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Abstract—The NoSQL paradigm has emerged as the leading
design choice for cloud providers offering highly scalable storage
services. Contrary to traditional relational databases, NoSQL
architectures are capable of ingesting the ever-growing volume of
nowadays’ data-driven applications characterized by low-latency
and high-throughput requirements. However, it is difficult to
build an ultra-scalable, high-performance storage engine that can
sustain an arbitrary number of concurrent clients. A common
technique to increase throughput is minimizing the OS overhead,
quantified as the number of context switches, through busy
waiting (or “spinning”). While this simple synchronization mech-
anism proves to be beneficial in the high-performance computing
community, it requires special care to avoid wasting resources
and counter-intuitive behaviors. In this paper, we address an
instance of “unsafe” busy waiting in WiredTiger, the underlying
storage engine of MongoDB, which leads to a consistent, excessive
increase of tail latency in high contention scenarios.

Index Terms—Performance Engineering, Cloud Storage,
WiredTiger, MongoDB, Concurrency, Scheduling

I. INTRODUCTION AND RELATED WORK

Cloud Computing has deeply changed how the IT industry
deals with the technical challenges posed by today’s data-
driven applications [20]. Depending on the customer’s needs,
there are many different cloud-based storage services, each
with its own focus area: from distributed data management
systems for scaling operations in web services, to highly
reliable data processing platforms available around-the-clock
for Internet-of-Things (IoT) devices. In this context, the emer-
gence of cloud-native applications and fully-managed ser-
vices [12] shifted the entire management cycle of applications
and virtual resources from the customer itself to the operations
teams of the cloud provider.

A relevant metric to assess the performance of a cloud
service is the tail latency [11], [17]. It encompasses the high
percentiles of the response-time distribution, and usually, it
focuses on the requests experiencing response times longer
than 99% (or more) of all user requests. A poor tail latency
will impact most users in the case of large-scale applications
with modern architectures, such as microservices, especially
when a single user interaction can translate into many service
calls. Improving the tail latency is a well-known performance
engineering challenge that spans multiple layers of the cloud
software stack, and it has been addressed by academics in dif-
ferent ways [3], [7], [16], [18], [23]. The majority of existing
research efforts focus on high-level abstractions, neglecting the

lower end of the cloud stack, such as the Operating System
(OS) layer [10]. In parallel and distributed cloud components,
this leads to a general lack of integration with low-level
mechanisms, such as tuned scheduling policies [9], [13],
[22] or efficient synchronization constructs beyond traditional
lock-based primitives, or contention control techniques [25].
Nonetheless, industrial-grade database software often employs
low-level optimizations to fully exploit the capabilities of
modern many-core machines. For instance, WiredTiger, the
underlying storage engine of MongoDB, implements a variety
of lock-free algorithms and busy waiting to increase the
throughput on modern many-core machines [2].

Busy waiting [14], or spinning, is a lightweight synchroniza-
tion technique, mainly used by High-Performance Computing
(HPC) communities to minimize the OS overhead. Busy
waiting is a quick and simple mechanism in which a process,
or a thread, continuously checks in loop for a condition to be
satisfied while consuming processing resources (hence why
“busy” waiting). It is used when a process/thread (referred to
as task, from now on) is likely to wait for short periods of time
to access the critical section; shorter than the delay associated
with a context switch. Contrary to conventional blocking syn-
chronization primitives (i.e., mutexes, semaphores, condition
variables), which require interactions with the OS kernel to
block tasks, busy waiting can be done fully in user-space,
avoiding the need for context switches.

