
Ultra-low Latency NFV Services Using DPDK

Leonardo Lai∗, Gabriele Ara∗, Tommaso Cucinotta∗, Koteswararao Kondepu†, and Luca Valcarenghi∗

∗Scuola Superiore Sant’Anna, Pisa, Italy

{name.surname}@santannapisa.it

†Indian Institute of Technology Dharwad, Dharwad, India

k.kondepu@iitdh.ac.in

Abstract—This paper introduces UDPDK, a novel middleware
easing the implementation of ultra-low-latency communications
among software components, based on the well-known DPDK
framework, by which one can bypass the in-kernel networking
stack of the operating system, with direct access to the networking
devices from the application. DPDK functionality is exposed
to applications with an API resembling the standard POSIX
primitives for UDP. The usefulness of UDPDK is demonstrated
by integrating it in the OpenAirInterface open-source software
stack for RAN communications, modifying its F1-U component
to use UDPDK primitives. Experimental results on an LTE
test-bed show a reduction of 69% of the end-to-end latency
when using the new primitives. The achieved results are of
foremost importance for the realization of ultra-low-latency
communications in future 5G scenarios.

Index Terms—DPDK, Radio Access Network (RAN), Network
Function Virtualization (NFV), OpenAirInterface, Low Latency

I. INTRODUCTION

Interconnecting billions of mobile devices globally in a fast,

affordable, accessible, flexible, and scalable way represents

one of the most ambitious challenges of nowadays and future

networks. These need to support high-performance networking

use-cases requiring high bandwidth and low latency, ensuring

high mobility and coverage, and low power consumption.

To this end, the 5th Generation (5G) architecture aims at

enabling three broad classes of usage scenarios: enhanced

Mobile Broadband (eMBB), massive Machine-Type Commu-

nications (mMTC), and Ultra-Reliable and Low-Latency Com-

munications (URLLC) [1], [2]. eMBB supports data-intensive

services that require stable high-bandwidth connections, such

as needed in mobile AR/VR applications, and UltraHD or 360-

degree video streaming; URLLC supports services with ultra-

low latency and very high reliability requirements, as needed

in safety-critical systems; finally, mMTC aims at supporting

connectivity of a significantly higher number of devices than

we have nowadays, as needed in IoT networks with unprece-

dented device density and low-power requirements.

These new networking scenarios are pushing towards higher

dynamicity and flexibility in resource management, with in-

creased decoupling between hardware and software through

abstraction layers heavily based on virtualization, drawing

from lessons learned in the area of Cloud Computing. These

requirements, coupled with the convergence of networking

technologies over TCP/IP, led to the widespread adoption of

Network Function Virtualization (NFV) and Software-Defined

Networking (SDN) architectures: instead of having dedicated

This work has been partially supported by the EU Commission through the
5GROWTH project (grant agreement no. 856709).

physical networking appliances sized for the peak hour, we

have software-based network functions, i.e., Virtual Network

Functions (VNFs), that can be deployed as elastic scalable

software components over a NFV infrastructure [3], [4]. This

is essentially a general-purpose private cloud infrastructure of

the network operator that is able to flexibly instantiate, consol-

idate, relocate, upgrade and elastically scale VNFs according

to time-varying demand conditions.

Sample network functions that can easily be implemented in

software and deployed as VNFs include DHCP, NAT, routing,

switching, proxying, deep packet inspection, and radio [5].

Indeed, over the past few years, research in the field of effi-

ciently applying cloud computing and virtualization paradigms

to NFV and SDN infrastructures has flourished [6].

Due to the higher levels of resource sharing promoted by

NFV, proper countermeasures are needed to avoid excessive

interferences among them to ensure high and predictable

performance of the deployed VNFs. Therefore, NFV defines

the concept of network slicing to facilitate the coexistence

of heterogeneous services enabling dynamic allocation of

resources to them while guaranteeing isolation and pre-defined

levels of Quality of Service [7]. When VNFs are deployed on

general-purpose cloud servers, temporal isolation among co-

located functions can be achieved by system partitioning and

core pinning [8] or using real-time scheduling disciplines [9],

[10] when a finer-grained resource allocation is needed. This

makes it easy to deploy services in NFV infrastructures and

scale them dynamically upon necessity, being particularly

useful for those applications characterized by many users but

low-bandwidth demand for individual streams, like in IoT.

Among others, NFV has been recently applied to base

station functions (namely gNB) even when they are split into

different units, such as Radio Unit (RU), Distributed Unit

(DU), and Central Unit (CU) [11], as depicted in Fig. 1. Dif-

ferent functional split options present different requirements

in terms of capacity and latency; thus care shall be taken to

select the best virtualization [12] and networking technology.

In this context, it is crucial to ensure fast and efficient

communications among the various services, both when de-

ployed in geographically distant servers and when co-located.

