
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.XXX.XXXXXXX

A 2-phase Strategy For Intelligent Cloud
Operations
GIACOMO LANCIANO 1,2, REMO ANDREOLI 2, TOMMASO CUCINOTTA 2, DAVIDE
BACCIU 3, and ANDREA PASSARELLA 4
1 Scuola Normale Superiore, Pisa, Italy (e-mail: giacomo.lanciano@sns.it)
2 Scuola Superiore Sant’Anna, Pisa, Italy (e-mail: firstname.lastname@santannapisa.it)
3 University of Pisa, Italy (e-mail: davide.bacciu@unipi.it)
4 National Research Council, Pisa, Italy (e-mail: andrea.passarella@iit.cnr.it)

Corresponding author: Tommaso Cucinotta (e-mail: tommaso.cucinotta@santannapisa.it).

ABSTRACT When operating large cloud computing infrastructures, ensuring healthiness of physical
resources and software components is of paramount importance to meet the demanding service levels
expected by customers. This is only possible using automations that can detect anomalies and alert the on-call
personnel, or trigger healing procedures. In production-grade deployments, such automations are generally
based on static thresholds or predefined pattern-matching rules, checked against relevant metrics and logs.
Defining and maintaining them is cumbersome and, as the infrastructure grows, they need continuous
adjustments. To tackle this problem, we propose an intelligent automation system for cloud operations that
learns, from what operators have done in the past, what actions should be applied in response to the observed
anomalies. Such system is designed to operate elastic groups of cloud instances realizing typical (replicated)
cloud services. The mechanism is based on a 2-phase machine learning pipeline, composed of: a first, lighter,
model that automatically detects anomalous patterns, based on past observations of the normal behavior,
causing activation of the second, more involved, model; this is a model that recommends specific corrective
actions, based on historical operational data reporting the actions applied to heal the faulty components.
The approach was validated on an OpenStack deployment, where we deployed both a synthetic application
and a multi-node Cassandra NoSQL data-store, and injected different types of anomalies while these systems
were exercised using synthetic workloads. For both applications, we obtained a remarkable accuracy (mostly
beyond 90%, and also going beyond 95% in some cases), for the anomaly detection and corrective action
recommendation tasks, by applying the models on the respective test sets. This allows us to conclude that
the presented mechanism constitutes an efficient and effective technique to help operating cloud services in
presence of a number of faults, albeit the types and heterogeneity of faulty conditions might be expanded
in future evolutions of the framework. The implementation and the material needed to reproduce our results
are available under an open-source license.

INDEX TERMS Cloud operations, Fault management, Machine learning, Monitoring, OpenStack

I. INTRODUCTION

CLOUD computing has become an essential technology
in the modern distributed computing landscape [1].

Many diverse application domains [2], [3] leverage on ser-
vices deployed in either public or private clouds, like smart
cities, industrial factories, healthcare, e-Commerce, or even
telecommunications, with the increasing adoption of Net-
work Function Virtualization (NFV) [4]. Cloud infrastruc-
tures and services have rapidly evolved [5] from the initial
infrastructure-as-a-service (IaaS) provisioning model to the
platform-as-a-service (PaaS) one, that is the most widespread
nowadays. PaaS enables development and deployment of

modern cloud-native applications [6], deeply integrated with
a plethora of APIs and services, such as: reliable relational
and NoSQL databases, advanced and secure networking,
load-balancing (LB) and auto-scaling, serverless computing,
integrated machine learning (ML) frameworks for training
and operating large models, etc. Correspondingly, cloud in-
frastructures have significantly grown in size and complexity,
having to deal with an ever-growing software stack on top of
which such a wide variety of services can be made available.
Guaranteeing high reliability and availability is only possible
thanks to effective operations teams, that work 24/7 to keep
such systems up, running and responsive.

VOLUME 11, 2023 1

https://orcid.org/0000-0002-7431-8041
https://orcid.org/0000-0002-3268-4289
https://orcid.org/0000-0002-0362-0657
https://orcid.org/0000-0001-5213-2468
https://orcid.org/0000-0002-1694-612X


Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

The problem of operating big and complex distributed
infrastructures is far from trivial. Industrial practices rely
on monitoring metrics collected from physical and virtual
elements of the infrastructure, e.g.: physical hosts, virtual
machines (VMs), containers, networking appliances, and oth-
ers. Metrics are persisted such that they can be visually, or
analytically [7], inspected by operators. Also, they are typi-
cally automatically checked against a number of predefined,
usually threshold-based, rules that possibly identify problems
and trigger appropriate corrective actions. A classical ex-
ample is a LB with self-healing capabilities, that adds new
instances to an elastic compute group whenever the num-
ber of healthy instances goes below a configured amount.
Other mechanisms are instead based on predefined pattern-
matching rules to be checked against logs [8]. In a large-
scale cloud operations scenario, there are thousands of active
automation rules. However, as new scenarios occur, such rules
need continuous adjustments to keep on being effective. Also,
in response to an issue being identified, an operator typically
starts a (non-trivial) root-cause analysis [9], [10], to under-
stand what caused it, and ultimately what is the right fix. One
of the greatest challenge for cloud providers is to sustainably
deal with the ever-increasing size of the physical infrastruc-
ture. Ideally, without having to correspondingly increase the
number of operators that continuously watch dashboards, and
troubleshoot and fix infrastructure problems. In other words,
they should aim at that ‘‘rapid provisioning with nearly zero
human interaction’’, originally predicated by NIST [11].

Therefore, cloud providers are increasingly investing in
developing intelligent techniques to support humans oper-
ators in their tasks, such as anomaly detection (AD) [12],
resource allocation and capacity planning. Given the abun-
dance of operational data, it is natural to seek for data-driven
approaches like ML, that can augment the capabilities of
operators to ‘‘navigate’’ the zillions of available time-series
and logs. For instance, considering the AD problem, many
works in the literature leverage on either supervised [13],
[14] or unsupervised [15]–[17] ML algorithms to detect early
symptoms of anomalous conditions at different levels of a
cloud infrastructure. Similarly, many recent works [18]–[20]
propose time-series forecasting techniques to anticipate the
evolution of workloads and scale compute resources (e.g.,
VMs or containers) accordingly. However, effectively using
such approaches in production is not straightforward. Indeed,
there are many characteristics of the monitored system to
take into account, like the topology of the physical infrastruc-
ture [21], the design patterns used to realize the individual
applications [22], [23], or the in-place QoS requirements [24].

A. CONTRIBUTIONS
In this paper, we tackle the problem of automated operations
for elastically deployed cloud services, proposing a strategy
for intelligent anomaly detection and correction suggestion
that consists of two phases: (i) detecting anomalous opera-
tional conditions of an application made of an elastic group of
cloud instances; (ii) identifying the faulty component within

the group, and proposing the best corrective action to restore
it. Both phases rely onMLmodels to learn from the appropri-
ate operational data to detect early symptoms of anomalous
conditions and to identify the proper corrective actions to
apply, without explicitly coding static rules. This work aims
at closing the cloud operations loop in a totally automated
fashion, envisioning a system with the ability to learn from
the corrective actions applied by operators in similar previous
cases. We validated the proposed approach by deploying a
synthetic application and a Cassandra NoSQL cluster on an
OpenStack testbed. We trained and tested the ML models
on system-level monitoring data gathered while injecting
different types of anomalies on the mentioned applications,
including exogenous workload interferences, sudden failure
of a cluster member, and saturation of CPU capacity and
disk I/O bandwidth. For (i), we trained an AD model such
that it could generalize to variable-sized groups of instances.
On the respective test sets, for the synthetic application, we
obtained a ROC-AUC of 97% and an accuracy of 90.34%,
while, for Cassandra, we obtained a ROC-AUC of 94% and an
accuracy of 87.50%. For (ii), we trained a supervised multi-
label classification model, such that it could associate correc-
tive actions to instances individually. On the respective test
sets, for the synthetic application, we obtained an accuracy
of 96.15%, while, for Cassandra, we obtained an accuracy of
98.75%. See Section IV for more details on the performed
experimentation. The implementation of our approach and the
material needed to reproduce our results are available under
an open-source license.