Busy waiting may lead to excessive waste of CPU time, if
misused, due to the costly looping procedure. The results are
unexpected scaling issues and performance degradation in the
form of high tail latency, task starvation, or even deadlock.
Given a task A waiting for a condition that can be made true
by a running task B, an instance of busy waiting is “safe”
when the task being waited for (task B) is not pre-empted. For
example, busy waiting in a spinlock within the Linux kernel
is safe, because task pre-emption can be disabled. However,
this is not possible in user-space, therefore one of the most
common ways to ensure that tasks are unlikely pre-empted is
to bind them with dedicated cores, enforcing a 1:1 task-to-
core pinning. This constraint is usually irrelevant in an HPC
context, as the computations are usually deployed on custom-
built hardware with hundreds of physical cores. However, core
pinning is not so commonly enforced in conventional cloud
infrastructures, i.e., it is used only by performance-sensitive



applications. In summary, busy waiting is “unsafe” in user-
space if performed when the number of active tasks exceeds
the parallelism capabilities of the underlying hardware.

A. Contributions

In this work, we describe the internals of WiredTiger and
explore a synchronization bug in MongoDB caused by an
“unsafe” implementation of busy waiting within WiredTiger
(Section II). A series of possible quick fixes are presented; the
best of which is an “adaptive” implementation of busy waiting
that ensures safety by spinning for a short while only. Finally,
Section III demonstrates how to consistently reproduce the
bug using two common system tools within Linux, taskset
and nice, as well as showing the superiority of adaptive
busy waiting over the original implementation. In practice,
it is difficult to test for concurrency misbehaviors: a bug in
the synchronization logic may sit latent for many months (or
years) and inevitably manifests itself in production [19], as
a side effect of heavy loads, in the form of unexpected per-
formance degradation, starvation or even deadlock. Moreover,
most of the time it is not possible to consistently reproduce
it in a test environment. Therefore, one of the goals of this
research paper is to prove that more focus on system research
can significantly reduce the risk of unexpected behaviors when
dealing with low-level optimizations.

II. WIREDTIGER INTERNALS

WiredTiger1 is a high-performance, scalable, and transac-
tional storage engine for NoSQL data stores. It is primarily
known for being the underlying database management system
of MongoDB2 since version 3.2. WiredTiger offers both high-
throughput and low-latency, as well as predictable behaviors
under heavy access and large volumes of data. WiredTiger is
designed to efficiently scale on modern many-core machines
with lots of RAM. This is thanks to several compression
algorithms to save both in memory and disk consumption,
as well as the use of high-performance techniques and lock-
free algorithms to minimize the resource contention between
concurrent transactions. The main focus of this section is
exploring how WiredTiger optimizes the synchronization of
concurrent and parallel transactional operations for the sake
of high-performance. A WiredTiger-compliant user application
establishes a connection with an instance of WiredTiger and
starts sending requests using a session. A user session is al-
ways executed as a sequential activity by one thread, although
it can be shared between threads. WiredTiger offers a standard
ACID-style transactional model [15]. A transaction represents
an atomic unit of work requested by a user session. It may con-
sist of multiple data manipulation operations. Each transaction
is given a global, unique, and monotonically increasing iden-
tifier (ID) before performing the first write operation. Consis-
tency is enforced through an “optimistic” version of the classic
Multi-Version Concurrency Control (MVCC) mechanism [6],
which completely avoids the bottleneck of a centralized lock

1See: https://source.wiredtiger.com/
2https://www.mongodb.com/

(a) Read operations are blocked until the write transaction on data item
D is successfully committed.

(b) Read operations get an older version of data item D, until the write
transaction is successfully committed.

Fig. 1: Traditional lock-based (a) versus Multi-versioned (b)
concurrency control in the presence of concurrent write (W )
and read (R) operations. The plots show how data item D
is handled over time. The subscripts indicate the subsequent
changes to data item D.

