels are
quite sensitive to small input variations, which can cause a
DNN to produce a wrong prediction. This property has been
used to generate adversarial examples (AEs), which are spe-
cially crafted inputs that appear genuine to humans but are
incorrectly classified by themodel with a high confidence.

Another serious problem is caused by inputs that are sig-
nificantly different from those used to train the model. In
such corner cases, the output of the model cannot be
trusted. The problem can arise for several reasons. A com-
mon situation occurs when the training set contains a bias,
introduced when most objects of a class appear on a similar
background. In this case, the model can learn such irrele-
vant features, generating a wrong prediction with high con-
fidence when an object belonging to a different class
appears on the same background.

Another problem arises from the fact that, normally,
DNNs for classification tasks are trained to classify m given
classes using data sets containing only objects belonging to
those classes. In this case, in the presence of a new object
that does not belong to any of the m classes, the network
cannot say “I don’t know”, and could be forced to take a
decision by the softmax output layer, which imposes that
the sum of the output values has to be 1.0. In general, when
the feature distribution of the input is significantly different
from those that characterize the data used to train the
model, the output should not be trusted, because the input
could activate unusual neural paths that could cause a
wrong prediction with high confidence.

To improve the robustness of DDNs against adversarial
attacks, several methods have been proposed in the litera-
ture. Some of these methods consist of augmenting the
training data by suitable transformations, or adversarial
examples. Other works enforced the robustness of DNNs by
defenses applied at inference or testing time. They are
reviewed in more detail in Section 2.

Contribution. Inspired by coverage metrics for DNNs
studied in previous work for offline testing purposes, this
work proposes newmethods to enhance the trustworthiness
of DNNs by providing a confidence value coupled to the
prediction made by the network. The confidence value is
obtained by coverage-based run-time monitoring.
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In particular, while the prediction score of DNNs is still
associated with the model softmax output, the prediction

confidence is computed by analyzing the activation state of

a large number of internal neurons and comparing it with

the corresponding state produced from a trusted data set.

The proposed approach consists in two phases. In a prelimi-

nary (off-line) phase, the neuron outputs, in each layer and

for each class, are analyzed and aggregated into a set of cov-

ered states, which all together represent a signature that

describes how the network responded to those samples for

each given class. Such a signature is derived using a trusted

dataset, that is, a subset of the training samples for which

that DNN generates a correct prediction with a softmax

probability higher than a given threshold. Then, at runtime,

each new input is subject to an evaluation phase, in which

the activation state produced by the input in each layer is

compared with the corresponding signature for the class

predicted by the network. The approach is schematically

illustrated in Fig. 1.
The adopted coverage methods are procedural, well-

defined, and not based on learning-enabled components: as
such, they provide solid foundations for checking the run-
time behavior of DNNs in critical systems. The proposed
approach can be used for detecting adversarial examples
and, more in general, inputs that do not comply with the
distribution of a pre-selected set of inputs used as a refer-
ence trusted data set. While many previous works rely on
input transformations to accomplish the later tasks, this
paper performs run-time monitoring by exploiting a white-
box model analysis. Furthermore, the proposed approach
proved to be suitable for resource-constrained devices, since
it introduces limited extra latency at inference time and a
modest memory footprint in most cases.

In summary, this paper provides the following contributions:

� It introduces a novel and flexible monitoring archi-
tecture for enhancing the trustworthiness of DNNs
through coverage criteria.

� It presents four Coverage Analysis Methods (CAMs)
to instantiate the proposed monitoring architecture.

� It presents an implementation of the proposed moni-
toring architecture and the four CAMs as GPU-accel-
erated extensions of the Caffe framework.

� It evaluates the proposed methods in terms of detec-
tion performance, additional inference time, and
memory footprint. State-of-the-art methods to gener-
ate unsafe inputs have been used for the evaluation.

Paper Structure. The rest of the paper is organized as fol-
lows. Section 2 reviews the state-of-the-art methods focused
on improving the robustness of DNNs. Section 3 introduces
the notation adopted in the paper. Section 4 describes the
proposed architecture with more details. Section 5 formally
presents four CAMs and the corresponding algorithms. Sec-
tion 6 illustrates the implementation of the proposed
approach in Caffe. Section 7 reports the experimental
results. Finally, Section 8 states the conclusions and future
work.

2 RELATED WORK

The literature related to this work is quite vast and can be
classified into (i) methods based on data augmentation, (ii)
inference- and testing-time defense mechanisms, and (iii)
methods to quantify the trustworthiness of DNNs.

Data Augmentation. To improve the robustness of DNNs
against adversarial attacks (e.g., [1], [2], [3], [4]), various
methodologies have been proposed in the literature. Most
of them rely on data augmentation and work by enriching
the training set with new samples generated via transforma-
tions of the available training inputs. This approach has
been followed by Kurakin et al. [5], Pei et al. [6], and Shaham
et al. [7]. Data augmentation has shown to significantly
improve robustness of neural networks and their capability
to generalize among new valid inputs. However, it does not
help defend against unseen AEs.

Alternative approaches, such as those proposed by
Sinha et al. [8] and Tram�er et al. [9], tried to make DNNs
more robust by performing a specific type of data augmen-
tation called adversarial training. Adversarial training is a
type of defense, first proposed by Goodfellow et al. [1],
that works by enriching the training set with pre-com-
puted AEs and retraining the network until it learns to
classify them correctly. Papernot et al. [10] have instead
extended a DNN distillation technique [11] to devise a
new training method capable of improving the network
robustness with respect to AEs. Despite these interesting
works, it is becoming more and more evident that avoid-
ing unsafe behaviors of DNNs is a very complex or even
impossible task [12], [13]. Therefore, it is preferable to
accept the existence of unsafe inputs and focus on their
detection by means of defense mechanisms.

Inference- and Testing-Time Defenses. Recent works tried to
address these issues with new approaches based on enforc-
ing the robustness of DNNs by means of defenses applied
at inference or testing time. They rely on an online valida-
tion of the DNN behavior to establish whether a new input
is likely to be dangerous. Most of the proposed detection
methods are based on the observation that AEs typically lie
in the proximity of the classification boundaries [14], [15].
Relevant examples of such works are those by Wang et al.
[16], which attempts at validating network inputs using vot-
ing techniques on multiple mutations of the network model,
and Srisakaokul et al. [17], which assembles multiple robust
network models for improving the output accuracy. Biggio

Fig. 1. Simplified scheme of the approach used to derive a confidence
level for each prediction.
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et al. [18] pointed out the weaknesses of several types of
Deep Learning algorithms using gradient-based attacks to
question a general detection mechanism, examining differ-
ent levels of knowledge of the attacked system. Also Carlini
and Wagner [13] addressed these issues by showing the
poor effectiveness of various detection approaches.

Other detection methods, such as Features Squeezing [19]
and Vision-Guard [20] study the divergence of the probabil-
ities score vector among network outputs when providing
as network inputs multiple versions of the same image
obtained with transformations (e.g., jpeg compression, rota-
tion, etc.). These methods were conceived by focusing on
the fragility of specific types of AEs, as also pointed out
in [21]. Other approaches, such as DefenseGan [22] and
MagNet [23], use generative adversarial networks and
autoencoders, respectively, to remove possible malicious
perturbations from the input sample, which could lead the
network to fail the prediction.

A common drawback of several strategies mentioned
above is that they are not explicitly conceived to improve
the trustworthiness of the network in general, i.e., by deriv-
ing interpretable assessments of the model behavior at run-
time, but rather to counteract specific classes of AEs. As
such, they may fail in detecting other corner cases or other
dangerous inputs (e.g., inputs that are unsafe due to over-
generalization [14] or AEs that are not compliant with a
norm-based definition [24], [25]). Section 7 shows how the
approaches proposed in this work are capable of improving
the detection performance against different types of unsafe
inputs, also introducing less run-time overhead.