B. PAPER OVERVIEW
After a brief recall of related research in Section II, in
Section III we present our architecture for intelligent cloud
operations. Our approach was prototyped and validated on
an OpenStack test-bed, as shown by the results reported in
Section IV. Our results allow for drawing a few conclusions,
reported in Section V, alongside possible ideas for future
research on the topic.

II. RELATED WORK
Recently, ML-based approaches have been increasingly pro-
posed as effective solutions to a diverse set of resource man-
agement tasks [25] for both public and private cloud infras-
tructures. In this section, we provide an overview of related
research works on the topic.
In [19], the authors propose a time-series forecasting

framework that enhances the monitoring capability of the
Monasca service for OpenStack. Such framework enables
proactive operations approaches, like defining predictive
auto-scaling policies that are able to anticipate load peaks.
Similarly, in [20], the authors propose an analogous proac-
tive auto-scaling approach tailored for edge computing ap-
plications on Kubernetes. In addition, they also provide an
automatic model retrain mechanism to counteract concept
drift. In [23], the authors propose the RScale framework,
based on Gaussian Process (GP) regression, to predict the

2 VOLUME 11, 2023



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

tail-latency of distributed DAG-alike topologies of micro-
services. In [21], the authors propose a time-series forecast-
ing approach that boosts its accuracy by also incorporating
topology information, leveraging on graph neural networks
(GNNs). In [18], the authors describe a simple predictive
scaling strategy that exploits the estimation of a percentile
of the resource demand, and a probabilistic cost function for
over-/under-provisioning the cluster. Remarkably, the authors
evaluate their technique on data coming from ~40K real AWS
auto-scaling groups. In [22], the authors use supervised learn-
ing methods to implement proactive auto-scaling policies for
multi-tier elastic applications, taking into account unstable
performance of individual components. Specifically, they use
linear regression to predict the short-term request arrival rates
and the evolution of the response times. The predictions are
then mapped to the appropriate elasticity configurations with
a Random Forest (RF). In [26], the authors propose a neural
network-based model to predict the resources utilization and
execution time of continuous integration tasks by analyzing
open data from a Travis system. In [24], the authors pro-
pose a successful Reinforcement Learning-based approach to
service-chains deployment in NFV, that jointly minimizes op-
eration costs and maximizes requests throughput, also taking
into account different QoS requirements.

In [14], the authors evaluate several supervised learning
approaches for Anomaly Detection (AD) by injecting faults
in a Kubernetes cluster. Similarly, in [13], the authors also
evaluate supervised learning techniques for off-line AD in
an NFV environment. The authors train their models on
host monitoring data collected while injecting anomalies in
a test-based running the ClearWater IMS system on top of
OpenStack. Also, the authors of [12] provide a thorough
survey where they discuss the risks, in terms of anomalous
behaviors, correlated to switching to a NFV/cloud model.
For instance, incurring in temporal interferences generated
by virtualization and resource over-commitment. In [15], the
authors propose a real-time unsupervisedAD technique based
on Hierarchical Temporal Memory (HTM). In [16], the au-
thors propose a mechanism based on Self-Organizing Maps
(SOMs) to address AD in the context of NFV data centers.
They use a multi-variate clustering method to group similar
daily patterns of VMs in one or more service components,
such that group changes are regarded as a possible anomaly.
In [10], the authors describe a root-cause analysis (RCA)
approach for NFV anomalies, based on a digital twin. They
frame the problem as a dynamic set-covering, and propose a
scalable solution based on hidden Markov models. In [27], a
variational autoencoder based on RNNs is proposed for AD
in cloud scenarios, where the autoencoder trained on nor-
mal/healthy conditions, is expected to produce larger errors
under anomalous/unhealthy conditions. This is followed by a
one-dimensional CNN classifier used to identify the anomaly
as being either a case of process death, CPU stress, network
delay or packet loss.

Compared to the above research, the work proposed in
the present paper tries to bridge the gap between detecting

a possible issue within a cloud system or component, identi-
fying the exact affected element within the infrastructure, and
deciding what corrective action to apply in order to return
the system to a normal behavior. This work aims at closing
this loop in a totally automated fashion, and with the ability
to learn from the corrective actions applied by humans in
similar previous cases. Most ML-based approaches focus on
specific operations aspects, like auto-scaling. Instead, our
scope includes a wider range of operations problems. Unlike
most related works, we framed the problem of deciding a cor-
rective action as a multi-label classification task. Typically,
operations teams cater collections of procedures known to be
effective at recovering their systems from (recurrent) error
conditions. Also, when responding to an issue, the same teams
are required to log their actions, in a ticketing system. Such
information can be correlated with system-/app-level data,
to learn ‘‘intelligent’’ operations models. For instance, the
approach described in [27] brings an interesting resemblance
with our approach, in that both include an unsupervised
layer for AD, followed by an anomaly classifier. However,
the previous work analyzes metrics from a single instance
at a time only, and it does not consider the common case
of horizontally-scalable elastic clusters. Furthermore, in our
work we aim at letting the system learn what corrective action
to apply to the anomaly being analyzed, imitating what was
made with prior manual interventions.

III. PROPOSED APPROACH
In this section, we present an overview of the proposed archi-
tecture, discussing some important implementation details.

A. GENERAL ARCHITECTURE
Traditional approaches to cloud operations ensure healthiness
of applications through (often complex) automations that
are, hopefully, able to detect possible abnormal conditions,
send appropriate alerts and possibly trigger recovery actions.
However, such mechanisms are still typically based on static
rules and thresholds, that are often very easy to interpret,
but quickly become cumbersome to maintain as the scale of
the system grows. Using ML to solve the kind of problems
mentioned above is strongly supported by the abundance of
(very diverse) operational data that are produced in cloud en-
vironments. Either the infrastructure components themselves,
or the on-call personnel that work around the clock to make
sure that everything runs smoothly, continuously generate
useful information. Such information can be leveraged upon
to devise intelligent automations, that adapt as they observe
more diverse operational conditions.
Figure 1 shows how our approach enhances the control

loop of a cloud infrastructure, by: ingesting the operational
data coming from two important data sources, i.e., the mon-
itoring system providing metrics related to the monitored in-
stances, and the information on actions applied by human op-
erators to the system; analyzing these data using our proposed
Intelligent Operations method (IntOps, in the figure), capable
of identifying anomalies, and outputting recommendations of

VOLUME 11, 2023 3



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

Data Sources IntOps SystemCluster

VM1
Monitoring

System

VMn

Action
Classifier

Cluster
Metrics

Anomaly
Detector

Corrective Actions

Operational
Data

Human
Operators

FIGURE 1: Architectural diagram of the proposed intelligent
operations approach.

the action needed to restore a healthy service. In such settings,
it is possible, e.g., to anticipate the occurrence of system out-
ages, by analyzing the historical data describing the relevant
system- and application-level metrics during past outages. Or,
e.g., to identify their likely root-cause, and the most effective
corrective actions to be applied, by looking for similarities
in logs and reports associated with past incidents. At the
moment, our approach allows for: detecting performance
degradation due to workload co-located on the same physical
hosts, recommending a relocation on healthier host; detecting
faulty members of load-balanced groups of instances, that
stop taking their share of the load, recommending to reboot
the offending instance; detecting the shortage of allocated
resources due to dynamic workload changes and its expected
evolution in the short-term, recommending an elastic scaling
action, to prevent serious performance degradation.