Technologies to accelerate virtualization exist both in hardware

and software. Intel VT, Data Direct I/O Technology, and Single

Root I/O Virtualization (SR-IOV) help increase the bandwidth

while reducing the latency on the hardware side. Software

solutions (e.g., DPDK [13] and netmap [14]) allow optimizing

the network stack to these specific use-cases, bypassing the

typically feature-rich – thus bulky – networking stacks realized



CUCUCU

RU

+

DU

UE

RU

+

DU

UE RU

+

DU

UE

RU

UE

RU

UE
RU

UE

DU

Core Network

Figure 1: Sample 5G Radio Access Network (RAN) architec-

ture per O-RAN/3GPP specification, with the annotation of the

typical latency constraints among communicating components,

and their implications in terms of maximum physical distance.

in an operating system (OS) kernel, dropping unneeded fea-

tures. Instead, these realize only the strictly needed function-

ality directly in user-space, exploiting technologies for direct

access to networking devices, resulting in higher performance

levels. These frameworks usually leverage techniques like

continuous polling, I/O batching, zero-copying, and others.

A. Contributions

This paper investigates the application of high-performance

networking frameworks in the 5G software stack. Specifi-

cally, our study focuses on using Data Plane Development

Kit (DPDK) to accelerate communications in the Central

Unit/Distributed Unit (CU/DU) functional split. With reference

to Fig. 1, our purpose is to optimize communications on

5G Midhaul links (i.e., the F1-U interface) between CU and

DU components, so to achieve the lowest possible end-to-

end latency. This is beneficial considering the critical latency

requirements imposed by various 5G use-cases.

To this end, we present a novel middleware that we de-

veloped to ease the adoption of DPDK technologies from

higher-layer software stacks, focused on replicating a set of

functions that resemble the typical system calls available on an

OS for UDP-based communications. Then, a set of modifica-

tions to the OpenAirInterface (OAI) open-source software are

described, which, leveraging on the introduced middleware,

is now capable of realizing ultra-low latency communications

for user plane exchanges within the F1-U component of the

OAI/5G/vRAN architecture, with the traffic being vehicled

through DPDK. An experimental evaluation of the obtained

software stack is performed on a real test-bed, where we

measured a 69% reduction of the end-to-end latency compared

to using traditional socket-based communications.

II. RELATED WORK

Several works addressed how to optimize the performance

of networking primitives in the research literature and indus-

trial practice, and particularly trying to leverage technologies

like DPDK. In the following, we review the most important

DPDK-based middleware solutions; then, we review works

aimed specifically at applying DPDK in the context of NFV

and Virtualized Radio Access Network (vRAN).

A. DPDK Frameworks

Various frameworks provide high-performance network

stacks, often on top of high-performance low-level frameworks

like DPDK [13] or netmap [15], and sometimes relying on

code “borrowed” from widespread operating systems like

Linux or FreeBSD. mTCP [16] is a user-level TCP stack

designed for scalability on multi-core systems; it is developed

on top of the PacketShader engine for efficient event-driven

packet I/O [17], using DPDK for low-level operations and

device accesses. F-Stack [18] is a user-space TCP stack

built on DPDK with a POSIX-like application-programming

interface (API), which facilitates the conversion of existing

applications to the framework. The framework imposes an

event-based programming model based on the epoll and

kevent system calls, which may represent a limitation when

attempting to port applications designed differently. DPDK

Accelerated Network Stack [19] is a DPDK-based network

stack that implements complete TCP/UDP and IP protocol

stacks, including ARP, ICMP, DHCP, and other protocols.

The FD.io Transport Layer Development Kit (TLDK) [20]

provides a set of libraries for high-performance implementa-

tions of TCP and UDP protocols. It is maintained to support

the development of Vector Packet Processing (VPP) [21], a

high-performance software switch. Since it is highly special-

ized to meet VPP requirements, its API is not meant to be

compatible with POSIX sockets, limiting its applicability.

SeaStar [22] is an event-driven framework that provides its

own TCP/IP stack, optionally using DPDK to manage network

devices in user-space. IPAugenblick [23] is a porting of the

Linux TCP/IP stack to DPDK that relies on a background

process acting as a glue component between poll-managed

devices and applications. Its API is POSIX-alike, but the

project does not see any active development since 2016.

LibOS Network Stack in Userspace (LibOS-NUSE) [24] is a

subsystem for Library Operating System (LibOS) that provides

a network stack entirely implemented in user-space. LibOS

is POSIX-compatible and can also be used with applications

relying on standard system calls for networking. LibOS-NUSE

also supports high-performance frameworks like DPDK, but it

lacks support for batch packet processing, which constitutes a

significant performance limitation [25].

To summarize, most of the mentioned frameworks are diffi-

cult to use to accelerate software 5G frameworks in NFV with

UDP-based interactions among components due to several

limitations: (i) discontinued development support (IPAugen-

blick); (ii) the lack of support to POSIX-like API (SeaStar,

IPAugenblick, TLDK), which would greatly facilitate porting

existing software; (iii) the lack of UDP as transport-level

protocol, which forces applications to use TCP, with its

implied overheads (mTCP, SeaStar); (iv) forcing applications



to adopt specific programming patterns, often event-driven

(mTCP, F-Stack, SeaStar); (v) being purposely developed for

custom operating systems (LibOS-NUSE).