Defenses Based on Internal Network Analysis. Much closer
to this paper are other works that investigated the internal
behavior of DNNs to improve the trustworthiness of their
outputs. For instance, Papernot et al. [26] introduced a new
inference logic for DNN-based classifiers, called DkNN.
According to this method, a classical inference is used for
extracting the internal activations values of the network.
Then, such activations are processed with a statistical analy-
sis based on the k-Nearest Neighbors algorithm to decide
the network output. This approach has been shown to
improve the classification performance of DNNs in the pres-
ence of malicious inputs, possibly due to the fact that it
relies on a more interpretable prediction score than a classi-
cal softmax-based output, which has frequently been cited
as a poorly credible confidence metrics [26], [27], [28].

Note that most of the works cited above were not
designed to evaluate the trustworthiness of the original
DNN model. Rather, they drastically change the inference
logic or the input data to improve the robustness of the
model. Nevertheless, it has been shown that they can still
fail to detect several unsafe inputs [29], [30]. Furthermore,
it is important to remark that most of the works discussed
are not suitable for being applied in real-time and/or on
embedded devices. Indeed, they require accessory software
components that considerably increase the memory foot-
print (e.g., [26]) and the running time of the inference phase
(e.g., [22]).

Finally, it is worth mentioning other relevant approaches
that improve the trustworthiness of DNNs by processing
internal network activations through machine learning
algorithms. Sotgiu et al. [31] proposed a complementary

architecture to the original DNN, called Deep Neural Rejec-
tion (DNR), which quantifies the coherency of the neuron
outputs generated by a new input with the respect to the
one generated by training samples. Although the basic con-
cept is very close to the DkNN [26], DNR uses Support Vec-
tor Machines with Radial Basis Kernels. Also, Carrara et al.
[32] followed a similar approach, using a Long Short-Term
Memory (LSTM) to detect unexpected activation patterns
deemed as consequences of adversarial examples. A draw-
back of these approaches is that the machine learning used
to improve the trustworthiness of DNNs may in turn be a
source of untrustworthiness for the whole system, hence
just shifting the problem.

Quantification of the DNN Trustworthiness. Significant
attention has also been devoted to metrics that quantify the
trustworthiness of DNNs, possibly with the end of match-
ing certification requirements with formal guarantees. As
Huang et al. [24] pointed out, it is useful to distinguish
between verification and testing methods. The goal of verifi-
cation methods is to derive formal robustness properties for
neural networks [33], [34], [35]. However, due to inher-
ently hardness of the corresponding verification problems,
they suffer of scalability issues, especially when applied to
modern DNN architectures [36]. For this reason, testing
methods are usually preferred to approximate the certifica-
tion process to work on a finite set of test inputs.

The completeness of the number and type of the gener-
ated test cases is usually measured by applying coverage cri-
teria for DNNs, which are considerably different from those
that are commonly used for classical software [37]. Pei et al.
[6] first proposed neuron coverage as a criterion for testing
DNNs. Subsequently, multiple testing metrics based on
neurons were proposed [38].

In addition to the neuron-based criteria, more accurate
criteria based on Modified Condition/Decision Coverage
(MC/DC) [39] were proposed by Sun et al. [40] to improve
the coverage performance. Coverage criteria for DNNs pro-
vide a reasonable compromise between formal robustness
guarantees and their computational cost. They are also
applied in both white-box, black-box, and concolic testing
approaches to extract a large set of AEs for adversarial train-
ing [6], [38], [40]. It is worth noting that such coverage tech-
niques for DNNs have all been conceived for testing
purposes and, per se, do not constitute defense mecha-
nisms. Indeed, they are not capable to detect unsafe inputs,
even if applied online. Conversely, the coverage-based
methods proposed in this work are not aimed at retrieving
static trustworthiness measures off-line, but at accomplish-
ing a run-time monitoring of the model behaviors against
new inputs. As such, the methods proposed in this work
are not comparable with the ones in [6], [38], [40] because
they serve a different purpose.

Finally, it is also worth mentioning that several studies
[41], [42] argue how coverage metrics for DNN testing are
not correlated to adversarial examples. In particular, they
state a limited relationship between inputs generated to
meet coverage criteria and the ones obtained by popular
adversarial attacks. Although our work still involves cover-
age metrics for DNNs, its final objective and the approach
are completely different from the ones studied in [41], [42],
making the corresponding observations not applicable. As a
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matter of fact, the experimental results presented in Sec-
tion 7 demonstrate the capability of our methods of detect-
ing adversarial examples, meaning that it exists a
substantial correlation between them and the proposed
methods. Furthermore, as supplementary material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TSE.2022.3163
682, we report additional tests to demonstrate the relation-
ship between our approaches and the adversarial examples
generated with popular attacks.

This Work. Differently from previous work, this paper
presents a general approach to monitor the network state at
inference time (white-box analysis), which is then used to
employ new algorithms based on coverage methods to
quantify the trustworthiness of the network output as well
as detect dangerous inputs on-the-fly when they are pre-
sented to the network. Traditional, well-defined procedural
algorithms are used for this purpose. The standard infer-
ence process of DNNs is retained and extended just to
extract intermediate results such as the neuron outputs. The
approach relies on a new kind of layer that runs a passive
coverage verification to detect unsafe activation patterns
with limited extra execution time.

3 TERMINOLOGY AND NOTATION

Before illustrating the proposed coverage monitoring pipe-
line, this section introduces the required formalism.

A feed-forward DNN is an architecture composed of a
set of K layers L ¼ fLk j k 2 f1; . . . ; Kgg linked by a series
of weighted connections. Each layer Lk consists of a set Nk

of lk neurons, where the jth neuron is denoted by nk;j 2 Nk.
The whole set of neurons (except the input ones) is defined
as N ¼ fnk;j j k 2 f2; . . . ; Kg; j 2 f1; . . . ; lkgg. The neurons
within each layer Lk are organized into Ck � 1 channels,
where the set of neurons in the ith channel is denoted by
Nch-i

k � Nk.
Each neuron nk;j 2 N is associated with two variables uk;j

and vk;j that denote its value before and after the activation
function fk, respectively. The neuron output is hence
defined as

vk;j ¼ fkðuk;jÞ with uk;j ¼ bk;j þ
Xlk�1

h¼1

wk;h;j � vk�1;h; (1Þ

where wk;h;j is the weight of the connection between neurons
nk�1;h and nk;j, and bk;j is the bias term of neuron nk;j. In the
following, it is sometimes required to distinguish between
the output values of the same neuron when the network is
provided with different inputs. To this purpose, the output
of each neuron nk;j when the network input is x is denoted
by vk;jðxÞ.

This work focuses on classification tasks, where the DNN
associates a generic input x to a class ŷ belonging to a set of
m ¼ lK classes. Specifically, the network makes a prediction
ŷ, which is the index of the neuron in the output layer with
the largest value, that is ŷ ¼ argmax1�j�mfvK;jg, where
f1; . . . ;mg is the set of classes and each value vK;j represents
the prediction score generated by a softmax output.