A number of other anomalous scenarios are planned to be
integrated into the framework, including transient failures and
hardware degradation (i.e., not entire failures, but faults im-
pairing seriously the performance of disks, memory modules,
network interface cards, etc.). Remarkably, when the set of
observed anomalous scenarios to consider grows, ML-based
approaches like ours scale significantly better than traditional
static rules and thresholds. Indeed, such approaches require
continuousmanual tuning to capture new, unforeseen, anoma-
lous behavior, and possibly to develop a separate criterion
for each possible case. Instead, for ML models, it is often
sufficient to add the new observed behavior to the training set,
and restart the training procedure, without explicitly coding
new rules. Furthermore, provided that the resultingMLmodel
exhibits a satisfactory generalization power, re-training might
not even be necessary.

B. IMPLEMENTATION DETAILS
To demonstrate the effectiveness of our approach, we im-
plemented it to work with data exported from OpenStack,

for each instance 

Elastic Application

Anomaly Detector
(MADI - NSRF)

Actions Classifier
(XGBoost)

Spatial Aggregations

1. CPU avg.
2. CPU std. dev.
3. Disk I/O avg.
4. Disk I/O std. dev.

Tim
e

1

Fine-grained Data

1. CPU (instance)
2. Disk I/O (instance)
3. CPU avg. (others)
4. Disk I/O avg. (others)
5. CPU std. dev. (others)
6. Disk I/O std. dev. (others)

Anomaly
Detected

4

2 5

3

Tim
e

Recommended
Actions6

FIGURE 2: Implementation details of the proposed intelli-
gent operations approach.

one of the most used open-source cloud orchestration frame-
works [28]. For simplicity, in our validation (see Section IV)
we only considered the CPU and disk I/O activity measure-
ments generated by the runs of our test application. However,
our approach can handle a variable number of system- or
application-level metrics. Then, we manually labelled such
raw data to distinguish among different operational condi-
tions, also taking into account the related response times
measurements, collected client-side, as a general indication of
the QoS. In other words, we emulated the information that is
typically produced by operations teams after a system outage
occur (e.g., post-mortem documents). Notice that, while the
test application was running on a horizontally-scalable group
of VMs, our approach is agnostic with respect to the used
virtualization technology. For both steps, we preferred to use
ML models that are sufficiently lightweight to train and use,
yet they achieve the right levels of accuracy in AD tasks.
This allows us to possibly scale our proposed solution to
the analysis of several elastic groups composed of many
instances. Furthermore, we seeked models that guarantee
a sufficient level of interpretability, as cloud automations
should be highly dependable and auditable, thus we prefer
not to use heavyweight models based on DNNs. However,
explainability analysis goes beyond the scope of this paper
and will be addressed in future works.
Figure 2 summarizes the main implementation details of

our approach. The AD model (i.e., step (i)) continuously
monitors the status of a specific elastic cloud application
by considering coarse-grained (aggregated) data. Then, as
soon as an anomalous condition is detected, the classification
model (i.e., step (ii)) is triggered to analyze fine-grained data,
considering the underlying instances individually, to possibly
recommend a corrective action for each of them.
For step (i), we trained an AD model on spatial aggregates

4 VOLUME 11, 2023



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

of such data, so that the model can generalize to elastic groups
of instances. Also, as it is continuously executed, this step acts
as a low-cost filter that prevents the system from running the
(more expensive) step (ii) on higher-resolution data when it
is not necessary. In these settings, it is impractical to assume
the availability of large amounts of labelled data. We opted
for MADI [17], an unsupervised AD approach that leverages
on negative sampling to cope with labelled data shortage.
MADI works spectacularly well with high-dimensional data
that capture complex multi-modal behaviors, assuming that
the presence of anomalous behavior is scarce. It assumes all
provided training data to be positive examples, and computes
a negative space to sample from, assuming that every behav-
ior that significantly differ from the positive examples is to be
considered anomalous. As there are now two distinct classes
of examples, it is possible to use any supervised classification
algorithm. We used the Negative Sampling Random Forest
(NSRF) provided by MADI, setting the hyper-parameters
as specified in the paper. We trained NSRF on a dataset
containing multiple traces of positive-only examples of ex-
pected CPU and disk I/O activity patterns. Such data were
preprocessed by calculating spatial aggregations, i.e., mean
(µ) and standard deviation (σ), to make the model agnostic
to the actual number of instances in the cluster. After that,
we applied standard scaling (i.e., subtracting to a signal its
µ and dividing by its σ) and built the set of training samples
by applying a rolling window of 5 observations, shifted by 1
observation at a time. Each sample consisted in a 2D vector
with dimensions 5× 4, i.e., a 5-minutes time-frame, partially
overlapping with adjacent samples, containing 2 spatial ag-
gregations of 2 distinct metrics. However, given that NSRF
is not designed to natively work with multi-variate time-
series, we reshaped each training sample to a 1D vector with
dimension 20, such that the rows of the original 2D vector
are stacked horizontally, and the contributions of the different
signals are interleaved.

For step (ii), we developed ourselves a simple, yet effec-
tive, supervised multi-label classification model using XG-
Boost [29], a powerful framework that offers performant
implementations of gradient-boosted trees (GBT) [30]. The
job of this model is to learn to distinguish among differ-
ent classes of anomalous conditions patterns, such that they
can be associated with the appropriate corrective actions.
This model is designed to run only when triggered by the
AD model, that continuously analyze new observations as
soon as they become available, and flags them if the cor-
responding application operates outside the expected condi-
tions. Therefore, as it is supposed to run infrequently, we
designed the model to work on instances’ raw data, in an
attempt to enhance its classification capabilities. Indeed, such
model is designed to compare the behavior of an individual
instance with the rest of the group (i.e., the other instances
that implement the same application), by taking as inputs
a combination of spatially-aggregated and raw data, under
the assumption that all instances in the same group behave
consistently. Given a flagged group of instances, that could

even be fairly large, the classifier is applied to each one
separately, to output a (possible) recommended corrective
action for each of them. Notice that this strategy potentially
allows for identifying both the root-cause and the appropriate
counter-measure even when an anomaly is caused bymultiple
instances at once. We trained the model on data collected
while injecting anomalies during runs of our test application
(see Section IV). We applied a preprocessing similar to the
one used for AD, such that each training sample consisted in
a 2D vector representing a 5-minutes window on the raw data.
However, for eachwindow, we generated a number of training
samples equal to the number of instances in the group. Each
sample consisted in a 5×6 vector, where the columns contain
the following information: 1) CPU utilization of the specific
instance; 2) Disk I/O activity of the specific instance; 3) µ of
the CPU utilization of the other instances; 4) µ of the disk I/O
activity of the other instances; 5) σ of the CPU utilization
of the other instances; 6) σ of the disk I/O activity of the
other instances. Also in this case, given that XGBoost is not
designed to natively work with multi-variate time-series, we
reshaped each training sample to a 1D vector with dimension
30, such that the rows of the original 2D vector are stacked
horizontally, and the contributions of the different signals are
interleaved. We used the metadata of our runs to label each
sample according to the corresponding type of behavior that,
in turn, is associated with a specific corrective action. If a
given sample was related to an injected instance, and at least
3 observations had been collected during the injection, then
the sample was labelled accordingly: 1 for stress, 2 for fault,
and 3 for saturation (0 otherwise).

IV. EXPERIMENTS
This section presents the results of an empirical validation of
the approach described in Section III, conducted by deploying
both a synthetic application and the Cassandra NoSQL data
store on OpenStack. We used data from such deployments to
train the underlying ML models, and assess their accuracy.

