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Multimedia applications are often executed on standard Personal Computers. The absence of
established standards has hindered the adoption of real-time scheduling solutions in this class
of applications. Developers have adopted a wide range of heuristic approaches to achieve an
acceptable timing behaviour but the result is often unreliable. We propose a mechanism to
extend the benefits of real-time scheduling to legacy applications based on the combination of
two techniques: 1) a real-time monitor that observes and infers the activation period of the
application, and 2) a feedback mechanism that adapts the scheduling parameters to improve its
real-time performance.
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1. INTRODUCTION

In recent times, computers have emerged as one of the most effective means to
produce, store and distribute multimedia contents. Such applications are usually
referred to as time-sensitive, meaning that the Quality of Service (QoS) they offer
is related to their ability to execute respecting some temporal constraints.
In a modern computing environment, several tasks can be executed concurrently

on the same processor (or processors). Therefore a prominent role for the provision
of temporal guarantees is taken by the scheduling policy. Common scheduling
solutions adopted in General Purpose Operating Systems (GPOSs) do not offer
an acceptable performance. Neither are hard real-time scheduling algorithms [Liu
and Layland 1973] commonly regarded as appropriate solutions. Hard real-time
guarantees are not required by multimedia applications: moderate violations of
temporal constraints can be conveniently traded for a more efficient utilisation
of the system as far as they are kept under control. For these applications, a
superior scheduling choice is offered by such soft real-time schedulers as the resource
reservations [Rajkumar et al. 1998], which guarantee a share of the CPU time to
each task or group of tasks under any workload condition. Even using this solution,

Adaptive real-time scheduling for legacy applications
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.



2 ·

though, the selection of appropriate scheduling parameters can be very challenging
if the execution requirements of the application are time-varying or unknown. This
problem is difficult to surmount unless an adaptive scheduling mechanism is used
that estimates the application requirements and adapts the scheduling parameters
accordingly. Proposals of this kind have been made in the recent past [Abeni and
Buttazzo 1999; Abeni et al. 2005] but they make some important and restrictive
assumptions. In particular, applications have to be structured as a sequence of
real-time jobs and have to notify the start and the termination of each job to the
scheduler by means of an appropriate Application Programming Interfaces (API).
This way it is possible to monitor the application and take corrective actions when
a deviation is detected from the desired temporal evolution.
An important practical problem hindering the application of this paradigm is that

the real-time support present in modern GPOSs is mostly limited to the POSIX
real-time extensions [IEEE 2004]. This API provides very useful features for embed-
ded control systems, but is generally recognised as unfit for multimedia applications.
Only recently has a new generation of specific scheduling solutions for this type of
applications made inroad into experimental versions of standard GPOSs1.
The use of a specialised API, when available, is relatively easy for applications

developed from scratch. When the source code is available, it is possible to review
it inserting the appropriate API calls. In other cases, the source code of the ap-
plication is unavailable or, more simply, the software producers are not willing to
take the risk of an expensive and potentially error-prone refactoring. Therefore, it
is easy to predict the presence of a large number of legacy real-time applications
for many years to come. In this paper, we use the term legacy applications mean-
ing applications that are implicitly characterised by temporal constraints, but are

not developed using a specific API for real-time computing. In legacy applications,
developers contrive to achieve an acceptable timing behaviour by a large range of
heuristic solutions (including a generous use of buffering). The robustness of these
solutions can be very low when the system is heavily loaded. Moreover, the presence
of large buffers increases the latency of the application and reduces its interactivity.
We make the point that, even for legacy applications, a controllable and robust

timing performance is best achieved operating at the scheduling level. The purpose
of the research presented in this paper is then the development of a scheduling
mechanism, called Legacy Feedback scheduler (LFS++), that: 1) extends the ben-
efits of real-time scheduling to legacy applications, and 2) operates in a completely
transparent way without requiring any modification to the application. This is a
complex and multifaceted problem whose solution requires: 1) to correctly infer the
activation pattern (multimedia applications are typically periodic, the problems is
essentially the inference of the period); 2) to estimate (as tightly as possible) the
computation requirements. To identify the period we treat an application as a black
box and keep track of a set of events generated by the kernel. The subsequent use
of Fourier analysis on the time series of these events allows us to identify the dom-
inant frequencies (peaks in the spectrum), and hence the period of the application.
The computing requirements are indirectly identified by accounting for the com-

1An example of this kind is offered by the AQuoSA project (website http://aquosa.sourceforge.
net) or by the LITMUS-RT project (website www.cs.unc.edu/~anderson/litmus-rt/.
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putation time used by the task in every sampling interval. The estimation of the
computation requirements and of the period allows us to identify the fraction of
CPU required by the application and make the appropriate scheduling choice.
In addition to providing the algorithmic foundations for this approach, in the

paper we show how it can effectively be implemented in the context of the Linux
kernel (fitted out with a resource reservation scheduler). We report an extensive
experimental validation showing the radical improvement of our solution over the
standard scheduler. A very important issue is how to ensure a positive interaction
with other mechanisms present in the kernel that can have an impact on the com-
putation time of the applications. As an important example, we consider the power
management system, which operates on the frequency of the CPU and plays a fun-
damental role in mobile devices. In the paper, we show an architectural solution to
achieve a graceful integration between our adaptive scheduler and the power man-
ager and offer full experimental evidence of the effectiveness of this combination.
The paper is organised as follows. In Section 2, the related literature is briefly

surveyed. In Section 3, we introduce the terminology on real-time scheduling used
throughout the paper and the scheduling solution that we build upon. In Section 4,
we describe the problem and provide an overview on our solution. In Section 5, we
describe the algorithmic foundations of our approach, while in Section 6 we present
our implementation. In Section 7 we offer experiments to prove the effectiveness of
the approach. Finally, conclusions are drawn in Section 8.

2. RELATED WORK

In the last few years, there has been a considerable amount of research on how
to express and guarantee temporal constraints for time sensitive applications. A
representative example are the reservation-based schedulers [Mercer et al. 1993; Ra-
jkumar et al. 1998; Abeni and Buttazzo 1998]. Such algorithms enable a fine-grained
control on the fraction of CPU time (bandwidth) devoted to each application but
the point remains open of how to properly choose the scheduling parameters if the
computation requirements are not known and/or change over time.
A popular solution to this problem is the use of adaptive mechanisms. A first

possibility of this kind is to perform application-level adaptation [Wüst et al. 2005].
The idea is that in response to fluctuations in the availability of resources, the
application changes its mode to scale up or down the workload it generates. In
this paper, we take the complementary approach: resource allocation is adaptively
tuned to fit the application requirements (resource-level adaptation).
Resource level adaptation (particularly for the CPU) can be obtained by applying

feedback control to real-time scheduling, as shown by several authors [Li and
Nahrstedt 1998; Abeni et al. 2002; C. Lu and Son 2002; Goel et al. 2004; Abeni
et al. 2005]. In such approaches, while the applications execute, their real-time
behaviour is monitored and corrective actions are taken by changing the scheduling
parameters to meet some QoS related objectives. Computing models that represent
an alternative to the real-time task model have been proposed by different authors.
An interesting example is offered by the Timely Computing Base (TCB) model
proposed by Verissimo et al. [Verissimo and Casimiro 2002], which can be combined
with an application-level QoS adaptation [Casimiro and Verissimo 2001] mechanism.
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However, all of the approaches mentioned above mandate the use of some kind
of specialised API within the application, and are not easily applied to legacy
applications. The use of a specialised API is assumed by several authors proposing
an Operating System support for multimedia and time-sensitive applications [Leslie
et al. 1996; Jones et al. 1996; Krasic et al. 2009].