To help the presentation of the following results, it is also
convenient to introduce a vector notation for the DNN

parameters. Let VkðxÞ be the vector denoting the activations
of the neurons in layer lk for an input x, and let vk;jðxÞ be the
j-th element of VkðxÞ. In this way, a DNN can be alterna-
tively expressed as a function f : Rl1 ! RlK such that fðxÞ ¼
fKðfK�1ð. . .f2ðxÞÞÞ, where fk is the vector-wise version of
the activation function fk. Here, Rl1 is the input space (e.g.,
in the case of image classification, it represents all the possi-
ble configurations of pixels of the input image), while Rl1 �
� � � �RlK is the network space, which includes all the output
values produced by the neurons inN .

This work also considers convolutional neural networks
(CNNs) [43], which can be studied as a special case of
DNNs as modeled above.

4 MONITORING ARCHITECTURE

This section presents the monitoring architecture proposed
to detect unsafe inputs at inference time. It is based on a
novel way of applying coverage criteria. Despite coverage
criteria were originally conceived for off-line testing pur-
poses, in our work they are leveraged to identify a series of
activation patterns that are deemed safe, because generated
by the network on a set of trusted inputs (i.e., those produc-
ing a correct prediction with a score higher than a given
threshold). Then, at runtime, such patterns are compared
with those generated by a new input, measuring how they
match according to a given confidence metric.

The workflow of the proposed architecture is illustrated
in Fig. 2 and consists of an offline phase (also called Signa-
ture generation) and an online phase (also called Trustworthy
inference).

Offline Phase (Signature Generation). In this phase, the net-
work processes a set of trusted inputs, denoted by Trusted
Set, that generate correct network outputs with a high pre-
diction score. Each sample in the Trusted Set is used to per-
form inference on the target trained DNN. During
inference, the intermediate results produced by the various

Fig. 2. Overview of the monitoring architecture with its offline and online
phases. Grey boxes denote meta-algorithms, i.e., those whose behavior
depend on the selected coverage criterion.
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layers of the DNN (e.g., the neuron outputs) are recorded
and used to apply a certain coverage criterion, denoted
by Coverage Analysis Method (CAM) in the following. The
coverage results across all inputs in the Trusted Set are
then grouped by the corresponding output classes and
aggregated to produce a representation of the covered
activation patterns (by the Aggregation Algorithm). This
representation is then compressed to produce a file
called DNN Signature. The DNN Signature encodes all
network activation patterns that are deemed safe for
each output label, under a certain CAM. Both the Cover-
age Extraction and the Aggregation Algorithm depend
on the selected CAM. This work considers four CAMs,
which are presented in Section 5.

Online Phase (Trustworthy Inference). The network is
deployed together with a DNN Signature. At inference
time, given a new input xnew, the same CAM used to gener-
ate the DNN Signature is applied to extract the coverage
result generated by xnew, which is referred to as DNN Active
State. Given the class ŷ predicted for xnew, a Confidence
Evaluation Algorithm computes the matching level between
the Active State stimulated by xnew and the trusted one
encoded in the DNN Signature corresponding to class ŷ,
producing a confidence value for the prediction. When such
a confidence is below a given threshold, the input xnew is
deemed unsafe. The configuration of such a threshold is
addressed in Section 7. The Confidence Evaluation Algo-
rithm also depends on the selected CAM and four options
are presented in Section 5.

5 COVERAGE ANALYSIS METHODS

This section presents three CAMs together with the corre-
sponding algorithms required to instantiate the monitoring
architecture illustrated in Fig. 2. A fourth CAM, which did
not achieve acceptable performance during our experimen-
tal evaluation, is presented in the supplementary material,
available online.

Note that all state-of-the-art coverage metrics for DNNs
introduced in Section 2 are conceived with a different pur-
pose (i.e., DNN coverage testing). Nevertheless, some of
them inspired the following CAMs, which are instead
designed for being applied to the monitoring scheme pro-
posed in Section 4.

5.1 Single-Range Coverage (SRC)

This CAM is based on the Neuron Boundary Coverage crite-
rion [38] and works by analyzing the range of output values
produced by each neuron. During the offline phase, the
minimum and maximum output values produced by the
neurons when testing the Trusted Set are recorded to set the
range of the “typical” behavior of the network when stimu-
lated by trusted inputs.

The Trusted Set S is split into m subsets S1; . . . ; Sm, one
for each class, where Si denotes the set of inputs in S
belonging to the ith class. The DNN Signature si for the ith
class (with i ¼ 1; . . . ;m) is a collection of pairs si;k;j ¼
ðvmin

i;k;j ; vmax
i;k;j Þ, where vmin

i;k;j and vmax
i;k;j denote the minimum

and maximum output values produced by neuron nk;j,
respectively, over all inputs in Si. The Aggregation Algo-
rithm of SRC is summarized in Algorithm 1.

Algorithm 1. Aggregation Algorithm of SRC

Input Trusted Set S, trained DNN
Output DNN Signature s

for Si 2 S do
si ¼ fg
for nk;j 2 N do

vmin
i;k;j ¼ minx2Sifvk;jðxÞg
vmax
i;k;j ¼ maxx2Sifvk;jðxÞg
si;k;j ¼ ðvmin

i;k;j ; vmax
i;k;j Þ

Add si;k;j to si

end
end
return s ¼ fs1; . . . ; smg

During the online phase, given a new input xnew and the
corresponding class ŷ predicted by the DNN, the DNN Sig-
nature sŷ is compared against the output values produced
by the neurons, denoted as the DNN Active State. The Con-
fidence Evaluation Algorithm of SRC returns a confidence
value that is computed as a function of the number of neu-
rons whose output value vk;jðxnewÞ is outside the range spec-
ified by pair sŷ;k;j. The confidence is computed as
c ¼ expð� h�lnð2Þ

tŷ
Þ, where h is the number of neurons out of

range and tŷ is a class-dependent parameter, called thresh-
old, which tunes the slope of the exponential function (the
higher the threshold, the faster the function goes to zero).
Note that, if h ¼ tŷ, then c ¼ 0:5. The specific values for
parameters tŷ are set with a calibration procedure presented
in Section 7.3. The rationale of this formula is to map the
computed coverage cost h to a confidence value between 0
and 1, to be compliant with typical softmax scores. A
smooth exponential function is adopted also because it
allows assigning a high confidence when just a few values
fall outside the ranges in the signature.

This procedure is reported in Algorithm 2, assuming to
monitor all the network’s neurons N . In practice, to balance
performance with computation time, all these algorithms
can also be executed on a subset ofN (see Section 6).

Algorithm 2. Confidence Evaluation Algorithm of SRC

Input xnew, DNN Signature s, trained DNN, thresholds ti
Output confidence c

ŷ ¼ argmax1�j�mffðxnewÞg
h = 0
for nk;j 2 N do
Extract sŷ;k;j from sŷ

ðvmin
ŷ;k;j ; v

max
ŷ;k;j Þ ¼ sŷ;k;j

if vk;jðxnewÞ =2 ½vmin
ŷ;k;j ; v

max
ŷ;k;j 	 then

h ++
end

end
return c ¼ expð� h�lnð2Þ

tŷ
Þ

5.2 Multi-Range Coverage (MRC)

This CAM is based on the K-Multi-Section coverage crite-
rion [38] and extends SRC by introducing multiple ranges
to analyze the output of the neurons. The offline phase
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works as follows. First, as for SRC, the minimum and maxi-
mum output values produced by the neurons when testing
the Trusted Set are recorded. Then, each output range is
evenly split into Q sub-ranges. Finally, for all the inputs of
the Trusted Set, the algorithm counts the number of times in
which the neuron outputs fall in a given sub-range.