A. EXPERIMENTAL SET-UP
We carried out our experiments on an OpenStack installation
(Yoga release), that was deployed using Kolla [31], a tool for
automated deployment of OpenStack services using Docker
containers. OpenStack was hosted on 3 physical hosts:
1) A Dell R630 server, equipped with: 2 Intel Xeon E5-

2640 v4 CPUs (20 hyper-threads each) running at 2.40
GHz; 64 GB of RAM; a 3.3 TB Dell PERC H330 Mini
hard disk; Ubuntu 22.04 LTS; Linux kernel 5.15.0. This
host was used as controller and compute node.

2) A Dell R740xd server, equipped with: 2 Intel Xeon Gold
6238R CPUs (56 hyper-threads each) running at 2.20
GHz; 128GB of RAM; a 2.2 TBDell PERCH740PMini
hard disk; Ubuntu 20.04 LTS; Linux kernel 5.4.0. This
host was used as compute node.

3) A workstation, equipped with: an Intel Core i7-4790K
quad-core CPU (8 hyper-threads) running at 4.00 GHz;
16GB of RAM; a 500 GB Samsung 850 SSD; Ubuntu

VOLUME 11, 2023 5



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

22.04 LTS; Linux kernel 5.15.0. This host was used as
compute node.

These were all connected to the same switch using a 1 Gb
link cable. We deployed a test application leveraging on the
following services: (i)Heat [32], to orchestrate a horizontally-
scalable cluster of Nova [33] instances; (ii) Octavia [34],
for load-balancing; (iii) Monasca [35], for telemetry. The
application cluster was configured to have 3 instances, each
one deployed on a different physical host, such that we could
better control the experiments that involved monitoring the
disk I/O activity, by reducing interferences. Each instance
was provided with 1 vCPU and 2 GB of RAM, and with
Ubuntu 20.04 server cloud image. To better control our ex-
periments, we disabled both the elasticity and the self-healing
capabilities of the cluster, andwemade sure that each instance
was pinned to a different physical CPU core, that remained
unchanged for the entire duration of the experiments. The
instances were reachable through an Octavia load-balancer
(LB), that was configured with a least-connections strategy.
Monasca was configured to collect new CPU and disk I/O
activity measurements every minute.

B. SYNTHETIC WORKLOAD GENERATOR
We used the open-source distwalk [36] tool to generate traf-
fic on our deployment, consisting of: a server component,
that accepts connections from clients via TCP/IP; a client
component, sending requests to the server, asking to perform
different kinds of tasks (e.g., stressing the CPU, moving data
to/from the disk, networking activities, etc.). One can tune the
amount of resources to be consumed in a given time frame,
by specifying the way in which requests are submitted, with
distributed inter-arrival times, payload sizes, or I/O transfer
sizes. A client can also be configured to spawn multiple
threads (submitting traffic in parallel) and/or to break their
execution in multiple sessions, by closing and re-establishing
their TCP/IP connections with the server. We set the client
such that the CPU and disk I/O activity of the instances
followed a set of dynamic workload profiles. The client was
configured to spawn 2 threads per instance, each one provided
with a trace specifying the operation rates (i.e., requests per
second), to be maintained for 1 minute each. Each thread was
also configured to create a total of 5000 sessions over each
run, such that a new target instance could be selected by the
load-balancer at each new session establishment.

C. APACHE CASSANDRA
Beside the aforementioned synthetic application, we also
used Apache Cassandra, a widely known open-source
NoSQL data store, to also test our approach in more realistic
scenarios. Based on the design principles of Dynamo [37],
Cassandra is a distributed data store characterized by a scal-
able and fault-tolerant peer-to-peer architecture, able to han-
dle large amounts of data by spreading the load across the
cluster. In practice, this is done by partitioning the key-space
of a table primary key, spreading its shares over the peers.
Cassandra offers the possibility to tune the level of write/read

consistency, and the replication strategy. Such features make
it a great cloud storage solution for critical big-data applica-
tions that require high scalability and availability, or for high-
throughput use cases with less stringent consistency require-
ments. We deployed Cassandra on our OpenStack test-bed,
with each peer hosted in a VM on a different physical host,
and the keyspace replicated across the whole cluster to avoid
data loss in case of anomalies. The traffic is generated using
YCSB [38], a well-known open-source benchmarking tool for
NoSQL data stores, which allows for configuring: the proba-
bility distribution of requests across the key-space; the num-
ber of pre-inserted records; the proportion of read, update,
scan and insert operations to issue; and other performance-
related parameters. In our case, to avoid saturating the avail-
able disk space, YCSB was configured to load into the cluster
a pre-fixed amount of records (1 million, 1 KB each). Also,
the traffic throughout each run included update operations
only (3 millions in total, at a rate of 1000 ops/sec), such
that the cluster could still perform write operations without
increasing the total number of records. The cluster was also
set with a replication level equal to 3, and a consistency level
varying between 1 and 2.

D. ANOMALY INJECTION
To train and evaluate the ML models underlying our ap-
proach, we needed examples of anomalous conditions to
associate with the typical corrective actions described in
Section III. For simplicity, we considered only three of the
most common anomaly types in cloud environments: (i)
interferences generated by external load co-located on the
same physical hosts; (ii) faulty members of load-balanced
groups of instances that stop picking their traffic share; and
(iii) saturation of the current resource capacity. To generate
data describing such anomalous conditions, we artificially
injected them during the execution of our runs. Specifically,
for (i), we used stress-ng [39] to simulate the interference
of external processes that end up being scheduled on the
same physical host of an instance. For (ii), it was sufficient
to kill the application process running on a specific instance
to make it stop responding to requests. Whereas, for (iii),
we just made sure to send a workload that could not be
properly handled by the currently allocated resources. We
also augmented the diversity of the anomalous behaviors to
be observed by our ML models by generating and enforcing
schedules of randomly distributed anomalies. However, to
better control our experiments, we made sure we had only
one, randomly selected, unhealthy instance at a time. Also,
once an instance was injected with an anomaly, we made
sure it remained unhealthy for an extended period (e.g., 5-10
minutes), automatically recovering afterwards.
A few examples of the data extracted from our experimen-

tal runs with the distwalk application are depicted in Figures 3
to 5. These report the observed resource-consumption levels
(on the Y axis for subfigures (a) and (b)) and experienced
client-side response times (on the Y axis for subfigures (c)),
over time (ont the X axis), during runs of distwalk using

6 VOLUME 11, 2023



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

(a) CPU usage

(b) Disk I/O activity

(c) Client-side response times

FIGURE 3: Interferences generated by stress-ng on distwalk.

the same workload profile as input. The system-level met-
rics cpu.utilization_perc and io.write_ops_-
secwere collected by using theMonascamonitoring system,
while the client-side response times were extracted from the
distwalk client logs. Figures 3 and 5 present results in the
case of performance degradation due to co-located stress
workload, and saturation of the available resources, respec-
tively, while Figure 4 refers to a scenario with an instance
completely failing.

Note that, due to how the system components and the
distwalk client are configured, if anomalies are not injected,
then the LB continues to equally distribute the load among the
available instances. In such case, the disk I/O activity level

(a) CPU usage

(b) Disk I/O activity

(c) Client-side response times

FIGURE 4: Faults due to killing an instance of distwalk.

should be more or less the same for all instances. However,
due to the different processors the available physical hosts
are equipped with, we can observe differences in terms of
CPU utilization levels, even though the workloads follow the
same profile during the run. A clear example of this scenario
is depicted in Figures 5a and 5b where, during the first 10
minutes of the run, the available resources were sufficient to
handle the workload. In this case, instance 2 was (randomly)
scheduled on the physical host equipped with the most power-
ful processor (see Section IV-A), and exhibited a lower CPU
utilization with respect to the other instances, while the disk
I/O activity was more or less equivalent. Furthermore, in such
normal cases, we can also observe particularly low client-

VOLUME 11, 2023 7



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

(a) CPU usage

(b) Disk I/O activity

(c) Client-side response times

FIGURE 5: Saturation of the disk bandwidth for distwalk.

side response times. In Figure 5c (and similar) we can indeed
appreciate how the distribution of the response times evolve
during a run, in terms of 50th, 90th and 99th percentiles. Each
point in the plot refers to a specific statistic calculated over
a 1-minute interval. For instance, a point at 0 refers to all
the response times registered during the first minute of the
run, and so on. Whenever the system did not saturate (e.g.,
during the first 10 minutes of the run), we generally observed
a p90 below 35 ms. Therefore, we took this value as a rough
indication of a good QoS.