As a motivational and driving example, the F1 User Plane

Protocol (F1-U) interface implementation in OpenAirInterface

(OAI) is implemented on top of the POSIX UDP socket API

provided by Linux. The most straightforward way to accelerate

this connection is to use a high-performance middleware

that provides POSIX-like APIs, provides (minimal) UDP/IP

support, and does not impose a specific application pattern or

forces the usage of specific API calls (like kevent/epoll).

This is exactly what we propose in this paper.

B. DPDK Adoption in vRAN, NFV, and SDN

vRAN architectures possess critical end-to-end latency and

jitter requirements that pose severe limitations on what vir-

tualization technologies and CU/DU functional split options

are viable, as shown in [12]. Therefore, various attempts exist

at accelerating packet processing in this domain. In [26],

Field Programmable Gate Array (FPGA)-based acceleration

is combined with the OpenCL framework to accelerate some

physical layer functions of the 5G stack, outperforming CPU-

only processing for large wireless channel bandwidth. Similar

conclusions are also drawn in [27], where authors show that an

FPGA-accelerated regular-expression matching engine in NFV

has a similar performance to a DPDK-based accelerated one,

but it scales much better when operations are parallelizable.

Moreover, various works exist in the research literature

trying to use DPDK for achieving enhanced performance

in such contexts as vRAN, NFV, and SDN. For example,

the challenges in realizing a cloud-distributed MU-MIMO

RAN system are presented in [28], where DPDK is leveraged

for accelerating communications over 10 GbE links, and

Intel Streaming SIMD Extensions are leveraged to accel-

erate encode/decode operations. Also, a DPDK-based NFV

architecture is presented in [29], where monolithic VNFs are

disaggregated into lightweight “micro” VNFs, enabling a finer-

grained resource allocation and reducing redundancy in the

deployed stack. In [30], a high-performance software switch

for vRAN is presented called N-VDS. It reuses principles sim-

ilar to DPDK, but on top of the VMWare vSphere Distributed

Switch architecture. This achieves a 3x to 5x throughput gain

compared to other virtual switches, including OVSDPDK.

Some works also exist in the context of accelerating SDN

with DPDK. For example, it has been shown [31] that in Open-

Flow software switches DPDK acceleration may compensate

for the typical performance drop generally due to the inter-

actions with the OpenFlow controller. Focusing on security-

related NFV functions, in [32] authors present results obtained

accelerating NFV functions related to deep packet inspection

using DPDK primitives coupled with SR-IOV. The results

show that the DPDK-based implementation outperforms the

one based on the libpcap framework of the Linux kernel,

allowing for much higher throughput (roughly 8x).

Finally, albeit not belonging to the NFV context, it is

interesting to see what impact DPDK may have in other

UDPDK

POSIX-like API Layer

Device Polling IP Fragmentation / Defragmentation

Multi-Queue 

Management

Lockless 

Synchronization
L4 Switching

Application

Hardware/Virtual NIC

DPDK

User-space 

Device Drivers

Memory 

Management

Ring Queue 

Management
…

Environment Abstraction Layer (EAL)

Figure 2: UDPDK application stack.

ultra-low latency applications, such as realizing game servers,

as done in [33]. The presented experimental results show

a latency reduction of nearly an order of magnitude with

the adoption of DPDK, albeit authors observe that having

to reimplement the networking stack in user-space is quite

cumbersome for developers. This reinforces the message that

the availability of open-source frameworks easing the adoption

of DPDK via a POSIX-alike socket API is a good thing to

have, as provided by our proposed framework, described next.

III. PROPOSED APPROACH

This section presents a novel middleware that we devel-

oped on top of DPDK to streamline the adoption of DPDK

into applications originally developed using other networking

paradigms, like the POSIX networking API. We describe the

main features of the software library, and we summarize its

internal implementation. We then show the changes that we

made to the OpenAirInterface (OAI) F1-U components as a

successful use-case for the proposed middleware.

A. UDPDK

UDPDK is a DPDK-based middleware that we developed

to address critical shortcomings of existing solutions to high-

performance networking. Typically, applications are either

developed using a standard POSIX socket API, leveraging

in-kernel networking stacks, or are directly implemented on

top of high-performance networking frameworks (e.g., DPDK,

netmap), each with their own specialized APIs and program-

ming paradigms.

UDPDK provides a minimal user-space UDP-IP network

stack designed to be both efficient and easy to integrate with

existing and novel applications. It is implemented on top of

DPDK Environment Abstraction Layer, but at the same time it

does not force its users to a programming paradigm completely

different from POSIX socket APIs. In fact, the API exposed

by UDPDK is purposely designed to resemble as much as

possible traditional sockets (albeit with limited functionality),

reducing the effort required by application developers to port



existing applications to DPDK. UDPDK is released under an

open-source license at https://github.com/leoll2/udpdk.