manager. In traditional MVCC, an update operation does not
overwrite the original data item but instead creates a newer
version of such data item. This way reads do not block writes,
and vice versa. Figure 1 demonstrates the difference between
traditional lock-based and multi-version concurrency control.
The term “optimistic” refers to the fact that WiredTiger
assumes that multiple transactions can frequently complete
without interfering with each other, regardless of the operation
type. Therefore, this implementation of MVCC is essentially
lock-free, since transactional operations in one session do not
block operations in other sessions, even if they are writes.
Notice that if multiple concurrent transactions update the same
data item, only one is committed and the others must be
repeated. WiredTiger is the reason for the improved write
performance in MongoDB [1] since its initial introduction
in version 3.0. Compared to the previous storage engine,
MMAPv1, WiredTiger allows for document-level concurrency
control in MongoDB, meaning that multiple write operations
to different documents, but on the same collection, can occur
at the same time. WiredTiger presents to each transactional
operation a point-in-time consistent view of the in-memory
data, called a snapshot. The version of data that each trans-
action sees depends on the isolation level. The strongest
guarantee is snapshot isolation: all reads within a transaction
will see a consistent snapshot of the database; no updates
within a transaction will be committed if they conflict with any
concurrent updates made since that snapshot. In practice, this
is implemented with timestamps, a monotonically increasing
sequence of numbers associated with each operation: a trans-
action can only see updates with timestamps smaller or equal
to its read timestamp. Snapshots are implemented by capturing
the global state of transactions at the time of snapshot creation.



Transactions that are concurrently active are not visible to the
snapshot, as they do not comply with the snapshot isolation
guarantee (i.e., the transaction has not been committed at the
time of snapshot creation). Snapshots are periodically flushed
to disk to act as recovery points (checkpoints), thus ensuring
data durability in case of failure.

A. “Unsafe” Busy waiting

WiredTiger cannot publish a new snapshot until all concur-
rently active transactions are assigned a valid ID, or else it
will not be able to infer if they are visible to the snapshot.
To this end, it employs busy waiting to increase through-
put, since ID allocation is assumed to be a fast operation;
faster than yielding the CPU or “sleeping” as in conventional
blocking synchronization primitives, which involve a series of
context switches. However, the way WiredTiger is used within
MongoDB makes busy waiting unsafe, as the rules recalled in
Section I are not enforced. Indeed, each remote connection to
a MongoDB server is reserved a unique dedicated thread to
handle the server-side activities [4], [5], which are ultimately
performed by WiredTiger. Therefore, MongoDB should have
controlled/restricted the number of clients concurrently issuing
requests to avoid the potential waste of CPU time, as they
result in threads concurrently using WiredTiger. However,
MongoDB designers deemed such restriction too binding and
counterproductive to the need to serve potentially arbitrary
workloads in a cloud usage context, as mentioned in Section I.

In the context of a DBaaS cloud offering, such as MongoDB
Atlas, it is not clear to the authors of this paper whether
the number of concurrent connections to a single MongoDB
instance is controlled, or it can also exceed the number of
underlying physical cores, leading to potentially high tail-
latency problems.

Additionally, in the presence of threads with different prior-
ities, the synchronization problem described above results in
a nasty priority inversion problem. Let Ta be a WiredTiger
thread trying to create a snapshot to apply the operations
required by its user session. Let Tb be a different thread
trying to initialize a new transaction. If both threads happen
to be ready-to-schedule simultaneously, Ta has to busy wait
on thread Tb, if it did not allocate its transaction ID yet.
Recall that without such a mechanism, a consistent view of
the data cannot be guaranteed. If there are not enough free
physical cores to run both threads in parallel, and Ta is given
precedence over Tb in the scheduling queue, Ta will spin
uselessly until it exhausts its time-slice, effectively starving
thread Tb. When Tb is subsequently scheduled for execution
(i.e., exiting starvation), and completes the ID allocation
procedure, the spinning condition for Ta is finally satisfied,
and therefore it can proceed. Therefore, the spinning duration
directly depends on the scheduling decisions. Section III
demonstrates how to consistently induce such thread syn-
chronization bug exploiting 2 common system tools available
on Linux: taskset and nice. The taskset command
allows restraining the scheduling of a task to a subset of
the available cores. The nice command manipulates the

scheduling priority of a task in the Completely Fair Scheduler
(CFS) [24], the default scheduler within Linux. The “niceness”
of a thread corresponds to its willingness to give precedence to
other threads, which ultimately affects the CPU time of each
task scheduled for execution. There are a total of 40 nice levels
in the range [−20, 19], where the negative values correspond
to less willingness to give up CPU time.