Workload degradation
When using stress-ng to simulate interferences from co-
located, I/O-intensive, external workloads, we observed the
CPU and disk I/O activity of the affected instances signifi-
cantly dropping and staying around relatively low values. For
instance, in Figure 3, when the stress was injected around
minutes 7-12 on instance 0, such instance exhibited a CPU
utilization around ~10% (see Figure 3a) and a disk I/O activity
around ~20 ops/sec (see Figure 3b), compared to the reference
values, ~28% and ~62 ops/sec, respectively, exhibited by
instance 2 during the first peak of the workload. The effect of
the stress injection is even more significant around minutes
18-24, where instance 0, randomly picked again, exhibited
similar resource utilization values, but this time with ref-
erence values being ~46% and ~108 ops/sec, respectively,
during the third peak of the workload. The stress injection
also significantly affects the response latency perceived by the
client. Indeed, in Figure 3c, we can observe peaks of ~600 ms
in the p90 curve, corresponding to the injection intervals. Due
to how distwalk is designed, while an instance experiences in-
terferences, but is still barely able to send responses, the client
accumulates delay by waiting for responses, before triggering
the subsequent requests. This is the reason why, during stress-
injected runs, we typically observe longer ‘‘tails’’ of delayed
requests that keep on being sent at the last rate specified in
the workload schedule (e.g., around minutes 30-50).

Complete instance failure
We simulated an instance complete failure killing one of the
distwalk servers processing the requests. When doing so, we
observed the disk I/O activity of the affected instance drop-
ping to 0, and its CPU usage stabilizing around 2-3% (i.e., the
standard load generated by the OS background processes). On
the other hand, the activity on the other instances increased
accordingly, due to the LB redirecting the extra load on them.
For instance, in Figure 4, when the fault was injected around
minutes 6-13 on instance 2, we can see that the disk I/O
activity of the other instances reached ~100 ops/sec during
the first peak of the workload (Figure 4b). As we know a-
priori that the workload should have closely followed an ideal
sinusoidal pattern, we can definitely tell that it increased
significantly with respect to the expectations. The effect of
the fault injection, this time on instance 0, is even more
significant around minutes 20-26, with instance 1 reaching
~170 ops/sec and instance 2 reaching ~150 ops/sec. Simi-
lar behaviors can be observed for the CPU usage, although
it is less evident for the instances scheduled on the most
powerful physical processor (see Figure 4a). Obviously, the
fault injection also significantly affects the response latency
perceived by the client. Indeed, in Figure 4c, we can observe
peaks of ~100 ms in the p90 curve, corresponding to the
injection intervals. However, overall, the impact on the QoS
is significantly smaller than what we observed for the stress
injection. This happens because, eventually, the LB detects
the injected instance to be unhealthy and interrupts the current
connections to redirect the load on the others. When the

8 VOLUME 11, 2023



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

connection is closed, the distwalk client ignores the remaining
requests planned for the corresponding session and moves to
the next, partially compensating the accumulated delay.

Disk bandwidth saturation
The disk bandwidth constitutes one of the critical bottlenecks
in resource saturation scenarios. When an instance receives
an unexpectedly high volume of requests, the distwalk server
process starts falling behind the expected schedules, the re-
quests pile-up in the queue, and the response times start
increasing. For instance, in Figure 5, we can see such a phe-
nomenon occurring around minutes 14-16 and 23-26, during
the second and third peaks of the workload, respectively. By
looking at the system-level metrics in Figures 5a and 5b, we
can typically observe that, in such cases, theworkload profiles
of the different instances do not closely follow the expected
sinusoidal pattern, and start diverging. However, considering
only such metrics, and assuming not to have any a-priori
knowledge of the expected workload, we cannot exclude that
such deviations are just noise. Furthermore, it is even trickier
to infer that a saturation phenomenon is occurring when the
workload is mainly I/O-intensive, rather than CPU-intensive,
since the actual bandwidth of traditional, rotational, hard
drives depends on multiple factors, and it is not guaranteed
to be always consistent. Therefore, the most effective way
to detect that a saturation phenomenon is occurring, is by
looking at the IOWait metrics if available, or just the client-
side response times. Indeed, in Figure 5c, we can observe
peaks of ~80 ms in the p90 curve, during the aforementioned
workload peaks. Similarly to the fault injection scenario, the
impact of the disk saturation on the QoS is significantly
smaller than what we observed for the stress injection.

Similarly to the distwalk application, also the Cassandra
cluster was injected with anomalies during our experimental
runs. For instance, Figure 6 shows themeasurements recorded
during one of such runs, where we used stress-ng to generate
interference, while the cluster, with replication level set to 3
and consistency level set to 2, was serving the load generated
by YCSB, as explained in Section IV-C. In the figure, we
highlighted: the LOAD phase, when YCSB loads the cluster
with 1 million keys and their associated 1 KB values; the
RUN phase, when YCSB imposes a constant target update
throughput of 1000 ops/s; and the STRESS phase, when one
of the Cassandra replicas undergoes heavy disk I/O inter-
ference from stress-ng. As in Figure 3, we can appreciate
that, during the STRESS phase, the disk I/O activity of the
affected instance drops significantly, with respect to the other
members of the cluster. However, the effect of the interference
on the CPU utilization is less evident. During the same phase,
we can also observe the latency perceived by the YCSB client
increasing consistently.

E. RESULTS
After conducting several runs under different conditions, both
with distwalk and Cassandra, we collected the corresponding
CPU and disk I/O activitymeasurements and trained ourmod-

0 500 1000 1500 2000
Time (s)

0

25

50

75

100

125

150

175

200

Ut
il.

 (%
)

LOAD RUN

STRESS

CPU
VM0
VM1
VM2

0 500 1000 1500 2000
Time (s)

0

500

1000

1500

2000

2500

W
rit

e 
op

s/
s

LOAD RUN

STRESS

DISK I/O
VM0
VM1
VM2

800 1000 1200 1400 1600 1800 2000
Time (s)

100

101

102

103

La
te

nc
y 

(m
s)

RUN

STRESS

YCSB Latency
Avg
P99
P999

FIGURE 6: Interferences caused by stress-ng on Cassandra.

TABLE 1: Performance metrics of the AD model, for each
class of samples, computed on the distwalk test set (0 =
anomalous; 1 = normal).

Class Precision Recall F1 score

0 0.923 0.901 0.912
1 0.881 0.907 0.894

els for the AD and classification steps. For both applications’
datasets, separately, we held out the same portions of data to
be used as training and test sets for the models. However,
the two models were trained on different views of the same
information (details in Section III). This way, the AD step
can act as a filter and let the system trigger the (more costly)
classification step only when it is deemed useful. This work
is accompanied by an open-source repository [40] including
all the material required to reproduce the presented results.
Synthetic Application - Anomaly Detection. As explained
in Section III, we decided to implement this step with
MADI [17], using the NSRF variant. By preprocessing the
collected data, we obtained a training set of 1087 and a test
set of 528 input vectors, with shape 5 × 4 (as explained in

VOLUME 11, 2023 9



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

NSRF (AUC = 0.97)

(a) ROC-AUC

0 1
Predicted label

0

1

Tr
ue

 la
be

l

0.9 0.099

0.093 0.91

(b) Confusion matrix

FIGURE 7: AD performance, computed on the distwalk test
set (0 = anomalous; 1 = normal).