Formally, using the same notation introduced for SRC,
for each output class with index i, the output range of each
neuron nk;j is split into Q sub-ranges of size Di;k;j ¼
ðvmax

i;k;j � vmin
i;k;j Þ=Q. For convenience, the last of such sub-

ranges is defined as ½vmin
i;k;j þ ðQ� 1ÞDi;k;j; v

max
i;k;j 	, while the

others have open right endpoints.
The DNN Signature si for the ith class is a collection of

tuples si;k;j ¼ ðvmin
i;k;j ; vmax

i;k;j ; �1
i;k;j; �

2
i;k;j; . . . ; �

Q
i;k;jÞ, where �q

i;k;j

2 ½0; 1	 (with q ¼ 1; . . . ; Q) is given by the number of times
the output of neuron nk;j falls within the qth sub-range
when the network is stimulated by inputs in Si, divided by
the cardinality of Si itself. The Aggregation Algorithm of
MRC, reported in Algorithm 3, first computes the minimum
and maximum output values of the neurons, and then the
corresponding occurrencies to produce the DNN Signature.

Algorithm 3. Aggregation Algorithm of MRC

Input Trusted Set S, trained DNN, number of sections Q
Output DNN Signature s

for Si 2 S do
si ¼ fg
for nk;j 2 N do

vmin
i;k;j ¼ minx2Sifvk;jðxÞg
vmax
i;k;j ¼ maxx2Sifvk;jðxÞg
Di;k;j ¼ ðvmax

i;k;j � vmin
i;k;j Þ=Q

�1
i;k;j ¼ 0; �2

i;k;j ¼ 0; . . . ; �Q
i;k;j ¼ 0

for x 2 Si do
q ¼ maxf1; dðvk;jðxÞ � vmin

i;k;j Þ=Di;k;jeg
�q
i;k;j++

end
�1
i;k;j= ¼ jSij; �2

i;k;j= ¼ jSij; . . . ; �Q
i;k;j= ¼ jSij

si;k;j ¼ ðvmin
i;k;j ; vmax

i;k;j ; �1
i;k;j; �

2
i;k;j; . . . ; �

Q
i;k;jÞ

Add si;k;j to si

end
end
return s ¼ fs1; . . . ; smg

The idea behind the online phase of MRC is that the more
a new input xnew produces neuron output values outside the
sub-ranges matched by the inputs in the Trusted Set, the
more xnew is likely to be unsafe. Given xnew, the DNN Active
State is composed of the identifiers of the sub-ranges to
which the output of the neurons belong to, if any. This is
used to assign a cost Qk;jðxnewÞ 2 ½0; 1	 to each neuron nk;j

that quantifies how much the neuron output is deemed
unsafe. Being i the index of the class assigned to xnew, this
cost is formally defined as

Qk;jðxnewÞ ¼
1; if vnk;jðxnewÞ =2 ½vmin

i;k;j ; vmax
i;k;j 	

1� �q

i;k;j; otherwise,

8<
: (2Þ

where q
 denotes the index of the sub-range of nk;j to which
vnk;jðxnewÞ belongs to.

The Confidence Evaluation Algorithm, reported in Algo-
rithm 4, computes the sum of such costs Qk;jðxnewÞ over all
neurons, denoted here as h. Hence, the confidence score is
computed as c ¼ expð� h�lnð2Þ

tŷ
Þ.

Algorithm 4. Confidence Evaluation Algorithm of MRC

Input xnew, DNN Signature s, trained DNN, thresholds ti,
number of sections Q
Output confidence c

ŷ ¼ argmax1�j�mffðxnewÞg
h = 0
for nk;j 2 N do
Extract sŷ;k;j from si

Extract vmin
ŷ;k;j and vmax

ŷ;k;j from sŷ;k;j

if vk;jðxnewÞ =2 ½vmin
ŷ;k;j ; v

max
ŷ;k;j 	 then

h += 1
end
else
Dŷ;k;j ¼ ðvmax

ŷ;k;j � vmin
ŷ;k;j Þ=Q

q
 ¼ maxf1; dðvk;jðxnewÞ � vmin
ŷ;k;j Þ=Dŷ;k;jeg

Extract �q

ŷ;k;j from sŷ;k;j

h += 1� �q

ŷ;k;j

end
end
return c ¼ expð� h�lnð2Þ

tŷ
Þ

5.3 k-Nearest Neighbors Coverage (kNNC)

This CAM is based on the DkNN algorithm presented
in [26], which was originally proposed as an alternative
inference logic and not as a way to detect unsafe inputs. The
key idea of the kNNC is to compute a confidence score by
applying the k-Nearest Neighbors (kNN) algorithm on the
output values produced by the neurons of the various DNN
layers.

For each output class with index i, the DNN Signature is
composed of a collections of sets si;k of vectors, one for each
layer Lk. Each set si;k is composed by aggregating the vec-
tors VkðxÞ obtained from all inputs x 2 Si. The correspond-
ing procedure is reported in Algorithm 5.

Algorithm 5. Aggregation Algorithm of kNNC

Input Trusted Set S, trained DNN
Output DNN Signature s

for Si 2 S do
8k ¼ 1; . . . ;K; si;k ¼ fg
for x 2 Si do
for Lk 2 L do
Add VkðxÞ to si;k

end
end
si ¼ fsi;1; . . . ; si;Kg

end
return s ¼ fs1; . . . ; sKg

During the online phase of kNNC, given a new input
xnew and its corresponding predicted class ŷ, the kNN algo-
rithm is used to compute the confidence value. In the fol-
lowing, the parameter that controls the kNN algorithm is
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denoted as G, since k denotes the layer index. Hence, the G
vectors VkðxÞ stored in the DNN Signature that are nearest
to VkðxnewÞ are identified by the kNN algorithm and their
corresponding output class indexes are recorded and stored
in a multiset Vk. Finally, the number of occurrences of the
class index ŷ in Vk is counted and denoted as h. Hence, the
output confidence score is computed as c ¼ expð� h�lnð2Þ

tŷ
Þ.

The rationale behind this computation is the following.
Given inputs x classified to the ŷth class by the DNN, the
more vectors VkðxÞ in the signature are among the G closest
ones to VkðxnewÞ, the more the active state produced by xnew

resembles the ones produced by the trusted inputs that the
DNN classifies as for xnew, hence positively contributing to
the confidence value. The overall procedure is reported in
Algorithm 6.

Algorithm 6. Confidence Evaluation of kNNC

Input xnew, DNN Signature s, trained DNN, thresholds ti,
number of nearest neighbors G
Output confidence c

ŷ ¼ argmax1�j�mffðxnewÞg
h = 0
for Lk 2 L do
Vk ¼ kNNðG; VkðxnewÞ; s1;k; . . . ; sm;kÞ
h += jy 2 Vk : y ¼ ŷj

end
return c ¼ expð� h�lnð2Þ

tŷ
Þ

5.4 Illustrative Example

To illustrate the proposed approach, let us consider a simple
example based on an inspired LeNet-4 [44] CNN trained on
the MNIST dataset [45]. The Trusted Set consists of those
MNIST samples that are correctly predicted by the network

with a prediction score higher than 0.9. The selected CAM
is the SRC presented in Section 5.1. Unsafe inputs are gener-
ated using the FGSM [1], setting � ¼ 0:05 to obtain AEs with
small perturbations.