More similar to our approach is the work proposed by Steere et al. [Steere et al.
1999], who propose a reservation scheme implemented in the Linux kernel, and a
feedback-based controller to adjust the scheduling parameters. The authors point
out the need for detecting the period, but they do not propose any solution other
than the choice of default values. Their work is based on so called “symbiotic”
interfaces, a sort of API used by applications in order to allow external components
to monitor their progress. Similar is the approach proposed by Eide et al. [Eide
et al. 2004], in the context of the QuO framework [Krishnamurthy et al. 2001].
Although the authors claim that their solution is “non-invasive”, the approach is
clearly targeted at applications based on the RT-Corba middleware (in fact an
API), which simplifies the interaction with a resource allocation module. In our
work, the adaptation mechanism in entirely transparent to the applications.

The provision of QoS guarantees for legacy applications has been also explored in
the networking community. Tstetekas et al. [Tsetsekas et al. 2001] propose the use
of proxy servers to determine the network requirements of Internet applications.
The approach is not applicable to CPU allocation. To the best of our knowledge,
the first work providing system support for unmodified (possibly uncooperative)
applications that do not use any specialised API is Redline [Yang et al. 2008], which
is based on a reservation-based scheduler and uses some lightweight specifications to
associate scheduling parameters with the applications.The specifications required
by Redline are system dependent, and can also depend on the applications’ input –
for example, the reservation period for a video player depends on the video frame
rate. The work presented in this paper is orthogonal to Redline: an adaptive
mechanism for inferring the specifications from the applications at run time.

From the scheduling point of view, the first technique developed explicitly to
support adaptive scheduling of legacy applications is the so called Legacy Feed-
back Scheduler (LFS) [Abeni and Palopoli 2009]. In the LFS scheme, the scheduler
samples a binary variable that simply says whether the task received enough com-
putation in the last period or not. Although we have taken inspiration from this
scheme for the scheduler presented in this paper (not surprisingly called LFS++),
we use a finer grain for the feedback information (the “sensor” inside the kernel
measures the amount of CPU consumed by the task), and the estimation of the pe-
riod allows us to come up with a more precise estimate for the required bandwidth.
Therefore, the application of LFS++ necessarily results in a better QoS.

One of the issues in our paper is the period detection. This problem corresponds
to the problem of pitch detection, very much studied in the signal processing theory.
A first class of algorithms to determine the pitch of a periodic signal works on the
waveform in the time domain. In their simplest form, such algorithms just mea-
sure the rate of events like zero-crossings or local peaks/dips of the signal (e.g., the
Zero-Crossing Rate algorithm [Kedem 1986]). These methods work only with simple
waveforms.To deal with complex waveforms, one possibility is to work with the fre-
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quency domain representation of the signal (as we do in this paper). Some authors
consider the components of the frequency spectrum, trying to infer the relevant
harmonics it presents, and reconstructing its fundamental frequency [Piszczalski
and Galler 1979]. The algorithm we developed is based on similar principles, but
we exploit some specific characteristics of our problem to reduce the complexity of
the detection. Different alternatives, such as the use of Cepstral analysis [Bogert
et al. 1963], have an unaffordable overhead for our application.

3. BACKGROUND INFORMATION

In this section, we provide some basic terminology on the real-time tasking model
and on the scheduling algorithm adopted in this work.

3.1 The Real-Time Task Model

In real-time theory, a system is by and large modelled as a set Γ = {τi} of real-time
tasks. The term task is used to denote either a process (owning a private memory
space) or a thread (sharing the memory space with other threads). A task τi is
modelled as a sequence of jobs and is described by a pair (Ci, Pi): Ci is the worst-
case execution time for the individual jobs of τi, and Pi is the minimum inter-arrival
time between two consecutive jobs (or the task period in case of periodic tasks).
Every job should terminate before the arrival of the next job, an implicit deadline.

3.2 The CBS Scheduler

The scheduling algorithm that we use in this paper belongs to the family of the
so called resource reservation schedulers. A resource reservation scheduler allows
one to allocate to each task τi (or to each set of tasks) a computation budget of
Qs

i time units in every reservation period of duration T s
i time units. This way, not

only can the execution rate be controlled (the task receives a fraction Qs
i/T

s
i of the

CPU time) but also the granularity of the CPU allocation can be decided for every
single task by the reservation period T s

i .
The particular algorithm used in this work to implement the reservation be-

haviour is a hard-reservation variation [Palopoli et al. 2009] of the Constant Band-
width Server (CBS) [Abeni and Buttazzo 1998], which implements CPU reserva-
tions building on top of an Earliest Deadline First (EDF) scheduler. The basic CBS
idea is to schedule tasks based on their scheduling deadlines dsi , with dsi increased
by T s

i every time τi executes for a time Qs
i . Each time a task enters the ready queue

(for example when a job is activated or when the task wakes up from a blocking
I/O operation), the scheduler checks if the current budget and scheduling deadline

can be used without exceeding the fraction
Qs

i

T s
i

of the CPU time. In the negative

case, the budget and the deadline are updated with appropriate values [Abeni and
Buttazzo 1998]. The scheduling deadline is used to decide the CPU assignment ac-
cording to EDF. The algorithm provably enjoys the properties required to resource
reservation schedulers if the following schedulability condition is met:

N
∑

i=1

Qs
i

T s
i

≤ 1. (1)

Notably, the rules of the CBS make the schedulability condition valid even in case
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Fig. 1. Fraction of CPU Qs
i/T

s
i required to correctly schedule a real-time task with 20%

utilisation C = 20 ms, P = 100 ms.

of tasks performing I/O operations. The interested reader is referred to the cited
paper for additional details on the rules of the algorithm and on its properties.

4. PROBLEM DESCRIPTION AND SOLUTION OVERVIEW

When we use a reservation-based scheduler for a real-time task, the problem arises
of how to choose the (Qs

i , T
s
i ) parameters so that real-time constraints are met.