TABLE 2: Performance metrics of the classifier, for each
class of samples, computed on the distwalk test set (0 =
normal; 1 = stress; 2 = fault; 3 = saturation).

Class Accuracy Precision Recall F1 score

0 0.961 0.988 0.962 0.975
1 0.989 0.904 0.945 0.924
2 0.995 0.926 1.000 0.962
3 0.977 0.816 0.939 0.873

Section III-B). Such training and test sets contain a fraction
of positive (normal) examples equal to 42.59% and 44.70%,
respectively, while the rest is constituted by anomalous exam-
ples. Therefore, since NSRF is an unsupervised approach that
assumes the input data to consist in mainly positive behavior,
we trained it only on the 463 positive examples from the
training set. After training NSRF, that typically takes just a
few seconds on the CPU of our first physical host (see Sec-
tion IV-A), without any specific acceleration settings, we ran
the obtained model on the test set, this time using both pos-
itive and negative examples. Thanks to its negative sampling
strategy, NSRF solves a binary classification task, and outputs
the probability of an input belonging to the positive class.
Such feature allowed us to produce the Receiver Operating
Characteristic (ROC) curve [41] shown in Figure 7a, corre-
sponding to an Area Under Curve (AUC) of 97%. The ROC
curve is a technique to visualize the evolutions of the True-
Positive Rate (TPR) and False-Positive Rate (FPR) of the
model, considering a variable classification threshold over the
output probability of the model. This way, we could select a
sensible value for the threshold tp, to be applied on the output
to determine the class of a given input, such that the FPR was
below 10%, and the TPR was above 85% (i.e., corresponding
to the upper-left region of Figure 7a). By setting tp = 0.594,
we obtained an accuracy of 90.34%, corresponding to the
confusion matrix [41] shown in Figure 7b. In Table 1, we also
report other per-class performance measures.
Synthetic Application - Classification.As explained in Sec-
tion III, we decided to address this step, consisting in a
multi-label classification task, by implemented our model
using XGBoost [29]. By preprocessing the collected data, we

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

0 (AUC = 0.99)
1 (AUC = 1.00)
2 (AUC = 1.00)
3 (AUC = 0.99)

(a) ‘‘One-vs-rest’’ ROC-AUC

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

0.96 0.0089 0.0064 0.023

0.055 0.95 0 0

0 0 1 0

0.061 0 0 0.94

(b) Confusion matrix

FIGURE 8: Classifier performance, computed on the distwalk
test set (0 = normal; 1 = stress; 2 = fault; 3 = saturation).

obtained a training set of 3261 and a test set of 1584 input
vectors, with shape 5×6 (as explained in Section III-B). Note
that the preprocessing employed for this model produces a
dataset 3 times bigger than the one used for the AD model.
This is due to the fact that, for each 5-minutes window on
the raw data, such preprocessing produces a number of input
samples equal to the number of active instances in the consid-
ered application (3, for our runs). Also, such preprocessing
produces an inherently imbalanced dataset, due to the fact
that, for each 5-minutes window, only one sample is marked
as anomalous, given that we made sure not to inject multiple
anomalies at once. Indeed, the training set is composed for
the 78.44% by normal, for the 8.40% by stress-injected, for
the 5.24% by fault-injected, and for the 7.91% by saturation
examples. Similarly, the test set is composed for the 78.41%
by normal, for the 6.94% by stress-injected, for the 6.31%
by fault-injected, and for the 8.33% by saturation examples.
However, XGBoost offers the capability to easily specify
weights for each class, such that each one proportionally
contributes to the gradient updates. After training the clas-
sifier, that typically takes less than 10 seconds on the CPU
of our first physical host (see Section IV-A), without any
specific acceleration settings, we used the test set to evaluate
its performance. Given that XGBoost can be set to output the
distribution of the probability of an input to belong to each of
the available classes, also in this case we were able to produce
a ROC curve, shown in Figure 8a. However, for the multi-
label classification task, ROC curves can only be produced in
a ‘‘one-vs-rest’’ fashion, i.e., each time considering a specific
class against all the others (as they were a single one). Re-
markably, all the generated ROC curves correspond to AUC
values of nearly 100%. Then, we applied the model on the
test set and obtained an accuracy of 96.15%, corresponding
to the confusion matrix in Figure 8b. Table 2 reports other
per-class performance measures. Note that, in this case, also
the accuracy can be computed in a ‘‘one-vs-rest’’ fashion.
Cassandra - Anomaly Detection. Similarly to the synthetic
application, by preprocessing the data collected during Cas-
sandra runs, we obtained a training set of 224 and a test
set of 80 input vectors. Such training and test sets contain a

10 VOLUME 11, 2023



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

NSRF (AUC = 0.94)

(a) ROC-AUC

0 1
Predicted label

0

1

Tr
ue

 la
be

l

0.94 0.062

0.17 0.83

(b) Confusion matrix

FIGURE 9: AD performance, computed on the Cassandra test
set (0 = anomalous; 1 = normal).

TABLE 3: Performance metrics of the AD model, for each
class of samples, computed on the Cassandra test set (0 =
anomalous; 1 = normal).

Class Precision Recall F1 score

0 0.789 0.938 0.857
1 0.952 0.833 0.889

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at
e

0 (AUC = 1.00)
1 (AUC = 1.00)
2 (AUC = 1.00)

(a) ‘‘One-vs-rest’’ ROC-AUC

0 1 2
Predicted label

0

1

2

Tr
ue

 la
be

l

0.99 0.014 0

0 1 0

0 0 1

(b) Confusion matrix

FIGURE 10: Classifier performance, computed on the Cas-
sandra test set (0 = normal; 1 = stress; 2 = fault).

TABLE 4: Performance metrics of the classifier, for each
class of samples, computed on the Cassandra test set (0 =
normal; 1 = stress; 2 = fault).

Class Accuracy Precision Recall F1 score

0 0.988 1.000 0.986 0.993
1 0.988 0.824 1.000 0.903
2 1.000 1.000 1.000 1.000

fraction of positive (normal) examples equal to 57.14% and
60%, respectively, while the rest is constituted by anomalous
examples. After training NSRF on positive samples only, we
validated the model on the test set, and obtained the ROC
curve shown in Figure 9a, corresponding to an AUC of 94%.
By setting tp = 0.616, we obtained an accuracy of 87.50%,
corresponding to the confusion matrix shown in Figure 9b. In
Table 3, we also report other per-class performance measures.
Cassandra - Classification. Similarly to the synthetic appli-

cation, by preprocessing the data collected during Cassandra
runs, we obtained a training set of 672 and a test set of 240
input vectors. The training set is composed for the 85.71% by
normal, for the 6.25% by stress-injected, and for the 8.04%
by fault-injected examples. Instead, the test set is composed
for the 86.67% by normal, for the 5.83% by stress-injected,
and for the 6.31% by fault-injected examples. After training
the classifier, we validated it on the test set, and obtained the
‘‘one-vs-rest’’ ROC curve shown in Figure 10a. We also ob-
tained an accuracy of 98.75%, corresponding to the confusion
matrix shown in Figure 10b. Table 4 reports other per-class
performancemeasures, computed in a ‘‘one-vs-rest’’ fashion.