For simplicity, the SRC method is only applied to the first
convolutional block, including a convolutional layer, a pool-
ing layer, and a ReLU activation layer. Fig. 3a illustrates a
trusted input (i.e., a digit correctly classified as ‘8’ with a
prediction score of 0.974), which is not part of the Trusted
Set, together with a histogram that reports the number of
neurons per channel that have an output value outside the
corresponding ranges ½vmin

i;k;j ; vmax
i;k;j 	 representing the DNN

Signature for class ‘8’ under the SRC. In particular, note that
only two neurons have outputs that do not match the signa-
ture, producing a prediction confidence c ¼ expð� 2�lnð2Þ

t8
Þ ¼

0:8705, where in this example all the thresholds ti are set to
10. Conversely, Fig. 3b illustrates an adversarial example,
incorrectly classified as ‘6’ (with a prediction score of 0.918),
together with the corresponding histogram. In this case,
there are 63 neurons in the first block whose activations are
outside the ranges stored in the DNN Signature for label ‘6’,
resulting in a prediction confidence c ¼ expð� 63�lnð2Þ

t6
Þ ¼

0:0126.

6 IMPLEMENTATION IN CAFFE

The proposed architecture has been implemented as an
extension of the Caffe framework [46] — see Fig. 4a. The
extension introduces a new type of layer in Caffe, called
Coverage Layer (CV-Layer), which operates in a transparent
(i.e., pass-through) fashion, hence not altering neither the
DNN performance nor the DNN hyperparameters. The CV-
Layer applies a coverage criterion at inference time based
on the tensor data it receives in input and is used during

Fig. 3. (a) A genuine sample and its corresponding activation histogram
with respect to a DNN Signature obtained in the first convolutional block
of LeNet, under the SRC. (b) An adversarial example and its correspond-
ing activation histogram against the same DNN Signature.

Fig. 4. (a) Overview of the tool architecture. (b) Example network archi-
tecture with two CV-Layers installed after two ReLu activation layers.
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both the offline and online phases. When installing a CV-
Layer, given that it operates as a pass-through component,
connections between two layers, say Lk and Lkþ1, can be
preserved by connecting (i) the output of Lk to the input of
the CV-Layer and (ii) the output of the CV-Layer to the
input of Lkþ1. Multiple CV-Layers can be installed depend-
ing on the behavior of the selected CAM. For instance,
CAMs that work by analyzing all neuron outputs of the net-
work require the installation of a CV-Layer after each layer
of the original DNN. An example installation of the CV-
Layer is illustrated in Fig. 4b.

Fig. 4a illustrates the interconnection between the princi-
pal software blocks of the tool and the Caffe framework.
Under Caffe, networks are distributed via a prototxt

model file, which should include the CV-layers in the net-
work architecture, and a caffemodel file, which contains
the trained weights (both referred to as ’Caffe params’ in
the figure). Regarding the tool, the required parameters
(referred to as ’Tool params’ in the figure) are a specification
of the Trusted Set and the identifier of the selected CAM (to
be chosen among those supported by the tool). The tool will
then instantiate the implementation of the monitoring func-
tions associated to the selected CAM. Furthermore, CAM-
specific parameters can be specified (see Section 5). Finally,
the tool is capable of exporting and importing the DNN Sig-
nature using the hdf5 file format by means of the hierarchi-
cal data format (HDF) API. The tool provides an interface to
invoke monitoring operations. It manages the interaction
with the DNN Signature, as the export at the end of the off-
line phase, or the import at the beginning of the online
phase. The tool also allows reading the confidence evalua-
tion outcome during the online phase, which represents the
coverage metric of the applied CAM.

Each CAM is developed both in CUDA and C++. Since
the CV-Layers are totally compliant with the other Caffe
layers, the DNN framework will take care of forwarding
tensors to the selected implementation based on the avail-
able architecture (e.g., GPU or CPU). At the same time, it is
up to the tool to select the device implementation of the
Confidence Evaluation Algorithms, which are performed at
the end of the DNN inference.

Another feature offered by the tool is the possibility of
computing the signature in the offline phase using a mini-
batch approach. The Trusted Set is split into multiple mini-
batches where each one represents a single, but large input
tensor that is analyzed by the CV-Layer on the same infer-
ence pass. The values extracted from the inputs of the mini-
batch, according to the selected CAM, are then merged into
the DNN Signature with the results obtained by previously-
processed mini-batches. This approach significantly allows
speeding up the creation of the DNN Signature creation
time, especially when it is possible to parallelize the
procedure.

7 EXPERIMENTAL EVALUATION

This section reports the results of a set of experiments con-
ducted to assess the performance of the proposed methods
in terms of running time, memory footprint, and capability
of detecting unsafe network inputs. Several types of unsafe
inputs generated with state-of-the-art methods have been

considered: to make the paper self-contained, they are sum-
marized in Section 7.1 and described in details in the sup-
plementary material, available online. Before discussing the
actual experimental results, Section 7.2 presents the experi-
mental setting, whiles Section 7.3 presents the calibration of
thresholds used.

7.1 Unsafe Inputs Generation

In recent years, many adversarial attacks [47] have been dis-
closed to efficiently generate AEs while minimizing the per-
turbation to be applied to turn a safe input into an unsafe
one. Besides AEs, a network can also fail for other types of
unsafe inputs. A recap of all the methods to generate unsafe
inputs tested during our evaluation is reported next, while
their complete description is provided in the supplementary
material, available online, accompanied by illustrative
examples.

Adversarial Examples. We considered the following attack
methods under different settings for crafting both small and
medium perturbations. The amount of perturbation is usu-
ally refereed with the � parameter. Among the first and
famous adversarial attacks, one is FGSM [1], which crafts
adversarial perturbation in one shot. More advanced adver-
sarial attacks have also been considered: they are PGD [48],
BIM [2] and CW [4], which implement iterative methods
capable of improving the attack effectiveness at each itera-
tion. The number of iterations and the amount of perturba-
tion introduced at each iteration are denoted by k and a,
respectively. The attacks are configured as reported in
Table 2.

Out-of-Distribution Unsafe Inputs. Another class of unsafe
inputs are those that are far from the distribution of data
used to train the network, but are still predicted with a high
score by the model. They commonly exist because a DNN
works as a global classifier for the whole input space (e.g.,
all possible images of a given size and format). To test this
class of unsafe inputs, we generated new samples with large
perturbations, obtained with a variant of the FGSM attack,
which are applied to samples in the training set of the tested
networks. Details on the generations are reported in the
supplementary material, available online.

Adversarial Patches. Finally, we also studied another
famous class of adversarial images, namely those using
patches to make them adversarial. Adversarial patches are
crafted with the PGD [48] method, but perturbing a limited
area of the image only.

7.2 Experimental Setting

The datasets considered in the experimental evaluation are
MNIST [45] and F-MNIST [49]. MNIST is a dataset of hand-
written digits while F-MNIST is a dataset of clothes articles.
Both datasets contain grayscale images of 28x28 pixels, and
provide 60,000 images for training and 10,000 images for
testing. F-MNIST is slightly more complex than MNIST and
DNNs usually achieve lower accuracy in classifying its
images. Both the datasets have been processed with a
LeNet-4 [44] CNN trained on 8 epochs using the Adam opti-
mization algorithm [50] and a cross entropy loss function.

Please note that the related works discussed in Section 2
that adopt a procedural-based internal analysis (e.g., [26],
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[31]), performed the experimental evaluation on small data-
sets (e.g., MNIST and CIFAR10) and DNNs with similar
complexity to the ones mentioned above. The use of larger
datasets and more complex network models will be part of
a future work.

Three Coverage Layers per network have been installed
(other network models with different installations of Cover-
age Layers are discussed later). Table 1 summarizes the net-
work architectures and their corresponding classification
accuracy on the original testing sets.

The experimental evaluation used the following sets of
inputs:

� Trusted Set: it is the one used to generate the DNN
Signature and has been obtained by selecting from
the original training set those samples that the DNN
classifies correctly with a prediction score (i.e., the
softmax probability) larger than 0.9. This set contains
59309 and 52680 samples for MNIST and F-MNIST,
respectively.