B. Restoring safety in WiredTiger

There are multiple, straightforward fixes to the unsafe
instance of busy waiting in WiredTiger. The “safer” solution
is to replace busy waiting with conventional blocking syn-
chronization, at the cost of more OS overhead due to context
switches. Not only that, but it also requires a more involved
modification due to the wait-signal synchronization model for
inter-thread communication. A quicker and easier solution is to
yield the CPU so that the spinning thread relinquishes the CPU
to another thread. However, the former may be immediately
rescheduled for execution if CFS decides that the spinning
thread was not given a “fair” amount of CPU time, or if no
other threads are in the ready queue. A better solution is to
put the spinning thread to sleep for a fixed amount of time.
Contrary to locks, sleeping is more lightweight (i.e., less OS
overhead), being a simpler mechanism, but it requires proper
tuning of the sleep duration. A good compromise, in line with
the principles of WiredTiger, is an “adaptive” version of busy
waiting which encapsulates a backoff procedure: spin for a
fixed amount of time, then yield for a while, and then back
off to sleep. WiredTiger already implements such a mechanism
in __wt_spin_backoff; although it is used in a different
context. Section III demonstrates how adaptive busy waiting
is a valid solution to the synchronization problem during
snapshot creation and transaction ID allocation in WiredTiger.

III. EXPERIMENTAL EVALUATION

This section shows how to consistently starve of CPU
time the WiredTiger threads dedicated to the client sessions
of a MongoDB deployment, using the nice and taskset
tools in Linux. More specifically, the experiments have
been performed on MongoDB version 6.0, which employs
WiredTiger version 10.0.2. We also demonstrate the validity
of the adaptive busy waiting mechanism described in Subsec-
tion II-B by repeating the experiments on a modified version
of WiredTiger. Notice that concepts like data fragmentation
(for scalability) and data replication (for availability) are
MongoDB-level constructs that do not affect the behaviors of
the underlying storage engine. Instead, they add complexity to
the testing environment; hence why, for the sake of simplicity,
replication and sharding have not been used. The data store is
subjected to heavy write load using the well-known YCSB [8]
benchmarking tool. The YCSB client threads are hosted on
a dedicated, 96-core physical system (Arm 64 server with 2
ThunderX 88XX CPUs and 64 GB of RAM) connected to
the MongoDB deployment via a 1 gbE physical link. The
latter is hosted on a 112-core physical system (x86-64 server
with 2 Xeon Gold CPUs and 125 GB of RAM) to ensure no
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(a) Unrestricted (i.e., no taskset) MongoDB deployment.
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(b) MongoDB deployment with session threads restricted to 10 cores
(the thread-core ratio is 4:1). The thread priority of 4 user sessions
is temporarily changed during the time window highlighted by the
two dashed lines.

Fig. 2: Per-second statistics of the end-to-end latency experi-
enced by 40 YCSB clients issuing 6 million update operations
to a MongoDB deployment using an unmodified version of
WiredTiger (i.e., original busy waiting).

interferences between the server and the clients. On the 112-
core machine, CPU frequency is blocked at 2.20 GHz, and
hyper-threading and turbo-boosting are disabled to minimize
the experimental error. In order to violate the condition of
“safe” busy waiting, the MongoDB deployment has to be
subjected to a high CPU contention (i.e., the number of
user connections must exceed the number of physical cores
dedicated to the database). The easiest way to achieve that is
through the taskset Linux command so that the WiredTiger
threads dedicated to the user sessions are restricted to a small
range of physical cores. Next, the priority inversion is induced
by tweaking the scheduling parameters of such threads using
the nice command.