POSIX socket API calls implemented by UDPDK

include: socket, bind, getsockopt/setsockopt,

sendto/recvfrom, and close. These functions,

conveniently defined in UDPDK using the udpdk_ prefix

to avoid confusion with actual POSIX sockets, tightly

emulate the behavior of their POSIX counterparts and, as

such, they exhibit similar usage. Not every socket option is

supported, and at this moment UDPDK does not support

key functions like select, connect, send/recv, and

the general sendmsg/recvmsg, as well as their batch

counterparts sendmmsg/recvmmsg, which will be the subject

of future updates to the framework. For now, UDPDK

supports only the AF_INET domain and the SOCK_DGRAM

protocol (a.k.a. UDP/IP network stacks), and not all functions

of the network and transport-level protocols are implemented

yet. Nevertheless, UDPDK can already be effectively used

in fairly common practical NFV use-cases, as shown later.

UDPDK does not aim to replace the native socket interface

completely; instead, the two APIs may coexist so the

programmer can choose which underlying stack (kernel or

DPDK) to use. In particular, we expect UDPDK to be used to

accelerate data plane communications, while communications

on the control plane (typically less data-intensive and more

sporadic) are performed through OS sockets.

Fig. 2 depicts the stack of an application developed on top

of UDPDK. The main components of UDPDK (also shown in

Fig. 2) are the following: the Poller handles all interactions

with DPDK devices, accessed in a polling fashion; the Multi-

Queue Manager, implemented on top of DPDK’s lockless ring

queues (rte_ring), manages a configurable number of effi-

cient packet queues, two per opened UDPDK socket (namely a

reception and a transmission queue per socket); incoming/out-

going packets for each UDPDK socket are exchanged using

these queues; the L4 Switch multiplexes incoming packets to

the corresponding socket, based on the destination UDP port

number of each packet; the IP Fragmentation/Defragmentation

Manager either fragments outgoing packets or reassembles

incoming packets before delivering them to the L4 Switch;

this component leverages existing DPDK libraries that provide

methods for splitting, buffering, and rebuilding packets based

on IP/UDP header fields.

Notice that UDPDK does not implement some functions

typically performed by L3 network stacks, most notably,

UDPDK lacks a proper implementation of ARP and ICMP

protocols1. The UDPDK target use-case is the one of point-

to-point communications within an L2 domain, where most

of the traffic can be easily sent to recipients without caring

about routing and other aspects relevant for networks with

non-trivial topologies. Nevertheless, generated IP packets still

retain valid headers (even if not all options are supported) and

can be exchanged over local networks without issues.

1For now, a table of ARP associations is provided to UDPDK during its
initialization phase.

DPDK Process Group

APPLICATION 

PROCESS

UDPDK

PROCESS

NIC

SHARED 

MEMORY

socket 0

socket n

…

Rx 

queues

Tx 

queues

memory 

pool

Poller

L4 

Switch

SecondaryPrimary

Fragm

Defrag

Figure 3: Interactions among UDPDK internal components.

Interactions between these components are shown in Fig. 3.

In general, UDPDK applications are multi-process applica-

tions, with one dedicated polling process (spawned by the

middleware framework upon initialization) and one or more

application processes. More precisely, on its start-up, UDPDK

handles the initialization of the underlying DPDK layer, in-

cluding all virtual/physical NIC devices and memory pool

configuration. It then initializes a DPDK Process Group2 and

spawns a DPDK secondary process, later referred to as the

UDPDK Process. This process will handle all communica-

tions with the underlying devices and perform all operations

typically implemented in a (minimal) networking stack. The

main application process is then assigned the role of the DPDK

primary process3.

Once all processes are up and running, application pro-

cesses can open one or more UDPDK sockets. When opened,

each socket is assigned a pair of incoming/outgoing message

queues. From that point on, the socket can be used to send

or receive data. In the former case, all data provided by the

user through udpdk_sendto is copied to a memory area

from the reserved memory pool, and then the allocated buffer

is enqueued on the outgoing queue. The UDPDK Process

continuously polls outgoing queues of all sockets, constructs

outgoing packets (filling L2/L3/L4 headers information), per-

forms IP fragmentation (if needed), and then proceeds to send

all constructed packets to the underlying networking device.

Once this operation is concluded, the same process pro-

ceeds to poll the NIC for new incoming packets, collect-

ing all available packets, performing IP defragmentation, if

necessary. It then delivers the content of each packet to the

2A DPDK Process Group identifies all processes that share DPDK-managed
resources, including opened NIC devices, memory, and data structures.