The problem has easy solutions if the timing parameters of the task are known
a priori. In particular, if the task is periodic with period Pi and if we know its
worst case execution time Ci, then we can simply set T s

i = Pi and Qs
i = Ci and the

task provably meets all of its deadlines [Abeni and Buttazzo 1998]. Alternatively, if
we know the probability distributions of the inter-arrival and execution times, the
server parameters T s

i and Qs
i can be set so that the task meets its deadlines with

a minimum guaranteed probability. If a single server is used to schedule multiple
tasks, hierarchical scheduling analysis [Mok et al. 2001] can be used to properly
assign the scheduling parameters.
The problem with legacy applications is that we cannot rely on any such prior

knowledge of the execution requirements, and a wrong choice of the parameters
can lead to a severe performance degradation. This is particularly evident for the
choice of the budget Qs

i . Indeed, even assuming a perfect knowledge of the appli-
cation period, if we choose too small a value for Qs

i (compared to the average CPU
utilisation of the task), the application is likely to receive a very bad QoS. Likewise,
a large value of Qs

i affects adversely the possibility to admit new applications.
Much less obvious but equally relevant can be the detrimental effects of a bad

choice for the reservation period T s
i . This problem was discussed in our previous

work [Cucinotta et al. 2009] using an analysis technique inspired to the supply
bound function [Lehoczky et al. 1989]. It is very illustrative to report here the
correct values of the budget QS

i (and hence of the bandwidth Bs
i ) required to

schedule a simple periodic task with Ci = 20ms, Pi = 100ms. As it is possible to
see in Figure 1, the required bandwidth ranges from the correct value (20%) to very
high values (more than 60%) if the server period is chosen too small or too large.
The correct bandwidth (20%) is required choosing T s

i equal to the task period or to
a sub-multiple of the task period. However, the choice T s

i = Pi is the most robust,
in that moderate errors in the choice of the period do not lead to an excessive
waste of bandwidth. On the contrary if we choose, for instance, T s

i = Pi

3
= 33ms,

then even an error of a few milliseconds in the choice of the period easily raises the

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000  60000  70000  80000

P
(f

 >
 t
)

Finishing time f (us)

T=10
T=30
T=40
T=50
T=90

Deadline
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  20  40  60  80  100  120  140  160  180

R
e
s
e
rv

e
d
 C

P
U

 B
a
n
d
w

id
th

 Q
/T

Task instance

T=10
T=30
T=40
T=50

(a) (b)

Fig. 2. (a) CDF of the response times for a task with period P = 40ms and various
reservation periods T s. (b) Fraction of bandwidth allocated to a periodic task (C =
20ms,P = 40ms) by LFS.

required bandwidth to a value close to 30% (with an over-allocation of bandwidth
close to 50%). These considerations suggest a possible inefficiency in scheduling
real-time periodic tasks by a class of algorithms (such as the Proportional Share
algorithms), for which the scheduling period is not explicitly considered.
The discussion above leads to the conclusion that an appropriate choice of the

scheduling parameters can only be made if we construct a close estimation of Pi

(which is usually a fixed parameter) and a statistical estimation of the computation
time (e.g., a proper distribution percentile).

4.1 An Example

The theoretical analysis presented in the previous subsection is confirmed by some
simple examples with two periodic tasks executed on real hardware.
In different experiments, we have scheduled each of the applications by a reser-

vation with different parameters. The server period T s
i was chosen arbitrarily a-

priori, while the budget was dynamically identified by the LFS algorithm [Abeni
and Palopoli 2008] to reduce the number of missed deadlines. Figure 2 (a) reports
the Cumulative Distribution Function (CDF) of the response-time of one of the
periodic tasks (having period P = 40ms), for the different experiments. The figure
shows that a server period smaller than or equal to the application period leads
to a good performance. Indeed, the CDFs for T s < P have very short tails after
40ms. However, looking at Figure 2 (b), which reports the corresponding dynamic
bandwidth allocations made by LFS, it is clear that the best allocation is the one
with the server period equal to the application period, corresponding to a lower
bandwidth utilisation of the system.
The bandwidth waste resulting from the use of integer sub-multiples of the task

period as server period, is greater than theoretically. This was also expected, be-
cause the theoretical discussion above refers to the minimum theoretical budget
needed to schedule the real-time task hosted by the reservation, while the LFS
algorithm approximates (and typically significantly overestimates) this budget.
The experiments above show that the best results, both in terms of application

performance, and of allocated bandwidth, are achieved when the server period is
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Fig. 3. Block diagram of the algorithmic solution used in LFS++.

chosen in a small neighbourhood of the task period.

4.2 Our Approach

A very high level description of the LFS++ approach is in the block-scheme in
Figure 3. The legacy real-time tasks are scheduled through a Resource Reservation
scheduler. The correct parameters (Qs

i , T
s
i ) are periodically identified by a Band-

width Controller. This component is a multiple input multiple output (MIMO)
controller that uses as its input: 1) the estimated period of the tasks and 2) the
time consumed by the tasks during the last sampling period (in the picture some
of the arrows carry a vector of quantities: one for each of the N tasks).
For each task, the period is reconstructed by a Period Analyser, based on a

sequence of events traced in the kernel. This component is activated periodically in
order to detect possible dynamic changes in the application period. However, since
its computation requirements are greater than the ones of the bandwidth controller
(see Section 7), the latter is typically executed with a higher rate.
In our particular design, the bandwidth controller operates in two steps. In the

first step, a budget request Qreq
i is computed for each task, using the information on

the time consumed by the task in the last period and the past history of its evolu-
tion. The budget requests Qreq

i and T s
i are submitted to a supervisor component,

whose purpose is to enforce the global schedulability condition in Equation (1).
Namely, if the requests do not saturate the total available bandwidth, they can be
entirely granted Qs

i = Qreq
i . Otherwise they have to be curbed to fit in the bound.

The policy used to generate a feasible choice of budgets from the requests has a
strong impact on the QoS of the tasks during an overload condition. As an exam-
ple, it is possible to use a weighted optimisation problem or a weighted compression
function that penalises the tasks with a smaller weight.
For systems with dynamic CPU frequency scaling capabilities, possible changes in

the CPU speed (e.g., for power saving purposes), need to be coordinated with such
a feedback-based control logic to avoid anomalies in the temporal behaviour of the
tasks. Therefore, we introduced a new block (power management) that interacts
with the pre-existing power-management mechanisms present in the kernel.
While the supervisor has been discussed in our previous work [Palopoli et al.

2009; Abeni and Palopoli 2009], the design of the other blocks raises important
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Fig. 4. (a) a sequence of events associated to a segment of execution of an application,
(a) The mathematical model as a sequence of Dirac’s δ.

theoretical and architectural issues tapping several disciplines. In particular, the
identification of the task parameters carried out by the Bandwidth Controller is
essentially a theoretical problem, which can be solved without any commitment to
a specific architectural choice. On the contrary, the design of the event tracing
mechanism, of the workload monitor and of the power management block is, to a
large extent, architecture dependent.

5. IDENTIFYING THE TASK PARAMETERS

In this section, we dwell on the algorithmic foundation that underpins the design of
the task controller. We assume the presence of some kernel or middleware compo-
nents that operate as “sensors” providing the period analyser and the bandwidth
controller with the necessary input. Clearly, the quality of the result depends on
the accuracy and on the frequency with which this information is collected.