V. CONCLUSIONS
We proposed anML-based strategy for intelligent cloud oper-
ations that consists of: (i) detecting anomalous conditions of
a cloud application and (ii) identifying the corrective actions
to be applied to faulty components. Both steps rely on ML
models trained on operational data. Step (i) acts as a filter
that allows the system to run the more expensive step (ii)
on higher-resolution data only when needed. Our approach
was validated using data exported from anOpenStack deploy-
ment. We used a workload generator sending traffic to a load-
balanced group of Nova instances, resulting in CPU and disk
I/O activity on the instances, and injected different types of
anomalies that we could recover from, by applying precise
corrective actions. For (i), we trained an anomaly detection
model (specifically, MADI [17]) on aggregated cluster data,
such that it could even generalize to variable-sized groups
of instances. On the respective test sets, for the synthetic
application, we obtained a ROC-AUCof 97% and an accuracy
of 90.34%, while, for Cassandra, we obtained a ROC-AUC
of 94% and an accuracy of 87.50%. For (ii), we trained
a supervised classification model, based on XGBoost [29],
on a combination of spatially-aggregated and raw instances
data, such that it could better compare the behavior of an
individual instance with respect to its group, and associate a
corrective action to instances separately. On the respective test
sets, for the synthetic application, we obtained an accuracy
of 96.15%, while, for Cassandra, we obtained an accuracy of
98.75%. To implement our approach, we decided to use rather
simple, yet very effective, ML models. Such a design choice
allows for our approach to be highly dependable, especially
because it is relatively easy to interpret and troubleshoot
the output of this kind of models, possibly leveraging on
automated explainability techniques. We plan to conduct a
more thorough study to better (quantitatively) compare our
approach to existing alternatives. In this research area, such an
activity is rendered particularly difficult by the general lack
of open-source implementations readily integrated within a
framework like OpenStack. For the classification, we opted
for supervised-learning. However, it would be interesting to
apply unsupervised or weakly-supervised approaches to our
problem, to possiblyweaken our dependency on labelled data.
On a related note, even though we have already shown that
our approach is able to deal with multivariate data, it would

VOLUME 11, 2023 11



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

be interesting to also extend our experimental validation by
considering additional metrics, to properly assess how the
approach scales with respect to the number of considered fea-
tures. Also, we plan to integrate automatic model retraining,
to counteract the disastrous effects of distribution drifts, and
model explainability techniques in the end-to-end pipeline.
Indeed, guaranteeing a sufficient level of robustness to fluc-
tuations and interpretability is of utmost importance, as cloud
operations are a scenariowhere any type of automation should
be highly dependable and auditable. Finally, we plan to prop-
erly package our approach as an OpenStack service, to offer
a reliable, open solution for intelligent cloud operations to a
wide audience.

REFERENCES
[1] B. Marr, ‘‘The 5 Biggest Cloud Computing Trends In 2022,’’

https://www.forbes.com/sites/bernardmarr/2021/10/25/the-5-biggest-
cloud-computing-trends-in-2022/, 2021.

[2] A. Kannan, J. LaRiviere, and R. P. McAfee, ‘‘Characterizing the usage
intensity of public cloud,’’ ACM Trans. Econ. Comput., vol. 9, no. 3, 2021.

[3] M. Attaran and J. Woods, ‘‘Cloud computing technology: improving small
business performance using the internet,’’ Journal of Small Business &
Entrepreneurship, vol. 31, no. 6, pp. 495–519, 2019.

[4] M. Chiosi, D. Clarke, P. Willis et al., ‘‘Network Functions Virtualisation -
Introductory White Paper,’’ Tech. Rep., 2012.

[5] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud Computing Principles
and Paradigms. Wiley Publishing, 2011.

[6] E. A. Brewer, ‘‘Kubernetes and the path to cloud native,’’ in Proceedings
of the Sixth ACM Symposium on Cloud Computing. Association for
Computing Machinery, 2015, p. 167.

[7] R. Buyya, K. Ramamohanarao, C. Leckie, R. N. Calheiros, A. V. Dastjerdi,
and S. Versteeg, ‘‘Big Data Analytics-Enhanced Cloud Computing: Chal-
lenges, Architectural Elements, and Future Directions,’’ in 2015 IEEE 21st
International Conference on Parallel and Distributed Systems (ICPADS),
2015, pp. 75–84.

[8] M. Farshchi, J.-G. Schneider, I. Weber, and J. Grundy, ‘‘Metric selection
and anomaly detection for cloud operations using log andmetric correlation
analysis,’’ Journal of Systems and Software, vol. 137, pp. 531–549, 2018.

[9] J. Soldani andA. Brogi, ‘‘Anomaly detection and failure root cause analysis
in (micro) service-based cloud applications: A survey,’’ ACM Comput.
Surv., vol. 55, no. 3, 2022.

[10] W. Wang, L. Tang, C. Wang, and Q. Chen, ‘‘Real-Time Analysis of
Multiple Root Causes for Anomalies assisted by Digital Twin in NFV
Environment,’’ IEEE Transactions on Network and Service Management,
pp. 1–1, 2022.

[11] P. Mell and T. Grance, ‘‘The NIST Definition of Cloud Computing. SP
800–145,’’ 2011. [Online]. Available: https://csrc.nist.gov/publications/
detail/sp/800-145/final

[12] M. Zoure, T. Ahmed, and L. Réveillére, ‘‘Network Services Anomalies in
NFV: Survey, Taxonomy, and Verification Methods,’’ IEEE Transactions
on Network and Service Management, pp. 1–1, 2022.

[13] A. Gulenko, M. Wallschläger, F. Schmidt, O. Kao, and F. Liu, ‘‘Evaluating
machine learning algorithms for anomaly detection in clouds,’’ in IEEE
International Conference on Big Data (Big Data), 2016, pp. 2716–2721.

[14] Q. Du, Y. He, T. Xie, K. Yin, and J. Qiu, ‘‘An approach of collecting
performance anomaly dataset for nfv infrastructure,’’ in Algorithms and
Architectures for Parallel Processing, J. Vaidya and J. Li, Eds. Springer
International Publishing, 2018, pp. 59–71.

[15] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, ‘‘Unsupervised real-time
anomaly detection for streaming data,’’ Neurocomputing, vol. 262, pp.
134–147, 2017.

[16] T. Cucinotta, G. Lanciano, A. Ritacco, M. Vannucci, A. Artale, J. Barata,
E. Sposato, and B. Luca, ‘‘Behavioral analysis for Virtualized Network
Functions: a SOM-based approach,’’ in Proceedings of the 10th Interna-
tional Conference on Cloud Computing and Services Science (CLOSER
2020), 2020.

[17] J. Sipple, ‘‘Interpretable, Multidimensional, Multimodal Anomaly Detec-
tion with Negative Sampling for Detection of Device Failure,’’ in Proceed-

ings of the 37th International Conference on Machine Learning. PMLR,
2020, pp. 9016–9025.

[18] Q. Rebjock, V. Flunkert, T. Januschowski, L. Callot, and J. Castellon, ‘‘A
Simple and Effective Predictive Resource Scaling Heuristic for Large-scale
Cloud Applications,’’ in 2nd International Workshop on Applied AI for
Database Systems and Applications, 2020.

[19] G. Lanciano, F. Galli, T. Cucinotta, D. Bacciu, and A. Passarella, ‘‘Predic-
tive Auto-scaling with OpenStack Monasca,’’ in IEEE/ACM 14th Interna-
tional Conference on Utility and Cloud Computing, 2021.

[20] L. Ju, P. Singh, and S. Toor, ‘‘Proactive Autoscaling for Edge Computing
Systems with Kubernetes,’’ in 10th International Workshop on Cloud and
Edge Computing and Applications Management, 2021.

[21] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
‘‘Topology-Aware Prediction of Virtual Network Function Resource Re-
quirements,’’ IEEE Transactions on Network and Service Management,
vol. 14, no. 1, pp. 106–120, 2017.

[22] W. Iqbal, A. Erradi, M. Abdullah, and A. Mahmood, ‘‘Predictive Auto-
scaling of Multi-tier Applications Using Performance Varying Cloud Re-
sources,’’ IEEE Transactions on Cloud Computing, pp. 1–1, 2019.

[23] P. Kang and P. Lama, ‘‘Robust resource scaling of containerized microser-
vices with probabilistic machine learning,’’ in IEEE/ACM 13th Interna-
tional Conference on Utility and Cloud Computing, 2020, pp. 122–131.