� Trusted Test Set: it is the one used to assess the classi-
fication performance of the DNNs when enhanced
with one of the proposed CAMs. It is obtained by
selecting from the original testing set those samples
that the DNN classifies correctly with a prediction
score > 0:9. This set contains 9000 samples.

� Adversarial Set: it is the one employed for evaluating
the performance of the proposed methods in detect-
ing unsafe inputs. It contains unsafe inputs for which
the DNNmakes a wrong prediction. Different defini-
tions of this set have been tested depending on the
selected attack method (see Section 7.1): they are

summarized in Table 2 for both MNIST and F-
MNIST. A prediction is considered to be wrong
when the DNN classifies such inputs in a wrong
class with a prediction score larger than 0.8, for AEs
and adversarial patches, or larger than 0.99, for out-
of-distribution inputs. Such thresholds have been
selected by empirically finding the largest values
that allowed generating a sufficient number of
unsafe inputs to perform the experiments. Note that
the higher the thresholds the more difficult the gen-
eration of AEs. Conversely, when using lower
thresholds, the generated AEs tend to be less rele-
vant, as they could be simply discarded by compar-
ing the softmax score produced by the network
against a certain threshold. Further details are pro-
vided in the supplementary material, available
online.

In the following, the experimental results are reported for
four CAMs: SRC, two versions of MRC with Q ¼ f16; 32g,
and kNNC with G ¼ 75. Furthermore, we also compared
the results against state-of-the-art run-time methods used
for detecting AEs: FeaturesSqueezing [19] and VisionGuard
[20]. Details on their behavior and implementation are pro-
vided in the supplementary material, available online.

7.3 Threshold Calibration

This experimental evaluation was focused on a binary clas-
sification of the network inputs, i.e., either an input was
deemed safe and the prediction made by the network was
accepted, or the input was deemed unsafe, and the network
prediction was rejected. This has been implemented by cali-
brating the tolerances ti used by the various Confidence
Evaluation Algorithms so that an input is deemed safe if c �
0:5 and unsafe otherwise.

The calibration of thresholds has been performed using
Receiver Operating Characteristic (ROC) analysis to com-
pute the values ti, for each class with index i ¼ 1; . . . ;m,
that represent the best balance between minimizing the
inputs that are wrongly rejected and accepted. In this
regard, portions of the Trusted Test Set and the Adversarial
Set introduced in the previous section have been used to

TABLE 1
Network Models Applied for the Experimental Evaluation

Dataset Model Accuracy

MNIST conv(20,5,1) - ReLU - CV - MaxPool(2,2) - conv(50,5,1)
- ReLU - CV - fc(500) - ReLU - CV - fc(10)

0.9907

F-MNIST conv(20,5,1) - ReLU - CV - MaxPool(2,2) - conv(50,5,1)
- ReLU - CV - fc(500) - ReLU - CV - fc(10)

0.9106

’CV’ indicates a Coverage Layer.

TABLE 2
Parameters and Settings Used to Generate the Adversarial Set

MNIST F-MNIST

Attack
method

Attack parameters # of samples for
calibration

# of samples for
evaluation

Attack parameters # of samples for
calibration

# of samples for
evaluation

FGSM-1 � ¼ 0:1 500 500 � ¼ 0:05 600 3400
FGSM-2 � ¼ 0:2 800 3200 � ¼ 0:1 600 1400
PGD-1 ð�;a; kÞ ¼ ð0:1; 0:015; 40Þ 800 1800 ð�;a; kÞ ¼ ð0:03; 0:015; 40Þ 600 3400
PGD-2 ð�;a; kÞ ¼ ð0:18; 0:015; 40Þ 800 3200 ð�;a; kÞ ¼ ð0:10; 0:015; 40Þ 600 3400
BIM-1 ð�;a; kÞ ¼ ð0:05; 0:004; 10Þ 450 500 ð�;a; kÞ ¼ ð0:015; 0:004; 10Þ 600 1500
BIM-2 ð�;a; kÞ ¼ ð0:18; 0:004; 10Þ 800 3200 ð�;a; kÞ ¼ ð0:10; 0:004; 10Þ 600 3400
CW k ¼ 500 450 500 k ¼ 500 200 300
Out of
Dis.

� ¼ 0:02; k ¼ 80 - 4000 � ¼ 0:02; k ¼ 80 - 4000

Patch � ¼ 0:02; k ¼ 200 - 100 � ¼ 0:02; k ¼ 200 - 1000
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test safe and unsafe inputs, respectively, during calibration.
A more detailed discussion of the calibration phase and an
illustration of the obtained ROC curves is presented in the
supplementary material, available online.

7.4 Detection Performance

Experiments have been conducted to evaluate the perfor-
mance of the four CAMs in correctly detecting whether an
input is safe or unsafe using the thresholds ti calibrated as
described above. Tables 3 reports the detection accuracy,
defined as the ratio of inputs correctly classified as either
safe or unsafe. The tables report the breakdown of unsafe
inputs for all the methods introduced in Section 7.1 (see
Table 2 for the number of samples used for the evaluation).
The last rows of the tables are related to safe inputs, which
correspond to the remaining inputs of the Trusted Test Set
that have not been considered for calibration.

Although SRC is the simplest CAM, for inputs of the
MNIST dataset it is often capable of detecting unsafe inputs
better than the others CAMs. The only exception pertains to
the BIM attack, but the performance of SRC is anyway
extremely close to the one of kNNC. Note that SRC and
MRC are also capable of detecting all unsafe out-of-distribu-
tion inputs, while kNNC exhibits very poor performance
(close to coin tossing) for that kind of inputs.

The results for the F-MNIST dataset are quite different. In
this case, there is no dominating CAM for AEs. Note that
kNNC performs quite well with AEs generated using low
perturbations (e.g., CW and BIM), while SRC significantly
outperforms kNNC for unsafe inputs generated using the
PGD attack. SRC and MRC are again capable of detecting
all unsafe out-of-distribution inputs. This suggests that,
given proper accelerated implementations, multiple CAMs
could be used in parallel to improve the overall detection
performance of unsafe inputs.

Table 3 also provides the results achieved with Vision
Guard and FeatureSqueezing. They always obtain high per-
formance with low-perturbation attacks on both MNIST
and FMNIST, but fail when the magnitude of the perturba-
tion increases (e.g., PGD-2 and BIM-2, which find more
effective AEs). Moreover, they report worse performance on
safe samples, since they are incorrectly rejected more times
than the proposed CAMs. Most interestingly, Vision Guard
and FeatureSqueezing totally fail with out-of-distributions

unsafe inputs, while three of the proposed CAMs are very
effective.

Finally, to further evaluate the detection performance of
the CAMs, additional tests are provided in the supplemen-
tary materials, available online, to better evaluate the rela-
tionship between the CAMs and the perturbations of AEs.

7.5 Running Time and Memory Footprint

With respect to a regular deployment of a DNN, each of the
proposed CAMs introduces an additional inference time to
execute the Confidence Evaluation Algorithm (imple-
mented by CV-Layers) and an additional memory footprint
to store the DNN Signature. This section is focused on eval-
uating these overheads, which in some cases may be very
important in selecting the most appropriate CAM. For
instance, to deploy a CAM on a resource-constrained,
embedded device that has to operate in real time, it is essen-
tial to contain as much as possible the additional inference
time and the memory footprint, even accepting reduced
detection performance.