5.1 The Period Analyser

The Period Analyser, as discussed in Section 4, plays a crucial role in our con-
struction. In this section, we discuss how this component can be designed. The
activation of a job for a task is, in a GPOS, associated with a state transition
from BLOCKED to READY. This event is said a wakeup event (WKE). In the idealised
situation in which a job activation is the only WKE, the period detection would
simply amount to identifying the interval between two consecutive occurrences of
this event. In real applications, unfortunately, we can have many of these events
even during a job execution (e.g., to perform I/O operations, or to access mutually
exclusive memory areas). Generally speaking, by the term scheduling related event

(SRE) we denote any event that could potentially be associated to a state transition
of the task. As an example, consider the excerpt of a trace recorded from an MPEG
player and reported in Figure 4.(a). Each event is represented as a vertical line.
We observe events (group of adjacent lines) that are repeated with a fairly regular
spacing, in addition to spurious events (i.e., events that occur only occasionally).
In the rest of the section, we make the simplifying assumption that a trace only

consists of periodically repeated bursts (without spurious events). As shown in the
experimental section, the results of the practical application of the methodology to
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real programs do not significantly differ from the theoretical expectations (proving
a good degree of robustness to un-modelled effects).
A possible way for modelling this behaviour is to conceptually associate each

event at time t0 with a Dirac delta at time t0, denoted by δ(t− t0). Therefore, if si
symbolically represents an event, its periodic repetition can be modelled as a train
of Dirac δ: si(t) =

∑

∞

h=−∞
δ(t− φi + hP ), where φi is the temporal offset (phase)

of the event inside the period (see Figure 4.(b)). A trace can then be modelled as

the sum of all signals si: s(t) =
∑K

i=1 si(t), K being the total number of events
within each periodic activation of the task.
The Fourier Transform of s(t) is given by:

S(f) = F(s(t)) = 1
P

∑K

i=1

∑

∞

n=−∞
e−jn2πf0φiδ(f − nf0),

where f is the frequency variable and f0 = 1/P . Now, suppose that the observation
horizon H is limited to L sampling periods (H = LP ). We can model this effect
multiplying the signal s(t) by GH(t− H

2
), where:

GH(t) =

{

1 if |t| ≤ H/2

0 otherwise.

Applying standard arguments of signals and systems theory, we get:

S(f) = H
P
e−j2πfH/2

K
∑

i=1

∞
∑

n=−∞

e−jn2πf0φisinc(π(f − nf0)H) =

= H
P
e−j2πfH/2

∞
∑

n=−∞

(

K
∑

i=1

e−jn2πf0φi

)

sinc(π(f − nf0)H)

(2)

where sinc(x) = sin(x)/x. The right hand side of Equation (2) consists of a linear
combination (in the complex domain) of the functions sinc(π(f − nf0)H). Consid-
ering that each sinc function has the highest peak when its argument is equal to
0, the amplitude spectrum of their linear combination has the peaks in f = nf0.
The distance f0 = 1/P between two adjacent peaks corresponds to the inverse of
the period. Summarising, a task period can be identified by: 1) computing the
spectrum of the signal s(t), and 2) estimating its peaks and their distance.

5.2 Computation of the Spectrum

The spectrum is computed in the range of frequency [fmin, fmax] with a step δf .
This computation can be made iteratively. Indeed, whenever we record the ith event
at time ti, we can model it as a Dirac δ(t− ti) whose contribution to the spectrum,

for each frequency f, is F
(

δ(t− ti)
)

= e−j2πfti = cos(2πfti) − j sin(2πfti). The

number of samples to be computed for each of these terms is given by fmax−fmin

δf
.

Therefore, the number O of complex exponents to compute is:

O =
fmax − fmin

δf
N ≡

fmax − fmin

δf

H

P
K, (3)

where H is the observation time horizon, P is the application period and K is the
number of events recorded in each application period.
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5.2.1 Peak Detection Heuristic. The peaks of the spectrum (and hence the pe-
riod) are computed by the following heuristic algorithm:

1) compute a sampling of the amplitude spectrum S(f) of the signal s(t)GH(t−H/2)
(the modulus of its Fourier Transform) in the frequency range [fmin, fmax], with
step δf , as discussed above:

|S(f)| =

∣

∣

∣

∣

∣

N
∑

i=1

e−j2πfti

∣

∣

∣

∣

∣

; (4)

2) identify a first set of peaks f1, . . . , fm as the local maxima of the amplitude
spectrum in the range (ordered by frequency);

3) discard all peaks fi for which S(fi) is lower than α times its average value S
(with α configurable);

4) if the resulting set of candidate values is empty, then declare the application as
non-periodic and terminate;

5) for each candidate frequency fi, compute the sum Σi of the amplitude spec-
trum in correspondence of at most kmax integer multiples of fi (set to 10 in the
experiments), with a tolerance of ǫ, i.e., compute:

Σi =
∑

fj∈[hfi−ǫ,hfi+ǫ]

h∈{1,...,kmax},fj≤fmax

|S(fj)|.

6) select the frequency fi corresponding to the highest Σi value.
The rationale of this algorithm is explained next. In the computation of the

spectrum, due to the behaviour of the sinc function and to the inexact adherence
of our model with the real signal, we have got a combination of main peaks and
of secondary peaks. Our objective is to identify the main peaks and estimate their
distance. More simply, we can identify the first main peak at a frequency greater
than 0 and take its value (one of the main peaks is necessarily at frequency 0 and
therefore the distance between two main peaks is given by the frequency of the first
main peak). The first three steps identify the candidate peaks and rule out the
evident secondary peaks using an empirical threshold α. If no peak is left, we can
conclude that the signal is not evidently periodic. Otherwise, we carry out a further
analysis step considering that if we identified the first main peak, then further
main peaks are expected to be at integer multiples of its frequency. Therefore, we
accumulate the spectrum of all these frequencies using a tolerance ǫ (to account
for the fact that the peak could not be exactly at the expected frequency) and
limiting the number of considered frequencies to kmax. The secondary peaks can
be identified because of the smaller value resulting from this sum.
Heuristic Complexity. The complexity for the period detection heuristic is ex-

pressed in terms of number of frequencies of the computed transform that need to be
scanned. Let F ,

fmax−fmin

δf
be the number of computed samples for |S(f)|. The

second and the third steps of the algorithm require the analysis of all the samples.
Then (step 5), for each candidate peak frequency fi, the values of the transform
in correspondence of the integer multiples of fi, with a tolerance of ǫ, are summed

up, up to fmax. The number of sums to make is given by min
{

fmax−fi
fi

, kmax
}

ǫ
δω

;
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the final choice of the main peak is immediate and does not have any impact on
the complexity. Therefore, the number E of considered elements in the frequency
transform is bounded by:

E =
fmax − fmin

δf
+

∑

fi∈Fmax

min

{

fmax − fi
fi

, kmax

}

ǫ

δf
, (5)

where Fmax is the set of candidate peaks after step 3.