3Running application processes as DPDK secondary processes may not
be possible, due to some technical problems. In particular, DPDK does not
deliver any interrupts coming from network devices to secondary processes,
and this could impair the application logic being executed. In general, this
does not represent a limitation to applications with a single application process
or applications that use a dedicated process for high-performance network
communications; in both of these cases, relevant processes will run as DPDK

primary processes when using UDPDK, avoiding these limitations introduced
by the underlying DPDK layer.

https://github.com/leoll2/udpdk


corresponding destination queue, dropping packets that cannot

be delivered properly. Once new packets are present in the

reception queue, the application process can collect them by

calling udpdk_recvfrom. All packet creation, processing,

and management operations are efficiently implemented on

top of the high-performance API provided by DPDK, using

shared-memory buffers, forcing cache-line alignment of all

data structures (to minimize cache misses), and packets are

processed in batch when possible. The same shared memory

area is used to store both packets data and descriptors, as they

are accessed and manipulated by both application processes

and the UDPDK Process.

Finally, UDPDK provides a packet generator (pktgen) and

a ping-pong application to demonstrate its capabilities.

B. Accelerating OpenAirInterface with UDPDK

To demonstrate the applicability of UDPDK in high-

performance NFV and vRAN scenarios, we modified a subset

of OAI components to use UDPDK sockets instead of POSIX

ones. Our modifications to OAI are released in open-source

and made available at: https://github.com/leoll2/oai_dpdk.

Data exchanged by the CU and DU components of the

OAI F1-U interface is encapsulated in Protocol Buffers,

with one task for each component handling all data en-

capsulation and exchange over the local network. These

two tasks (called agents in OAI terminology) are located

in F1AP/f1ap_cu_task.c and F1AP/f1ap_du_task.c, re-

spectively; they initialize the communication channels and

spawn a thread each to exchange messages. More in detail,

the proto_agent_start() initializes a channel structure,

registering the send, receive and release callbacks, allocating a

POSIX socket, and finally invoking create_link_manager.

This last function manages all transport-level protocols used by

OAI (TCP, UDP, and Stream Control Transmission Protocol),

and it spawns two threads with real-time scheduling priority

(SCHED_RR) that periodically attempt to transmit/receive data,

respectively, using FIFO queues to exchange data with other

components of the program.

Since the F1-U interface implemented by OAI already

uses UDP as transport-level protocol to exchange data over

the network, accelerating communications between OAI CU

and DU components is relatively easy with UDPDK with-

out disrupting much of the original application flow. After

including the initialization and cleanup of the UDPDK frame-

work within appropriate points of the OAI initialization and

cleanup code, most of the substitutions necessary for this

port simply require changing calls to sendto/recvfrom to

corresponding UDPDK calls by adding the corresponding

UDPDK API calls by adding the signature prefix udpdk_,

as well as substituting all sockets creation and configuration

calls to UDPDK ones. The relevant code is located in the

openairinterface5/openair2 directory, which groups all

transport-level protocols supported by OAI.

In particular, the UDP socket is created within the

new_link_udp_server function, which relies on the

socket primitive, which we substituted with udpdk_socket.

The functions link_send_packet/link_receive_packet

call sendto/recvfrom respectively, which we changed

to udpdk_sendto/udpdk_recvfrom. Finally, UDPDK ini-

tialization and teardown calls are inserted within the

USER/lte-softmodem.c file, where all other high-level OAI

functions are called. Proper placement of the udpdk_init,

udpdk_cleanup, and the udpdk_interrupt signal handler4

complete the set of changes to the OAI code needed to port

its F1-U CU/DU components to UDPDK. Of course, the OAI

build process (based on CMake) needs to be slightly modified

to include the UDPDK library as an optional dependency,

where a boolean option can be used to enable/disable UDPDK-

based acceleration.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed framework and

the benefits of the OAI acceleration that we implemented on

top of it, we used a small proof-of-concept testbed simulating

a 5G Non-Stand Alone network composed of a DU, a CU, and

a Core Network (CN), hosted on three separate servers on the

same local network. We deployed the DU and CU components

on two identical Dell PowerEdge R630 V4 servers, each

equipped with two Intel Xeon E5-2640 v4 CPUs clocked at

2.40GHz, 64GB of RAM, and two directly connected Intel

X710 DA2 10Gbps Ethernet Controllers. The CN component

was instead deployed on a low-end UP-Board, featuring an

Intel Atom CPU clocked at 1.44GHz, 4GB of RAM, and

a generic off-the-shelf network card. Both the CU and DU

components used a Linux kernel version 4.15.0, while the CN

used on a slightly older 4.7.7 kernel.

The CU and the DU were mutually connected with two dis-

tinct interface pairs to separate the control plane (F1-C) from

the user plane (F1-U). The F1-U traffic was forwarded through

the DPDK-enabled 10Gbps network interface, whereas the

F1-C used a standard 1Gbps interface. The CN machine

hosted the Mobility Management Entity, Home Subscriber

Service, and Serving Gateway/PDN Gateway entities together.

In this experimental setup, the CU and the CN were connected

through a VxLAN to form the backhaul network. The Remote

Radio Unit was exploited with the help of the LimeSDR5

open-source software-defined radio, and it was attached to the

DU through a USB interface. Note that the LimeSDR was used

for completeness to have a correctly operating deployment of

all three components. This way, we could measure the F1-U

latency between the DU and CU, which in the end was utterly

unaffected by the CN (inferior) hardware.