Additional Inference Time. The experiments for SRC, MRC,
and NRC have been performed on a machine equipped
with an Intel(R) Core(TM) i5-4670K CPU @ 3.40GHz, 8GB of
RAM, and an NVIDIA GeForce GTX770 GPU. Due to their
demanding memory requirements (see the results at the
end of this section), the experiments for kNNC have been
performed on a Nvidia DGX Station V100. The implementa-
tion presented in Section 6 has been used.1 Fig. 5 reports the
additional inference time introduced by the four CAMs
together with the corresponding detection performance for
a representative setting (F-MNIST dataset and unsafe inputs
generated by the FGSM-2 attack). Note that the y-axis at the
left of the figure has a logarithmic scale. The figure reports
the results for different installations of the CV-Layers,
denoted by the sets reported on the x-axis of the plot. They
correspond to cases in which the CAMs operate on a subset
of the entire set of CV-Layers reported in Table 1. The

TABLE 3
Detection Accuracy of All the Tested Methods on MNISTand F-MNIST

MNIST F-MNIST

Input type SRC MRC-32 MRC-16 kNNC VG FS SRC MRC-32 MRC-16 kNNC VG FS

FGSM-1 0.998 0.976 0.946 0.958 0.986 0.976 0.855 0.848 0.827 0.915 0.880 0.881
FGSM-2 1.0 0.994 0.989 0.941 0.930 0.936 0.929 0.952 0.937 0.883 0.785 0.814
PGD-1 0.989 0.968 0.943 0.970 0.989 0.976 0.852 0.841 0.792 0.935 0.901 0.973
PGD-2 1.0 0.919 0.852 0.955 0.810 0.882 0.979 0.942 0.943 0.859 0.175 0.325
BIM-1 0.968 0.943 0.912 0.964 1.0 0.985 0.842 0.848 0.789 0.916 0.997 1.0
BIM-2 0.995 0.861 0.815 0.952 0.8425 0.870 0.986 0.924 0.939 0.831 0.161 0.239
CW 0.971 0.959 0.933 0.960 1.0 0.989 0.813 0.829 0.822 0.907 0.993 1.0
Out of Dis. 1.0 1.0 1.0 0.346 0.0 0.0 1.0 1.0 1.0 0.842 0.00 0.00
Patch 1.0 0.891 0.923 0.995 0.957 0.984 1.0 0.911 0.858 0.951 0.962 0.975
Safe Samples 0.991 0.951 0.919 0.955 0.925 0.938 0.89 0.892 0.851 0.921 0.671 0.732

VG and FS correspond to Vision Guard [20] and FeatureSqueezing [19], respectively.

1. Note that, due to implementation issues under resolution in inte-
grating kNNC in our CUDA-based implementations of CV-Layers, the
experiments for kNNC have been performed with a Python implemen-
tation of the tool presented in Section 6 that uses the Pytorch frame-
work [51] (with GPU acceleration) and FAISS [52], which is notably the
best-performing library that implements a GPU-accelerated exact near-
est neighbors search.
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calibration procedure presented in Section 7.3 has been per-
formed for each of them (i.e., each installation is assigned
different thresholds).

As it can be noted from the figure, when all the 3 CV-
Layers are installed (f1; 2; 3g on the x-axis) the percentage
increase of the interference time (with respect the original
network inference) is of the same order of magnitude for
SRC, MRC-16, and MRC-32. As one may easily expect, the
best timing performance is achieved by SRC, with a percent-
age increase of 22.9%. The additional inference time intro-
duced by kNNC is instead quite high and corresponds to a
1188% increase.

Interesting observations can be made by looking at the
accuracy of the various installations and CAMs: SRC and
MRC exhibit very poor detection performance if the first CV-
Layer is not installed, while kNNC exhibits only slights varia-
tions of the detection performance when less CV-Layers are
installed. Most interestingly, note that the detection perfor-
mance may even increase when less CV-Layers are installed.
For instance, these results reveal that it is not convenient to
adopt kNNC with the first two CV-Layers installed, as the
same detection performance can be achieved with just a
255% increase of the inference time, rather than a 1188%
increase for the case inwhich all CV-Layers are installed.

Memory Footprint. Table 4 reports the memory footprint
of the DNN Signature of the various CAMs for each CV-
Layer. As it can be noted from the table, SRC and NRC have
a very modicum memory footprint (in the order of 1MB in
total), while kNNC is characterized by a huge memory foot-
print that even exceeds 3GB if all the three CV-Layers are
installed. These results, together with the ones of Fig. 5,

confirm that under kNNC it does not worth to install CV-
Layers between shallower layers of the network, and that
SRC is a very good choice to balance performance with
overheads. The results for the kNNC may vary if different
(e.g., approximate) methods to implement the nearest
neighbors search are adopted.

Comparison With Other Detection Techniques. The average
running times of both VG and FS were also measured. They
introduce an additional latency of 138% and 237%, respec-
tively, which correspond to the running time of multiple
inferences, plus an additional overhead introduced by the
used transformations. As far memory footprint is con-
cerned, they are very lightweight approaches only when the
multiple inferences they require are sequentially performed
(as in the evaluated setting). Conversely, if they are per-
formed in parallel, the overall memory footprint grows as a
function of the amount of space needed for instantiating
and running multiple replicas of the network model.

7.6 Adaptive Attack and Countermeasure

Although the presented CAMs are able to detect several
kinds of unsafe inputs, ad-hoc attacks can still be devised to
optimize unsafe inputs by directly exploiting the knowl-
edge of the detection mechanism and the signatures.

Inspired by the famous gradient-based attacks (which are
formally discussed in the supplementary material, available
online), we designed a white-box attack method, called Sig-
nature-Attack, for crafting adversarial inputs while trying to
keep the activation of neurons within the range of the signa-
tures. This is accomplished by optimizing the adversarial
perturbation through two loss functions, LCE and LS . The
former is the common cross-entropy loss, also involved in
all the other attacks tested in this work. The optimization
process shall maximize such a loss to intensify the adversar-
ial effect of the final perturbation (i.e., increase the probabil-
ity of misclassifying the perturbed input). The latter is a
problem-specific loss function, named Signature-Loss, which
is conceived to return a positive cost when the activation of
a neuron is outside the signature range [vmin

ŷ;k;j; v
max
ŷ;k;j], where ŷ

is the label associated by the network to the input to be per-
turbed. Technically speaking, the Signature-Loss is imple-
mented as LS ¼ P

nk;j2N ReLUðvk;j � vmax
ŷ;k;jÞ þ ReLUð�vk;j

þvmin
ŷ;k;jÞ, where ReLUðxÞ ¼ maxð0; xÞ. Fig. 6 provides a sam-

ple illustration of function LS in the case of a single neuron
only. The Signature-Loss has to be minimized during the
optimization process to reduce the chance of the adversarial
example being detected by the proposed CAMs.

From a practical point of view, the optimization problem
to accomplish the Signature-Attack is solved through an

Fig. 5. Timing performance and detection accuracy for five installations
of the CV-Layers. The sets on the x-axis denote which of the CV-Layers
reported in Table 1 are installed (numbered in the order with which they
appear in the table). For instance, f1; 2g refers to the case in which only
the first two CV-Layers are installed.