The first series of experiments aim to visually show how
latencies are affected by the use of thread priorities under a
high contention scenario. Figure 2 depicts the latency over
time for two experiments using an unmodified version of
WiredTiger: Subfigure 2a shows a MongoDB deployment with
no core restriction to session threads (i.e. no taskset) and no
tweaking of thread priorities; Subfigure 2b shows a MongoDB
deployment with session threads restricted to 10 physical cores
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(a) Unrestricted (i.e., no taskset) MongoDB deployment.
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(b) MongoDB deployment with session threads restricted to 10 cores
(the thread-core ratio is 4:1). The thread priority of 4 user sessions
is temporarily changed during the time window highlighted by the
two dashed lines

Fig. 3: Per-second statistics of the end-to-end latency experi-
enced by 40 YCSB clients issuing 6 million update operations
to a MongoDB deployment using a modified version of
WiredTiger (i.e., busy waiting with backoff).

and the niceness of 4 session threads temporarily set to -20.
Each test has been performed 3 times to assess the variability
of the experimental results. Figure 3 depicts analogous exper-
iments using a modified version of WiredTiger, implementing
the adaptive busy waiting mechanism described in Subsec-
tion II-B. In our test environment, the latencies experienced by
users interacting with an unrestricted MongoDB deployment,
using the original version of WiredTiger, is 890 microseconds
on average (Subfigure 2a). The modified version of WiredTiger
achieves similar results, showing no noticeable side effects in
replacing the original implementation with the adaptive one.
However, the fallacy of the original instance of busy waiting
is demonstrated in Subfigure 2b: the use of taskset and
nice affects the 99.9th percentile (P999) the most, showing
a ∼2168% increase, with peaks of 1 second during the thread
priority time window (highlighted by dashed lines). On the
other hand, Subfigure 3b, which depicts the latency over time
using the adaptive busy waiting solution, shows a much lower
∼7% increase of the P999 latency instead (with respect to the
unrestricted case in Subfigure 3a).

The second series of experiments (Figure 4) compare the
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Fig. 4: Performance comparison between the two busy waiting
implementations on different CPU contention scenarios. The
MongoDB deployment is restricted to 10 cores. Thread priority
is tweaked for 4 user sessions throughout the entire test period.

throughput and latency of the two implementations on sev-
eral many-client scenarios. In these experiments, the core
restriction and nice manipulation setup are the same as the
timeline plots; however, the thread priorities are tweaked at
the start and kept as such throughout the entire test period. In
the unmodified version of WiredTiger, the overall throughput
dramatically decreases as the number of session threads (one
per connection) increases. In the highest contention scenario,
which shows 80 YCSB connections restricted to 10 physical
cores, the P999 latency experienced in the adaptive version is
lower than the average latency of the original implementation.
The scaling issue is evident: as of now, it is possible to
effectively starve a WiredTiger-based data store by simply
tweaking the thread priorities if the number of concurrently
active session threads is not controlled under high CPU
contention scenario. Fortunately, the experiments show that
busy waiting with backoff is a valid fix to avoid starvation.

IV. CONCLUSION

In this paper, an unsafe instance of busy waiting in
WiredTiger, the underlying storage engine of MongoDB, has
been thoroughly described. Busy waiting is a synchronization

technique commonly employed by modern OSs in kernel mode
and HPC applications. It requires special care when used
in user-space to avoid resource waste, or worse, starvation.
However, MongoDB does not employ any safety control,
causing unexpected behaviors under heavy CPU contention
scenarios. For this reason, we replaced the original busy
waiting implementation within WiredTiger with an adaptive
one, which falls back to blocking after a short spinning period
(this primitive was already used in other parts of the code,
as mentioned above). This way, the scheduler is allowed to
reschedule, greatly reducing the resource waste caused by
busy waiting. The assumption regarding the unsafety of the
original implementation is backed up with a series of experi-
ments on a test environment carefully crafted to consistently
reproduce the synchronization bug. The two implementations
are then compared in high contention scenarios, manipulating
the thread priorities within the Linux scheduler to consistently
starve WiredTiger. The original implementation incurs in huge
tail latency, making current WiredTiger-based data store that
does not control concurrency a “risky” choice for large-scale
applications with low-latency and predictable performance
requirements (such as cloud-based, time-critical applications).
The adaptive version of busy waiting overcomes the scaling
issues and shows no anomalies in tail latency. An interesting
future work is the use of mutable locks [21], a modern
synchronization technique with a self-tuned optimized trade-
off between responsiveness and CPU time usage.
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