In all experiments, we disabled Intel Turbo-Boost and

manually fixed the CPU frequency to 2.40GHz. Experiments

with UDPDK use DPDK version 20.05 and the DPDK im-

plementation of the Virtual Function I/O driver, while when

using the POSIX socket API the device driver was i40e.

4A signal handler is not necessary for UDPDK to function, but it ensures
proper cleanup is performed when the application is closed upon reception of
an external signal.

5More information at: https://limemicro.com/products/boards/limesdr/.

https://github.com/leoll2/oai_dpdk
https://limemicro.com/products/boards/limesdr/


POSIX UDPDK
 

0.01

0.10

0.02

0.03

0.05

0.20

R
ou

nd
-T

ri
p 

Ti
m

e 
[m

s]

(a)

64 128 256 512 1024
Packet size [bytes]

2.00

4.00

6.00

8.00

10.00

Th
ro

ug
hp

ut
 [G

bp
s]

POSIX
UDPDK

(b)

Figure 4: Performance comparison between POSIX sockets

and UDPDK when using a 10Gbps cable. (a) shows the

RTT between two equivalent pairs of ping-pong applications

exchanging 64 byte packets; whiskers show maximum and

minimum values obtained over more than 15 thousand samples

per socket type. The Y axis uses a logarithmic scale. Lower is

better. (b) shows the mean throughput measured between two

equivalent pairs of sender-receiver applications for increasing

packet sizes up to 1500 bytes per packet. The X axis uses a

logarithmic scale. Higher is better.

Note that in the text below “packet size” refers to the size

of the whole L2 frame, and throughput values are computed

considering the size of the whole L2 frames exchanged.

Before running the complete testbed with OAI, we per-

formed some experiments using the UDPDK ping-pong and

sender-receiver application pairs to demonstrate the remark-

able difference between using standard sockets and UDPDK.

Fig. 4 shows results achieved deploying application pairs on

our two directly connected hosts, the same that will later be

used to run the CU and DU components during tests with

OAI. Each pair (ping-pong and sender-receiver) has been first

tested using POSIX sockets and then using UDPDK. Both

latency and throughput tests (Fig. 4a and Fig. 4b, respectively)

show clearly that UDPDK outperforms POSIX, achieving

on average about one-tenth of the round-trip time (RTT) of

the corresponding POSIX-based applications (a 88% RTT

reduction) and up to about 17 times the throughput (a 1580%

throughput improvement).

Then, we moved on to test the effectiveness of the

proposed modifications to OAI. As described before, the

OAI F1-U implementation uses an asynchronous inter-

face with two threads and FIFO queues to send and

receive messages. Our experiments measure the round-

trip time between the CU and DU components, either

when data is exchanged asynchronously through mes-

sage queues (message_get/message_put) or when pack-

ets are synchronously exchanged using the “low-level”

OAI API (link_send_packet/link_receive_packet).

We performed experiments in three scenarios: using UDPDK,

using POSIX sockets with UDP as transport layer, or using

POSIX sockets with TCP. In all scenarios, the asynchronous

API is expected to achieve lower round-trip times than their

synchronous counterparts since the message-based API calls

Table I: OAI F1-U interface: RTT as a function of the

transport-layer stack used.

Protocol Stack Queue Average RTT [ms]

UDP UDPDK
No 0.029
Yes 0.031

UDP POSIX (Kernel)
No 0.095
Yes 0.125

TCP POSIX (Kernel)
No 0.275
Yes 0.370

internally invoke the link ones. Table I shows the results

obtained with all test combinations; the reported round-trip

time values represent average values of more than a thousand

samples collected over ten repeated runs of each experiment

configuration. In general, UDPDK exhibits a much lower

latency than the in-kernel UDP stack used through the POSIX

API (e.g., a 69% reduction from 95 µs down to 29 µs), thanks

to its ability to bypass the kernel entirely, which in turn

outperforms the in-kernel TCP stack as available through the

POSIX API, as expected.

Moreover, UDPDK seems to couple reasonably well with

the asynchronous interface, with only a minimal extra over-

head introduced by the message queue between the OAI

application threads. As expected, the TCP runs turn out to

be the slowest due to the greater complexity of the involved

software stack and protocol. These results confirm the validity

of the proposed approach since UDPDK effectively reduces

the latency between two critical components of the data plane.

Finally, we must add that these performance improvements

come at the cost of spawning a dedicated process (the UDPDK

Process) that continuously polls network devices and incoming

queues from each open UDPDK socket. Moreover, when

applications need blocking calls from the standard socket API,

the new UDPDK calls do not block the calling process, but

they wait for results to become available, performing an active

busy-wait. This behavior is typical of DPDK-based solutions,

and it generally results in at least two or more CPU cores

constantly reaching 100% utilization [34], [35], regardless of

the actual ongoing traffic. DPDK can also be used in com-

bination with interrupts [36], but before sending or receiving

packets the program must switch back to polling mode. This

reduces CPU utilization during idle times, at the cost of a

more significant latency when interrupts must be disabled to

revert to polling mode when the first packet of a burst is

received. Alternatively, application processes can use UDPDK

with the non-blocking API calls (using the O_NONBLOCK flag)

and perform some other action while waiting for packets to

be ready to be sent/received to/from the UDPDK Process,

instead of performing continuous busy-loops on packet queues.