[24] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
‘‘NFVdeep: Adaptive online service function chain deployment with deep
reinforcement learning,’’ in Proceedings of the International Symposium
on Quality of Service, vol. 19, 2019, pp. 1–10.

[25] S. Ilager, R. Muralidhar, and R. Buyya, ‘‘Artificial Intelligence (AI)-
Centric Management of Resources in Modern Distributed Computing Sys-
tems,’’ in IEEE Cloud Summit, 2020, pp. 1–10.

[26] M. Borkowski, S. Schulte, and C. Hochreiner, ‘‘Predicting cloud resource
utilization,’’ in IEEE/ACM 9th International Conference on Utility and
Cloud Computing, 2016, pp. 37–42.

[27] S. Nedelkoski, J. Cardoso, and O. Kao, ‘‘Anomaly detection and classifica-
tion using distributed tracing and deep learning,’’ in 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), 2019, pp. 241–250.

[28] ‘‘2022 User Survey Report – OpenStack is More Alive Than Ever with
40 Million Cores in Production,’’ https://www.openstack.org/user-survey/
2022-user-survey-report.

[29] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2016, pp. 785–794.

[30] J. H. Friedman, ‘‘Greedy Function Approximation: A Gradient Boosting
Machine,’’ The Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[31] OpenStack, ‘‘Kolla Documentation,’’ 2023. [Online]. Available: https:
//docs.openstack.org/kolla

[32] ——, ‘‘Heat Documentation,’’ 2023. [Online]. Available: https://docs.
openstack.org/heat

[33] ——, ‘‘Nova Documentation,’’ 2023. [Online]. Available: https://docs.
openstack.org/nova

[34] ——, ‘‘Octavia Documentation,’’ 2023. [Online]. Available: https:
//docs.openstack.org/octavia

[35] ——, ‘‘Monasca Documentation,’’ 2023. [Online]. Available: https:
//docs.openstack.org/monasca

[36] ‘‘Distwalk - distributed processing emulation tool for linux,’’ 2023.
[Online]. Available: https://github.com/tomcucinotta/distwalk

[37] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, ‘‘Dynamo:
Amazon’s highly available key-value store,’’ ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[38] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
‘‘Benchmarking cloud serving systems with ycsb,’’ in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[39] C. I. King, ‘‘stress-ng,’’ 2023. [Online]. Available: https://github.com/
ColinIanKing/stress-ng

[40] G. Lanciano, R. Andreoli, T. Cucinotta, D. Bacciu, and
A. Passarella, ‘‘Companion repo of the paper "A 2-phase Strategy
For Intelligent Cloud Operations",’’ 2023. [Online]. Available:
https://github.com/giacomolanciano/intelligent-cloud-operations

[41] T. Fawcett, ‘‘An introduction to ROC analysis,’’ Pattern Recognition Let-
ters, vol. 27, no. 8, pp. 861–874, 2006.

12 VOLUME 11, 2023

https://www.forbes.com/sites/bernardmarr/2021/10/25/the-5-biggest-cloud-computing-trends-in-2022/
https://www.forbes.com/sites/bernardmarr/2021/10/25/the-5-biggest-cloud-computing-trends-in-2022/
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://www.openstack.org/user-survey/2022-user-survey-report
https://www.openstack.org/user-survey/2022-user-survey-report
https://docs.openstack.org/kolla
https://docs.openstack.org/kolla
https://docs.openstack.org/heat
https://docs.openstack.org/heat
https://docs.openstack.org/nova
https://docs.openstack.org/nova
https://docs.openstack.org/octavia
https://docs.openstack.org/octavia
https://docs.openstack.org/monasca
https://docs.openstack.org/monasca
https://github.com/tomcucinotta/distwalk
https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://github.com/giacomolanciano/intelligent-cloud-operations


Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

GIACOMO LANCIANO holds a Ph.D. in Data
Science from Scuola Normale Superiore, Pisa,
Italy. He also holds aM.Sc. in Engineering in Com-
puter Science from Sapienza University of Rome,
Italy. His research interests lie at the intersection
of cloud computing and data science, with a focus
on data-driven methods for data center operations
support. He was also a research intern at Nokia
Bell Labs in Stuttgart, Germany, working on large
language models for deployment code analysis.

REMO ANDREOLI is a PhD candidate at
Sant’Anna School of Advanced Studies (SSSA).
He holds a MSc with honors in Computer Science
from University of Pisa. He previously worked
on differentiated performance mechanisms for
NoSQL databases, earning the best student paper
award at CLOSER 2021. He is currently investi-
gating on resource management optimization tech-
niques for cloud infrastructures.

TOMMASO CUCINOTTA has a MSc in Computer
Engineering from University of Pisa (Italy), and
a PhD in Computer Engineering from Scuola Su-
periore Sant’Anna (SSSA) in Pisa, where he has
been investigating on real-time scheduling for soft
real-time and multimedia applications, and pre-
dictability in infrastructures for cloud computing
and NFV. He has been MTS in Bell Labs in Dublin
(Ireland), investigating on security and real-time
performance of cloud services. He has been a

software engineer in Amazon Web Services in Dublin (Ireland), where he
worked on improving the performance and scalability of DynamoDB. He
is Associate Professor at SSSA since 2016, and head of the Real-Time
Systems Lab (RETIS) since 2019. He has coauthored 120+ research papers
on international conferences and journals, and 8 international patent grants.
He is a Senior IEEE Member.

DAVIDE BACCIU is Associate Professor at the
University of Pisa, where he heads the PervasiveAI
Lab. Previously, he was a visiting researcher at the
Neural Computation Research Group, LJMU, and
at the Cognitive Robotic Systems laboratory, Ore-
bro University. He holds a Ph.D. in Computer Sci-
ence and Engineering from IMT Lucca for which
he received the 2009 E.R. Caianiello prize. He has
co-authored over 140 research works on neural
networks, generative learning, Bayesian models,

learning for graphs, continual learning, and distributed and embedded learn-
ing systems. He is the coordinator of the H2020 TEACHING project. He
has been secretary and board member of the Italian Association for AI, a
Senior Member of the IEEE and a member of the IEEE CIS Neural Networks
Technical Committee. He is Associate Editor of the IEEE Transactions on
Neural Networks and Learning Systems and he chairs the IEEE CIS Task
Force on Learning for Structured Data.

ANDREA PASSARELLA (PhD 2005) is a Re-
search Director at the Institute for Informatics
and Telematics (IIT) of the National Research
Council of Italy (CNR). Prior to join IIT he was
with the Computer Laboratory of the University
of Cambridge, UK. He has published 170+ pa-
pers on human-centric data management for self-
organising networks, decentralised AI, Next Gen-
eration Internet, Online and Mobile social net-
works, opportunistic, ad hoc and sensor networks.

He received four best paper awards, including at IFIP Networking 2011 and
IEEE WoWMoM 2013. He is General Chair of IEEE PerCom 2022. He is
the founding Associate EiC of the Elsevier journal Online Social Networks
and Media (OSNEM). He is co-author of the book "Online Social Networks:
Human Cognitive Constraints in Facebook and Twitter Personal Graphs"
(Elsevier, 2015). He is the PI of the EUCHIST-ERA SAI (Social Explainable
AI) project.

VOLUME 11, 2023 13


	Introduction
	Contributions
	Paper Overview

	Related Work
	Proposed Approach
	General Architecture
	Implementation Details

	Experiments
	Experimental Set-up
	Synthetic Workload Generator
	Apache Cassandra
	Anomaly Injection
	Results

	Conclusions
	REFERENCES
	Giacomo Lanciano
	Remo Andreoli
	Tommaso Cucinotta
	Davide Bacciu
	Andrea Passarella