5.3 The Bandwidth Controller

The LFS++ Bandwidth controller requires the presence of an appropriate “sensor”
inside the kernel that measures the CPU time consumed by the application in each
interval. This information is fed into a “predictor” or “estimator” component,
which determines the budget that best suits the application needs, based on the
observation of past computation times of the application. The budget requests from
all tasks are then processed by the supervisor.
The sensor is sampled periodically and its reading is used to estimate the duration

of each job. Let P denote the application period (estimated by the period analyser),
and let S denote the sampling period of the bandwidth controller. For the sake of
simplicity, assume that S is equal to an integer multiple of P . Let Wk denote the
measured time at the kth activation of the feedback loop, Wk−1 denote the time
measured at the previous activation. Then, the new budget Qreq

k required for the
next sampling interval is determined as follows:

Qreq
k = (1 + x)P

P (Wk −Wk−1)

S
,

where x is called “spread factor” and P(·) is a prediction function returning the
computation time expected for the next sampling period. The idea is to translate
the expected application workload into the bandwidth allocated by the reservation
(since P is set equal to the task period, Qreq

k /P is the bandwidth requested by the
controller). In this paper, we propose a “percentile estimator” for the predictor
P , which basically memorises the sequence of the past N observed samples, and
outputs the estimated pth percentile of the computation times distribution2. This
may be easily accomplished for p values, which correspond to a probability expressed
as N−j

N
, where j is an integer. For example, with N = 16, if p = 1.0 (j = 0) then

one has to take the maximum over the last N samples. For p = 0.9375 (j = 1),
one has to take the second maximum, and so forth. Although many different
predictors could be used in place of the percentile estimator [Palopoli et al. 2009],
the latter is of general applicability (it does not make particular assumptions on
the application) and it is very suitable for soft real-time application where the user
is typically interested in controlling the deadline miss ratio.
The factor x is essentially a design parameters, which in our experience is best

chosen in the [0.1, 0.2] range. Essentially, it increases the bandwidth from its “ideal”
assignment (the task utilisation). The choice of this parameters allows finding the

2From a theoretical standpoint, this methodology produces a percentile of the sample which is a
good estimation of the percentile of the distribution if the latter is ergodic and if the horizon N

is chosen large enough.
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most appropriate balance between Quality of Service and expenditure of system
resources. Indeed, a large value of x produces an overestimated bandwidth. There-
fore, the system becomes more robust to prediction errors and it reacts more quickly
to workload changes, paying the price of a potential waste of computation resources.
Conversely, a small value for x corresponds to a conservative bandwidth choice but
it increases the risk of QoS degradations when the system generates an unpredicted
computation workload (e.g., a scene change for a streaming application).

6. THE PROPOSED ARCHITECTURE

The implementation of the scheme advocated in this paper requires: 1) the design
of an appropriate architecture based on kernel-specific solutions, 2) the availability
of the architecture-dependent blocks in Figure 3, namely the resource reservation
scheduler, the event tracer, the workload monitor and the power manager. In this
section, we briefly describe the architectural implementation, based on the Linux
kernel, that we have developed and used for the experiments in the next section.
As far as the scheduling mechanism is concerned, we have used the AQuoSA ar-

chitecture3, which extends the Linux kernel with a Resource Reservation scheduling
mechanism. The Bandwidth Controller and the period analyser are implemented
in a user-space daemon, which periodically collects information from the sensing
blocks and performs the computation of the algorithms described in the previous
section. This daemon interacts with the standard mechanisms present in the Linux
kernel to carry out frequency switches on the CPU. In the rest of the section, we
will shortly describe each of these components.

6.1 Workload Monitor

The workload monitor measures the time a task executes over an inter-
val of time. For POSIX compliant systems (such as Linux) a sensor of
this kind is the clock gettime() system call that measures the so called
CLOCK PROCESS CPUTIME ID and the CLOCK THREAD CPUTIME ID clock values, pro-
viding us exactly with the information we need at the granularity level of the process
or of the thread. In our specific case, we used the API of the AQuoSA middleware
and in particular the AQuoSA API call qres get time(), which returns the CPU
time consumed by all the threads attached to a CBS since its creation.

6.2 The Event Tracer

The purpose of the event tracer is to pinpoint periodic events generated in the
execution of a task. Any mechanism created to this purpose can be evaluated
along two different dimensions: its accuracy and its intrusiveness. By accuracy we
mean the ability to detect exactly events that are repeated with regular temporal
patterns introducing a small noise in the measurements. By intrusiveness, we mean
the extent of the modification on the basic structure of the kernel required to extract
the information. We have identified two solutions that strike a different balance
between these two conflicting metrics.
Tracing the system calls. The first solution is based on the consideration that

periodic events are often associated to system calls. For instance, a typical periodic

3http://aquosa.sourceforge.net/
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task executes some operations (the task body) and then switches to a “blocked”
scheduling condition as a result of the execution of a blocking system call (such
as clock nanosleep()). If we knew exactly the primitive used by the task to end
a job, we could in principle trace its execution instants and extract a sequence of
events which, with a good approximation, can be regarded as periodic. In fact, for
a legacy application things are more complicated because we do not know which
call is used to block the task, and the same call could be used for different purposes.
For this reason, we need to trace the application for the use of a wide set of poten-
tially blocking system calls. This tracing mechanism necessarily produces “noisy”
measurements: only a very strict subset of the system calls are in fact periodic. On
the other hand, this tracing mechanism can be implemented in a flexible way. In
our previous works [Cucinotta et al. 2010; Cucinotta et al. 2009], we have shown
both a kernel-based implementation, and an entirely user-space one relying on the
Linux ptrace() system call. As the standard libraries implementing system calls
are usually dynamically linked by applications, it is also possible to exploit dynamic
linking to intercept the calls. A user-space implementation has the advantage of
enabling the tracing mechanism without the need for root privileges.

Tracing the Wakeup Events. The tracing of the WKEs leads to more accurate
results as compared to the tracing of the system calls and to other SREs. In fact,
the activation of a job is invariably associated to a WKE. Therefore, any periodic
task certainly generates a periodic stream of events. Of course, there could be
other WKEs in the different jobs of a task that are not repeated periodically (e.g.,
for occasional synchronisations or I/O operations). However, the jitter introduced
in the measurement of a WKE is necessarily smaller than the one introduced by
recording the exit of the system call associated with the event. Indeed, the system
call exit time may only be recorded when the process is actually scheduled by the
kernel, while wake-up events are recorded inside the kernel, without any scheduling
delay. Also, the number of expected WKEs is considerably smaller than the one
of other SREs, with an evident reduction of the overhead associated to the period
detection mechanism, which needs to process such events.

On the other hand, the tracing of WKEs is necessarily more intrusive: it has to
be carried out inside the kernel using root privileges. The potential security risk
is, in our case, alleviated by the use of a system daemon, which manages all the
different users and can implement a variety of security policies (e.g., a maximum
bandwidth “quota” allowed to un-privileged users). This daemon is the only entity
in the architecture that requires to execute with root privileges.

A first possibility for tracing the WKEs in Linux is offered by the ftrace kernel-
level tracer. This tool was designed for debugging purposes, and is unfit for “pro-
duction” installations of the OS. Indeed, it traces much more events than needed
(not only wake-ups, but also sleeps, signal reception, and preemption times) and
produces a formatted output (wasteful to create and to parse). For these reasons,
ftrace is hardly an acceptable option in our context.