TABLE 4
Memory Footprint of the DNN Signature (Exported HDF File) of

the Various CAMs for Each CV-Layer

CV-Layer1 CV-Layer2 CV-Layer3

SRC 944 kB 278 kB 62,8 kB
MRC-16 8,3 MB 2,3 MB 387 kB
MRC-32 15,7 MB 4,4 MB 707 kB
NRC 483,6 kB 150,8 kB 42,8 kB
kNNC 2.6 GB 732 MB 114 MB

Fig. 6. Illustration of the Loss-Signature for the case of a single neuron.
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iterative formulation similar to [48], but based on a specific
loss function L that takes into account both LCE and LS

x0
k ¼ x0

k�1 þ a � signð5x0
k�1

Lðfðx0
k�1Þ; ŷÞÞ;

s:t: jjx0
k � xjj � �; (3)

where a and � denote the step size and the overall perturba-
tion magnitude, respectively, as in [48]. The gradient of the
loss function L is defined as

5xL ¼ ð1� gÞ � 5xLCE

jj 5x LCEjj2
� g � 5xLS

jj 5x LSjj2
; (4)

where g is a parameter introduced to balance the impor-
tance of LCE and LS . Since the gradients of LCE and LS may
have very different scales, they are both subject to norm-2
normalization to ensure that their effect can be properly bal-
anced using a single parameter g. Furthermore, it is also
important to observe how the overall gradient of L goes in
the same direction of 5xLCE and in the opposite direction
of 5xLS . Thus, optimizing the perturbation in the gradient
direction of L means increasing the classification loss func-
tion LCE while reducing the Signature-Loss LS .

Effects of the Signature-Attack.Multiple versions of the Sig-
nature-Attack were tested on both MNIST and FMNIST.
Similar to the settings used in Table 2, we set a and � to
0.004 and 0.1, respectively, and we evaluated five values for
g: 0.0, 0.25, 0.50, 0.75, and 1.0. The first and last values were
tested for studying the behavior of the proposed attack in

two limit cases (i.e., when only one of the two loss functions
is considered).

Fig. 7 reports the average classification loss LCE and Sig-
nature-Loss LS computed on the MNIST data set for the
tested values of g. Note that the classification loss (to be
maximized) preserves a large value for the tested values of
g < 1, while the Signature-Loss (to be minimized) has a
considerably low value for the tested values of g � 0:5.

The effectiveness of the generated adversarial examples
can be observed from the results reported in Table 5 as a
function of g (the results for g ¼ 1:0 are omitted since it was
not possible to generate adversarial examples with this set-
ting). As it can be noted from the table, the detection perfor-
mance of the proposed CAMs is reduced, with respect to
the results of Table 3, on both MNIST and FMNIST, demon-
strating the effectiveness of the Signature-Attack with
g > 0.

Countermeasure. To counteract the Signature-Attack, we
included a portion of the adversarial examples crafted with
that attack to the calibration set in order to re-calibrate the
thresholds. This approach helps improve the mechanism by
tuning the thresholds at lower values such that also CAM-
specific adversarial inputs can be detected without signifi-
cantly reducing the accuracy of all the others.

To this purpose, we refined the set of inputs used for cali-
bration (see Section 7.3) by adding 800 adversarial examples
obtained by the Signature-Attack with g 2 f0:25; 0:75g. Other
8000 adversarial examples (2000 for each g 2 f0:0; 0:25;

Fig. 7. Average losses computed with inputs from the MNIST data set
when attacked with the Signature-Attack, under different configurations
of the control parameter g.

TABLE 5
Detection Accuracy on FMNISTand MNISTAgainst Adversarial

Examples Crafted With the Signature-Attack Under Four
Configurations

MNIST F-MNIST

g SRC MRC-32 MRC-16 SRC MRC-32 MRC-16

0.0 0.984 0.957 0.935 0.968 0.908 0.912
0.25 0.779 0.775 0.701 0.881 0.805 0.785
0.50 0.756 0.769 0.690 0.879 0.797 0.781
0.75 0.749 0.742 0.687 0.874 0.793 0.778

TABLE 6
Detection Accuracy After the Re-Calibration, Performed With Also Unsafe Inputs Crafted From the Proposed Signature-Attack

MNIST F-MNIST

Input type SRC MRC-32 MRC-16 kNNC SRC MRC-32 MRC-16 kNNC

FGSM-1 1.0 0.986 0.962 0.969 0.839 0.845 0.829 0.922
FGSM-2 1.0 0.995 0.991 0.951 0.925 0.948 0.922 0.891
PGD-1 0.991 0.953 0.887 0.969 0.849 0.842 0.804 0.939
PGD-2 1.0 0.977 0.960 0.953 0.961 0.889 0.874 0.868
BIM-1 0.993 0.910 0.953 0.923 0.839 0.847 0.792 0.919
BIM-2 0.999 0.967 0.940 0.949 0.980 0.921 0.924 0.844
CW 0.987 0.977 0.953 0.960 0.813 0.825 0.822 0.907
Out of Dis. 1.0 1.0 1.0 0.34 1.0 1.0 1.0 0.851
Patch 1.0 0.889 0.921 0.988 1.0 0.907 0.853 0.954
Signature-Attack (g ¼ 0:0) 0.998 0.896 0.841 0.973 0.963 0.889 0.884 0.851
Signature-Attack (g ¼ 0:25) 0.949 0.939 0.782 0.972 0.935 0.861 0.852 0.852
Signature-Attack (g ¼ 0:50) 0.939 0.831 0.767 0.971 0.933 0.861 0.852 0.853
Signature-Attack (g ¼ 0:75) 0.925 0.820 0.763 0.971 0.931 0.858 0.847 0.851
Safe Samples 0.986 0.938 0.89 0.957 0.890 0.886 0.854 0.916
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0:50; 0:75g) are appended to the test set introduced in Table 2.
Table 6 shows the final results obtained after the re-calibration,
i.e., by testing the detection mechanisms with the new thresh-
olds. By comparing Table 6 with Table 5, it can be noted that
the detection accuracy of the proposed CAMs is improved for
all the tested versions of the Signature-Attack. Also note that
the re-calibration of thresholds did not significantly affect the
detection performance for the other kinds of unsafe inputs,
which shows similar results with respect to Table 3.

8 CONCLUSION AND FUTURE WORK

This paper presented a monitoring architecture to enhance
the trustworthiness of DNNs by generating a confidence
value to be coupled to the network prediction. The work-
flow of the proposed architecture includes an off-line phase
(to be performed after training) where a DNN Signature is
generated starting from a set of trusted inputs,and an online
phase (to be performed at inference time), where the DNN
Active State generated by a new input is compared against
the DNN Signature. Four different CAMs have been pro-
posed to instantiate the proposed architecture. An imple-
mentation as an extension of the Caffe framework has also
been presented.

The proposed CAMs have been compared in terms of
detection performance and running time, using several
state-of-the-art methods to generate unsafe inputs. The
experimental results on MNIST and F-MNIST data sets
showed that the CAMs based on coverage techniques better
generalize among different types of unsafe inputs. Vision-
Guard [20] and FeatureSqueezing [19], which proved to
have competitive performance with respect to most of the
proposed CAMs for low-perturbation AEs, lose their effec-
tiveness with medium-perturbation attacks and out-of-dis-
tribution unsafe inputs. Also in terms of running time and
memory footprint, most of the proposed CAMs exhibit bet-
ter performance than previous work, proving to be more
suitable for real-time applications.

The approach proposed in this paper opens several inter-
esting future work directions. Among them, a particularly
relevant research line is the investigation of techniques that
combine the proposed CAMs to enhance the detection per-
formance while balancing the implied additional inference
time and memory footprint. Research efforts should also be
spent on the design of other CAMs and techniques to prune
unnecessary information stored by the DNN Signature.
Such developments will hopefully make possible to apply
the proposed approach to more complex DNNs, such as
ResNet [53] and Inception [54], and larger and sparser data
sets, as ImageNet [55].
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