However, in this case the cost of a single CPU fully busy due

to the UDPDK Process itself is anyway unavoidable.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced UDPDK, a novel middleware

for easing integration of DPDK-based communications in



application-level software, thanks to its API mimicking the

standard POSIX one for UDP-based communications. This

is a convenient tool to accelerate VNFs in NFV infrastruc-

tures leveraging on the capabilities of DPDK. We integrated

UDPDK within OpenAirInterface (OAI), an open-source soft-

ware stack for packet-processing in RAN scenarios. We pre-

sented experimental results showing how the use of UDPDK

reduces latency for end-to-end communications in synthetic

“ping-pong” micro-benchmarks, both when performed directly

with UDPDK and when integrated within OAI for communi-

cations between 5G Midhaul components.

Regarding possible future work directions, it would be

interesting to complete UDPDK with additional L3/L4 func-

tionality, which is still missing, like handling the ICMP and

ARP protocols, performing IP routing across multiple NICs,

and supporting commonly useful UDP flags. This would

likely imply investigating the scalability of UDPDK, with the

possibility to use multiple switching threads (as its current

architecture uses only one thread, albeit supporting multiple

sockets at the same time). Also, it would be interesting to

evaluate better the impact of DPDK-based communications on

real LTE/5G applications, as opposed to the synthetic bench-

marks herein adopted. Finally, we would like to investigate

adaptive techniques to switch between polling and non-polling

modes in UDPDK to avoid the high computational cost of

DPDK-based solutions compared with traditional interrupt-

based networking and achieve significant power consumption

reductions, retaining most of the performance improvements

associated with DPDK.

REFERENCES

[1] M. Series, “Minimum requirements related to technical performance for
IMT-2020 radio interface (s),” Report, pp. 2410–0, 2017.

[2] T. Fehrenbach, R. Datta, B. Göktepe, T. Wirth, and C. Hellge, “URLLC
services in 5G low latency enhancements for LTE,” in 2018 IEEE 88th

Vehicular Technology Conference (VTC-Fall). IEEE, 2018, pp. 1–6.
[3] R. Guerzoni et al., “Network functions virtualisation: an introduction,

benefits, enablers, challenges and call for action, introductory white
paper,” in SDN and OpenFlow World Congress, vol. 1, 2012.

[4] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE

Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.
[5] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and

R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications surveys & tutorials, vol. 18,
no. 1, pp. 236–262, 2015.

[6] J. DiGiglio and D. Ricci, “High performance, open standard virtualiza-
tion with nfv and sdn,” Wind River, 2013.

[7] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5G wire-
less network slicing for eMBB, URLLC, and mMTC: A communication-
theoretic view,” IEEE Access, vol. 6, pp. 55 765–55 779, 2018.

[8] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “Nfv-vital: A framework
for characterizing the performance of virtual network functions,” in
2015 IEEE Conference on Network Function Virtualization and Software

Defined Network (NFV-SDN), Nov 2015, pp. 93–99.
[9] T. Cucinotta, L. Abeni, M. Marinoni, A. Balsini, and C. Vitucci,

“Reducing Temporal Interference in Private Clouds through Real-Time
Containers,” in 2019 IEEE International Conference on Edge Computing

(EDGE), July 2019, pp. 124–131.
[10] ——, “Virtual Network Functions as Real-Time Containers in Private

Clouds,” in 2018 IEEE 11th International Conference on Cloud Com-

puting (CLOUD), July 2018, pp. 916–919.
[11] ITU-T, “Transport network support of IMT-2020/5G,” GSTR-TN5G,

Feb. 2018, version 1.0.

[12] F. Giannone, K. Kondepu, H. Gupta, F. Civerchia, P. Castoldi, A. Antony
Franklin, and L. Valcarenghi, “Impact of virtualization technologies
on virtualized ran midhaul latency budget: A quantitative experimental
evaluation,” IEEE Communications Letters, vol. 23, no. 4, 2019.