Therefore, we have extended our qtrace Linux kernel patch (initially used for
the system calls) to trace processes wake-up events. This patch has been developed
along the following lines

- a special device allows a user-space program to specify the tasks for which the
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tracing of WKEs has to be enabled; an appropriate flag is set in the task descriptor
that enables the tracing of the events related to the task;
- a circular memory buffer is used within the kernel to record wake-up times of the
traced tasks; each event is recorded in a data structure containing the type of the
event and the Linux Thread ID of the task that generated it;
- a user-space program (in our case the LFS++ daemon) periodically depletes the
circular buffer communicating the traces to the period analyser.
As shown in Section 7, the qtrace patch allows for substantial overhead savings

with respect to the use of the ftrace tracer.

6.3 Power Management

A popular approach to manage power in PC is by operating on the CPU frequency.
This can be done using kernel-level components (e.g., the Linux “governors”), or
user-space daemons (e.g., cpuspeed or powernowd), which execute asynchronously
with respect to the applications. When a mechanism of this kind changes the CPU
frequency, the QoS performance provided by the LFS++ framework is at serious
risk of being disrupted. More specifically, increasing the CPU frequency cannot
affect the task QoS since the CPU utilisation of the task (the ratio between compu-
tation time and period) decreases. The transient over-provisioning of bandwidth is,
in this case, gradually compensated by the feedback. On the contrary, a frequency
decrease corresponds to an increase of the task utilisation. Until the LFS++ per-
forms a bandwidth adjustment, the real-time application accumulates delay with a
possibly severe QoS degradation can be severe.
The problem is that the LFS++ Bandwidth Controller described in Section 5.3

uses observations on the past activations of the task and can react slowly to the
sudden utilisation changes introduced by a CPU frequency switch. To deal with
this problem, we integrated a power management algorithm into the LFS++ dae-
mon to implement a QoS sensitive power management policy organised as follows.
The daemon periodically monitors the system workload and utilises the powernowd
power-management algorithm, to keep the overall system utilization in a target con-
figurable interval (defaulting to the [20%, 80%] range). Whenever a CPU frequency
increase is required by the algorithm, it is actuated immediately. More complex is
the management of a frequency decrease request. In this case, the daemon performs
a rough “projection” of the expected utilisation of the controlled real-time tasks
with the new target frequency and:
- if the projected utilisation overcomes the schedulability bound in Equation (1),
then the frequency switch is dismissed;
- otherwise, amode-change protocol is engaged by the daemon: the budgets assigned
to the controlled tasks are first increased according to the projected utilisation and
the CPU frequency switch is delayed to the time instant in which all the new
budgets have been changed on the underlying scheduler (this amounts to waiting
at most for a time duration equal to the maximum reservation period among the
ones active in the system).

After a frequency switch, the history of computation times collected by the band-
width controllers is reset to a single sample equal to the projected budget value, so
as to allow the control loops to promptly adapt to the changed workload.
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The algorithm for projecting utilisation figures across CPU frequencies is very
simple. Given the current frequency fcurr, the current utilisation Ucurr, and the
target frequency fdest, the projected utilization Udest is estimated as:

Udest = Ucurr

fcurr
fdest

(6)

Although this approach may seem a naive one, it is sufficient for our needs since
fine-grained adjustments of the budget can be deferred to the subsequent executions
of the LFS++ bandwidth controller.
The inclusion of power-awareness within LFS++ introduces substantial improve-

ments in the promptness of the reaction to frequency changes. As shown in Sec-
tion 7, not only does this mechanism radically reduce the transient QoS degrada-
tion when the frequency is reduced, but it also ensures a quicker convergence of the
bandwidth controller when the frequency increases, enhancing its efficiency.
As a final remark, the choice of powernowd for the power adaptation logic is

incidental. We believe that a similar solution could be found with other and possibly
more sophisticated (and/or effective) algorithms for power management.

7. EXPERIMENTAL RESULTS

The techniques and architecture described in the previous sections have been im-
plemented in a Linux-based system and used to demonstrate the effectiveness of our
approach through an extensive set of experiments4. First of all, LFS++ is compared
with the standard Linux scheduler, showing its advantages for scheduling multime-
dia applications. A second batch of experiments shows that LFS++ can reduce the
application’s response times when multiple instances of a real-time application are
simultaneously active. The third batch of experiment compares the performance
of LFS++ with a classic feedback scheduler. The tracing mechanism presented in
this paper (which traces the WKEs) is then compared with the one presented in
our previous work (which traces the SREs). The fifth set of experiments shows the
effectiveness of the LFS++/Power integration on platforms with power-switching
capabilities. Finally, overhead measurements are briefly summarised.

7.1 Comparing LFS++ and Linux

In this section, we compare the LFS++ approach with the default general-purpose
scheduler provided by the Linux kernel by measuring the amount of desynchronisa-
tion between the reproduced audio and video in a video player (mplayer). We play
a segment of the “Big Buck Bunny” movie5, containing H.264 video (encoded at
25fps, with frame size 1920×1080), and AAC audio. The movie is played under dif-
ferent load conditions, and the player was modified to print the difference between
the presentation timestamps (PTS) of the currently reproduced audio and video
frames (the Audio/Video (A/V) desynchronisation). Such value is representative
of the quality of service perceived by the user during the playback.

4The Linux kernel patches and user-space tools can be downloaded from
http://retis.sssup.it/people/tommaso/papers/acmtecs10
5http://www.bigbuckbunny.org
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Fig. 5. A/V desynchronisation of mplayer under various conditions.

As a background workload, we launch eclipse, a commonly used development
IDE environment based on Java. Experiments have been performed on an Intel(R)
Core(TM)2 Duo P9600 CPU running at 2.66 GHz. The IDE environment takes
about 15 seconds to start-up on the considered hardware.
The obtained A/V desynchronisation value during the first 30 seconds of the play

are shown in Figure 5. First, we run the player alone. After an initial transient
(required by the application to tune its internal buffers) the A/V desynchronisation
stabilises on a constant value (the “No Load” plot in the Figure).
Then, we repeat the play, launching the IDE application at time t = 2s,. The

desynchronisation (plot labelled as “Load - Linux”) increases to 0.4s between t = 5s
and t = 10s, and then steeply increases to a peak of nearly 1.9s around t = 14s.
When the IDE application ends the start-up phase, the desynchronisation decreases
back to negligible values close to 0.
Finally, we repeat the same experiment scheduling the player application un-

der the supervision of LFS++. The desynchronisation (curve labelled as “Load
- LFS++”) remains almost always below 0.1s, except for a small peak of 0.2s at
about t = 17s. The maximum peak of the A/V desynchronisation experienced by
mplayer when under LFS++ is about one tenth of the value experienced when
using the standard Linux scheduler.

7.2 LFS++ and Multiple Real-Time Applications

In order to compare LFS++ with the Linux scheduler in presence of multiple real-
time applications, we use rt-app, a synthetic periodic application we developed.
The application is activated periodically with a specified period, wastes CPU cycles
by running a dummy loop, then it records the achieved job response time and goes to
sleep until the next activation. Job response times are recorded in a static memory
array and stored in a file at the end of the program. For such an application, we
assumed a relative deadline equal to the activation period.
We run concurrently 3 instances of rt-app, with different periods and computa-

tion time tuned so as to achieve about 80% of overall system load (measured with
top). The parameters of the applications are reported in Table I.
The three applications are started at the same time and in Figure 6 we report

the Cumulative Distribution Function (CDF) of the response-times obtained for the
application with the smallest period (the one with the strictest timing constraints).
When using the default SCHED OTHER Linux scheduling policy (curve labelled as
“Linux”), the response times exhibit a large variability, with nearly 57% of the
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Table I. Parameters of the launched rt-app instances.
Application Period (µs) Iterations Load (%)

rt-app 3505 6000 30%
rt-app 8220 13000 28%
rt-app 100000 120000 21%
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Fig. 6. Response-time CDF obtained under LFS++ compared with the one obtained under the
Linux default scheduling policy. .

values below the deadline of 3.5ms (plot labelled as “Deadline”). For most soft
real-time applications, a probability of deadline miss of 43% is hardly tolerable,
and the application should better be dropped by the system.
Scheduling the same task set with LFS++ achieves a much more stable sequence

of response times (curve labelled as “LFS++”), which remain for nearly the 93%
of the jobs below the 1.5ms value (half of the relative deadline). About 5% of the
jobs exhibit a deadline miss, with a relative reduction of the deadline miss ratio
of nearly 75% as compared to Linux. However, the CDF in this case displays a
few residual response time values (below 2%) which are far beyond the deadline.
This is due to the interference of the real-time throttling mechanism in the Linux
kernel, which by default limits the maximum rough utilisation exploitable by tasks
at real-time priorities at 950ms every 1s (a security/stability feature preserving
starvation of the system if a real-time task goes into an endless loop due to a bug).
When this mechanism comes into play during a job of a rt-app instance is running,
the completion of such a job is delayed until the next throttling period, which may
be as distant as 50ms. In fact, by disabling the real-time throttling this problem
vanishes (curve labelled as “LFS++ (no throttling)”), with a maximum response
time that is about two periods and a half.

7.3 Comparison with Adaptive Reservations

While the LFS++ evidently outperforms the standard Linux scheduler, it clearly
suffers a performance gap against adaptive reservations mechanism, which require
a strong modification of the application code (impossible for legacy application).
To quantify this gap, we modified a real-time video encoder, grabbing frames at a
resolution of 640 by 480 and a rate of 25 Hz from a webcam, and encoding them in
MPEG2 format for transmission over the network. The encoder outputs I frames
alternating with P frames, with quite different corresponding computation time re-
quirements. The computation times for the same frame types fluctuates depending
on the video complexity. In the modified encoder we inserted function calls to the
AQuoSa middleware at the beginning of each job (qmgr begin cycle()) and at
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the end of each job (qmgr end cycle()). The modified encoder communicates its
period to the middleware before starting. This way it is possible to use a bandwidth
controller configured as in [Palopoli et al. 2009].
In Figure 7, we compare the CDF of the response times obtained using LFS++

with the original (unmodified) encoder against the one obtained with the AR policy.
The cooperation of the application produces understandably a strong improvement
in the performance. Indeed, the response times are for more of the 90% of the jobs
below the deadline. Also for more than 95% of the jobs the response time is not
smaller than 35ms. This shape of the CDF (very close to an ideal step) proves
the very precise tracking of the resource requirements. The LFS++ scheduler
has certainly a worse performance. More than 85% of the jobs have a response
time between 10ms and 20ms and the CDF has a long tail after the deadline.
This gap is due to two different facts: 1) the fine grained observations on the
system evolution that the AR is able to collect at the start and termination of each
job, 2) the use of a predictor optimised for the application (i.e., using information
on the coding scheme). On the other hand, the performance of the LFS++ is
acceptable: the probability of meeting the deadline is around 85% and for 92% of
the jobs the response time is below 60ms. This performance is obtained without
any modification to the application and by a controller that is activated with a
sampling period of 1s. The AR controller, on the contrary, is activate upon each
job termination (i.e., about 25 times per second).

7.4 Tracing of Wakeup Events

In this paper we introduced a novel tracing mechanism based on detection of wakeup
events (WKEs) at the kernel level, as opposed to the system call events (SREs) that
we used in our prior work [Cucinotta et al. 2009; Cucinotta et al. 2010].
The new tracing mechanism has been tested and compared with system call

tracing by using mplayer and the “Big Buck Bunny” movie described in Section 7.1.
The two different tracers have been used to infer the player’s periodicity under
different system loads and using different observation intervals.
In Figure 8 (a), we show the average and standard deviation of the detected

frequency, at varying observation interval. While for observation intervals greater
than 0.8s both tracers correctly identify the frequency, for smaller intervals the
frequency detected from the WKEs is much more stable than the one detected
from the SREs. The improvement in tracing the wakeup events is also visible in the
introduced overhead. In Figure 8 (b), we plot the number of detected events versus
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the standard deviation of the detected frequency, for various observation times. As
it can be seen, using the WKEs leads to a much lower number of events to process
and a small standard deviation. When tracing system calls, the standard deviation
of the detected frequency can be reduced by increasing the observation interval, but
this results in a large number of events to be processed (note the logarithmic scale
on both axes). The number of events to process is reduced of barely one order of
magnitude, improving the overhead incurred in the computation of the frequency
transform, which is linearly dependent on such value (see Equation (3)).
Further experiments showed that the presence of some real-time load in the

system decreases the precision of the rate detection mechanism, but the mechanism
based on WKEs tracing is less affected than the mechanism based on system calls
tracing. For example, Figure 9 shows the detected frequency for an observation
interval of 0.6s and an increasing system load. When the system load grows beyond
the 35% threshold, the event tracing mechanism is not accurate anymore. The
mechanism based on tracing WKEs is still very accurate up to a load of 45%, and
rmains more generally more accurate than SREs tracing (up to a load of 85%),
as shown by the respective standard deviation curves. This problem is due to
the scheduling interference from other real-time tasks. Indeed, if a real-time task
executes alone (or with non real-time tasks) and it is scheduled through a CBS,
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it invariably starts right after its activation. Therefore, if the task is periodic, so
will be the trace of the events it generates. On the contrary, in presence of other
real-time tasks, it can receive its reserved units of execution anywhere inside the
reservation period. Therefore, the trace will be much more noisy hindering the
detection of the period. The problem is further emphasised if we detect the SREs
instead of WKEs. Indeed, at least one WKE always occurs at the start of beginning
of the period independently from the workload, whereas the system calls event are
raised when the task executes (and the execution is affected by the workload).