[13] “DPDK,” https://www.dpdk.org/, [Online] Accessed September 5, 2019.
[14] L. Rizzo, “Revisiting network I/O APIs: The Netmap framework,”

Queue, vol. 10, no. 1, p. 30, Jan. 2012.
[15] ——, “Netmap: a novel framework for fast packet i/o,” in 21st USENIX

Security Symposium (USENIX Security), 2012, pp. 101–112.
[16] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and

K. Park, “mtcp: a highly scalable user-level TCP stack for multicore
systems,” in 11th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 14), 2014, pp. 489–502.
[17] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-

accelerated software router,” ACM SIGCOMM Computer Communica-

tion Review, vol. 40, no. 4, pp. 195–206, 2010.
[18] Tencent Cloud, “F-Stack,” 2017, http://www.f-stack.org/.
[19] Ansyun, “dpdk-ans (accelerated network stack),” 2017, https://github.

com/ansyun/dpdk-ans.
[20] FD.io, “Transport Layer Development Kit (TLDK),” 2016, https://wiki.

fd.io/view/TLDK.
[21] “Vector Packet Processing (VPP),” https://fd.io/, [Online] Accessed

September 5, 2019.
[22] ScyllaDB, “SeaStar,” 2014, http://seastar.io/.
[23] V. Suraev, “ipaugenblick,” 2014, https://github.com/vadimsu/

ipaugenblick.
[24] “LibOS NUSE,” 2014, https://github.com/libos-nuse/net-next-nuse.
[25] H. Tazaki, R. Nakamura, and Y. Sekiya, “Library operating system with

mainline Linux network stack,” Proceedings of netdev, 2015.
[26] F. Civerchia, M. Pelcat, L. Maggiani, K. Kondepu, P. Castoldi, and

L. Valcarenghi, “Is opencl driven reconfigurable hardware suitable for
virtualising 5g infrastructure?” IEEE Transactions on Network and

Service Management, vol. 17, no. 2, pp. 849–863, 2020.
[27] X. Zhang, X. Shao, G. Provelengios, N. K. Dumpala, L. Gao,

and R. Tessier, “CoNFV: A Heterogeneous Platform for Scalable
Network Function Virtualization,” ACM Trans. Reconfigurable Technol.

Syst., vol. 14, no. 1, Aug. 2020. [Online]. Available: https:
//doi.org/10.1145/3409113

[28] D. Wang, C. Zhang, Y. Du, J. Zhao, M. Jiang, and X. You, “Implementa-
tion of a cloud-based cell-free distributed massive mimo system,” IEEE

Communications Magazine, vol. 58, no. 8, pp. 61–67, August 2020.
[29] S. R. Chowdhury, Anthony, H. Bian, T. Bai, and R. Boutaba, “A

Disaggregated Packet Processing Architecture for Network Function
Virtualization,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1075–1088, June 2020.

[30] D. Rajan, “Achieving high performance with virtualized data plane
workloads for 5g networks,” in 2019 Sixth International Conference on

Software Defined Systems (SDS), 2019, pp. 236–241.
[31] G. Pongrácz, L. Molnár, and Z. L. Kis, “Removing roadblocks from

SDN: OpenFlow software switch performance on Intel DPDK,” in 2013

Second European Workshop on Software Defined Networks. IEEE,
2013, pp. 62–67.

[32] M.-A. Kourtis, G. Xilouris, V. Riccobene, M. J. McGrath, G. Petralia,
H. Koumaras, G. Gardikis, and F. Liberal, “Enhancing VNF performance
by exploiting SR-IOV and DPDK packet processing acceleration,” in
2015 IEEE Conference on Network Function Virtualization and Software

Defined Network (NFV-SDN). IEEE, 2015, pp. 74–78.
[33] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “A study of network

stack latency for game servers,” in 2014 13th Annual Workshop on

Network and Systems Support for Games. IEEE, 2014, pp. 1–6.
[34] G. Ara, T. Cucinotta, L. Abeni, and C. Vitucci, “Comparative evalua-

tion of kernel bypass mechanisms for high-performance inter-container
communications,” in Proceedings of the 10th International Conference

on Cloud Computing and Services Science - Volume 1: CLOSER,,
INSTICC. SciTePress, 2020, pp. 44–55.

[35] G. Ara, L. Lai, T. Cucinotta, L. Abeni, and C. Vitucci, “A framework
for comparative evaluation of high-performance virtualized networking
mechanisms,” in Cloud Computing and Services Science, D. Ferguson,
C. Pahl, and M. Helfert, Eds. Springer International Publishing, 2021.

[36] D. Géhberger, D. Balla, M. Maliosz, and C. Simon, “Performance
evaluation of low latency communication alternatives in a containerized
cloud environment,” in 2018 IEEE 11th International Conference on

Cloud Computing (CLOUD). IEEE, Jul. 2018.

https://www.dpdk.org/
http://www.f-stack.org/
https://github.com/ansyun/dpdk-ans
https://github.com/ansyun/dpdk-ans
https://wiki.fd.io/view/TLDK
https://wiki.fd.io/view/TLDK
https://fd.io/
http://seastar.io/
https://github.com/vadimsu/ipaugenblick
https://github.com/vadimsu/ipaugenblick
https://github.com/libos-nuse/net-next-nuse
https://doi.org/10.1145/3409113
https://doi.org/10.1145/3409113

	Introduction
	Contributions

	Related Work
	DPDK Frameworks
	DPDK Adoption in vRAN, NFV, and SDN

	Proposed Approach
	UDPDK
	Accelerating OpenAirInterface with UDPDK

	Experimental Results
	Conclusions and Future Work
	References