7.5 Power Management

To understand the need for integrating power management into LFS++ we have
observed the behaviour of a real-time periodic application (with a period of 100
ms), executed on a system with frequency scaling supported and enabled. We
ran rt-app using first the LFS++ power management logic, then disabling it, but
enabling an external instance of powernowd.

Figure 10 shows the completion times of the jobs of the application during a fre-
quency transition. Before job 600 the system is executing a background best effort
workload (a simple cpu hog), that causes both of the power management logics (the
one embedded in LFS++ and the default one) to maintain the system at its highest
frequency. When the background workload is stopped, the total load of the system
decreases, and both of the power management logics decrease the frequency of the
CPU. The CPU frequency increases the response time in approximate proportion
to the ratio between the old and the new frequency (resp. 1.5 GHz and 2.4 GHz). In
the case LFS++ is not synchronised with the power management mechanism, the
increase in response time is not reflected soon enough in an increase of the budget
assigned to the application; this causes the overruns shown in the figure, that last
until job 629; at that point the feedback logic adapts itself to the new computation
time of the application and we see no more overruns. When LFS++ acts also as
the power manager, we see no overrun, because before updating the CPU speed
LFS++ waits for the completion of the mode-change protocol (from the figure we
can see that the actual CPU speed change happens some time after than in the
other case), and the new budget is sufficient to fit the increased execution time.
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Tracer Average Relative Standard
(sec) average deviation (sec)

NOTRACE 14.834 - 1.04432

QTRACE (WAKEUPS) 14.837 0.02% 1.04843

QTRACE (SYSCALLS) 14.945 0.74% 1.11884

QOSTRACE 15.156 2.17% 1.05422

STRACE 15.727 9.32% 0.796605

Table II. Overhead introduced by various tracers, compared to when no tracer is used (first row).

7.6 LFS++ Overhead

The different sources of run-time overhead introduced by the LFS++ scheduler can
be classified as follows: tracing overhead, due to the tracing mechanism, which
needs to record the set of interesting events for the traced applications; period de-

tection overhead, due to the Fourier transform computation and analysis needed
to infer the period of the traced applications; adaptive scheduling overhead,
due to the adaptation loop in which the workload in the last sampling instant is
observed and the reservation budget is accordingly modulated.
Tracing Overhead. The tracing overhead has been evaluated by measuring the

time spent by ffmpeg6 to transcode a video, with various system-call tracers at-
tached during the entire run. Each run has been repeated 10 times, and the average
and standard deviation of the total transcoding time has been computed. Results
are reported in Table II. First, we determined a baseline, running the transcoding
process without any tracer active, then we traced the program with our qtrace

tracer, described in Section 6.2.
The measured overhead includes both the time for logging the system-call infor-

mation within the kernel, which is really negligible and hard to measure, and the
one needed by lfs++ to download the time stamps through a special device, which
introduces a few context switches towards the tracing process (much fewer than
when using ptrace()-based tools). Finally, for completeness, also the overhead
obtained while tracing the same program by using the standard strace Linux tool
and the qostrace tool presented in [Cucinotta et al. 2009] are reported. As it can
be seen, the presented tracer introduces and an overhead close to 0.7% (relative
to the application computation time) when tracing system calls, and almost no
overhead (below the measurement noise threshold) when tracing wakeups.
Period Detection Overhead. The period detection overhead is due to various com-

ponents, such as the computation of the Fourier Transform and the Peak Detection
Heuristic. Hence, the time needed for period detection depends on the number
of generated events (which in turn depends on the observation interval horizon)
and on the target frequency range and granularity, as discussed in Section 5.2.1.
Section 7.4 already presented an experimental evaluation of the impact of the ob-
servation interval on the number of generated events and on the precision of the
rate detection mechanism. The results presented in said section are consistent with
another, more extensive, evaluation of the overheads that has already appeared in
our previous work [Cucinotta et al. 2010].
Here, a short summary of the experiments presented in the previous paper (based

on mplayer reproducing a set of mp3 files) is reported. Figure 11 presents the plot

6More information is available at http://www.ffmpeg.org.
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Fig. 11. Normalized frequency-transform of the events obtained by tracing mplayer at varying
tracing time.
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Fig. 12. PMF of the frequency detected by LFS++ for mplayer at varying tracing times.

of the amplitude spectrum obtained for different tracing intervals (note that in order
to enhance readability, values on the Y axis have been normalised to the maximum
value of the amplitude spectrum - hence the highest peak is 1.0). As the plots in
Figure 11 (a) show, the periodic nature of the application is evident already from
a tracing time of 500ms, in which the peaks of the curve close to the 32.5, 65 and
97.5Hz frequencies are quite evident. However, the plots in Figure 11 (b) show
that the periodicity becomes indisputable starting from 1s of tracing time.
Each period-detection operation with a given tracing time has been repeated 100

times, and the PMF curves of the detected frequency have been computed and
reported in Figure 12. In Figure 12 (a), we can see that a tracing time as short as
200ms may lead to a small error in the detected frequency, that remains between
32.5Hz and 35Hz most of the time, with a few occurrences on the second harmonic
at 97.5Hz (not reported on the plots for readability). Increasing the tracing time,
the PMF becomes tighter around the 32.5Hz value, with a few occurrences of the
second harmonic persist (between 0 and 2 on the 100 repetitions)
As a final remark, although the mechanism described above can used to track pe-

riod changes in the application, its maximum latency in responding to such changes
is lower bounded by time given by the sum of: 1) sampling time of the period anal-
yser, 2) observation interval (required for the collection of events), 3) execution of
the detection algorithm. This latency can be significant. Therefore, our approach
cannot be used on applications that change their period too frequently.

8. FUTURE WORK AND CONCLUSIONS

In this paper, we have proposed an adaptive mechanism for real-time scheduling
of periodic legacy applications. Our first contribution is to show (by theoretical
and experimental data) that an effective choice for the scheduling parameters can
be made only based on a correct estimation of the activation period and of the
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computation time of the task. Our second contribution is to show algorithmic
solution to estimate these parameters based on a trace of events generated in the
kernel. The solution we outline has been implemented in the Linux kernel and
we show, as our third contribution, how to tackle the architectural issues that the
approach raises. Finally, we offer full evidence of the effectiveness of the approach
on a large collection of experimental data, which displays the radical improvement
in performance over the standard scheduling solutions.
Our future investigation will take several directions. The first one is the adapta-

tion of the mechanism to the case of multi-threaded applications. The results that
we collected are encouraging but the technique needs some refinement (e.g., for the
evaluation of several periods from a single trace). The second one is the extension of
the technique to symmetric multi-core machines. In this context, an open research
issue is to design an optimised cooperation between the load balancing mechanisms
inside the kernel, the real-time partitioning of the tasks between the cores and the
adaptive mechanisms proposed in this paper. Another interesting research direction
is on the control scheme. Interesting open problems are on the period detection
scheme (e..g, heuristics with a smaller overhead than the one proposed here) and
on predictors. While the percentile estimator that we propose here represents (in
our experience) a good compromise between generality and simplicity, it is possible
that for particular classes of applications other predictors produce better results.
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