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Abstract This paper addresses the problem of optimum allocation of distributed real-

time workflows with probabilistic service guarantees over a set of physical resources.

The discussion focuses on how such a problem may be mathematically formalised, both

in terms of constraints and objective function to be optimized, which also accounts for

possible business rules for regulating the deployment of the workflows. The presented

formal problem constitutes a probabilistic admission control test that may be run

by a provider in order to decide whether or not it is worth to admit new workflows

into the system, and to decide what the optimum allocation of the workflow to the

available resources is. Various options are presented which may be plugged into the

formal problem description, depending on the specific needs of individual workflows.

The presented problem has been implemented using GAMS and has been tested under

various solvers. An illustrative numerical example and an analysis of the results of the

implemented model under realistic settings are presented.

Keywords advance reservations · real-time interactive workflows · probabilistic

service guarantees.

1 Introduction

Advance reservation mechanisms reserve available resources for a given time span so

that the hosted applications may be run with acceptable Quality of Service (QoS) levels.

However, the effectiveness of current advance reservation mechanisms is limited when

it comes to interactive applications where the users may want to trigger the application
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at their own convenience and with a guaranteed QoS over a large time span, without

having a fixed start time or having to make new reservation arrangements every time

they want to initiate a new execution. Furthermore, dealing with interactive, real-time

applications implies that the workflows terminate very shortly after each activation,

possibly within a sub-second maximum response-time. This means that the time it

takes for each activation to complete is orders of magnitude smaller than the granularity

by which the advance reservation process is done. For example, resources for a workflow

may be booked in terms of hours or days, whereas each activation of the workflow

terminates within one second, or a fraction of it.

Differently from the traditional real-time literature, the problem addressed in this

paper considers a probabilistic admission control setting, in which statistical knowledge

of actual usage by the users is leveraged, in order to host more real-time tasks over

the same physical node (overbooking) than it would be allowed by traditional deter-

ministic real-time admission control tests. Due to the SLA contracts in place with the

customers, the provider has to trade resources saturation/overbooking levels for possi-

ble penalties that it may have to pay back to customers in case of SLA violations. Also,

contrary to most of the traditional literature about advance reservations over Grids, the

present paper considers interactive real-time applications characterised by very tight

timing-constraints, and time-shared computing units, where soft real-time scheduling

policies are in-place to provide strong guarantees on the end-to-end response-times of

the workflows.

This paper is organised as follows. The description of the problem under study

is presented in Section 2 and an overview of the related work is given in Section 3.

In Section 4, the definition of the necessary notation is presented, while presentation

of the SLA model follows in Section 5. The formulation of the problem of allocating

distributed applications under probabilistic service guarantees is described in Section 6,

whereas Section 7 provides an illustrative numerical example. In Section 8, results

gathered from an implementation of the problem using GAMS under realistic settings

are presented. Finally, conclusions are drawn in Section 9, along with a brief discussion

of possible directions for future work on the topic.

2 Problem Description

In the context of this problem, largely inspired by the IRMOS project1, a resource

provider is a business entity who owns a set of physical hosts with potentially hetero-

geneous characteristics in terms of processing speed and architecture, and establishes

Service-Level Agreements (SLAs) with customers to allow for booking in advance a set

of virtualized resources for hosting distributed, soft real-time, interactive applications

over a large time-horizon. For the sake of simplicity, only workflow applications are

considered, where a set of (virtualized) services is activated in sequence each time a

request arrives from the end user. The use of virtualization techniques allows for the

seamless allocation of each service of the distributed application, which is actually a

Virtual Machine Unit (VMU) on its own, and their interconnection forms a Virtual

Service Network (VSN). These VSNs are characterised by periodic activation of a dis-

tributed workflow of services with specific computing and network requirements, and

an end-to-end response-time constraint.

1 More information is available at: http://www.irmosproject.eu.
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The considered applications are characterized by specific computing, networking

and memory requirements. Due to its interactive nature, a single application rarely

manages to saturate the computing capabilities of a host. Therefore the resource

provider has a strong interest in time-sharing multiple concurrently running services

belonging to different workflows on each physical host, up to the saturation. At the

same time, such an approach may increase the possibility of deviating from the agreed

QoS level, i.e. end-to-end response time constraint, and the imposed penalties may as

well outgain the advantages of time-sharing of the resources. Also, due to the tight

timing constraints that characterize soft real-time applications, the use of a best-effort

scheduling policy, like largely available on a General-Purpose (GP) Operating System

(OS), is not adequate for this kind of applications. Appropriate schedulers need to be

borrowed from the world of real-time scheduling. For example, the use of a Xen hyper-

visor with an S-EDF scheduling policy may fulfill such requirement. Alternatively, it is

possible to use the virtualization capabilities of GP OSes, like KVM on Linux, along

with an implementation of a real-time scheduling policy in the OS, like proposed in [7,

8]. An overview of how such a capability has been implemented in various GP OSes

can be found in [13]. More recently, implementations of soft real-time scheduling on

Linux can be found in [17,24,6].

Focusing on interactive soft real-time workflow applications, the approach pro-

posed in this paper tackles the problem of optimum allocation of such applications

on time-shared physical hosts, by incorporating a probabilistic approach in terms of

response-time (i.e. minimum probability of respecting the end-to-end deadline con-

straint) and availability guarantees (i.e. minimum probability of finding the resources

available when actually activating the application), in which the provider relies on ac-

tual probabilities of activation for the already admitted and new services. The proposed

approach considers the overlaps of each new workflow service with already admitted

ones and groups the conflicting time-slots under common sets of constraints across

the requested reservation period. Apart from the performance charecteristics of the

services that compose the workflow and a maximum end-to-end response time, the

proposed SLA model includes a metric of flexibility, the probability of application’s

availability once accepted into the system. In the probabilistic formulation of the op-

timization problem, apart from the user’s SLA preferences, the actual probability of

activation of each service (already admitted or under consideration) is incorporated

into the constraints and objective function that form the admission control test, al-

lowing for overbooking of the resources. The output of the optimization problem is

the location (host, subnet) as well as the deadline (d) and the bandwidth (b) of each

service of the workflow application that should be allocated to them. In order to guar-

antee temporal isolation among independent application workflows on the same host,

the time-sharing of the computing nodes is achieved through real-time scheduling at

the OS/kernel level, whereas on network level, a QoS-aware scheduling of the medium

is assumed. Figure 1 visualizes the described problem and the basic ideas behind the

proposed model (including some basic notation that is used in the following analysis).

3 Related Work

Among the algorithms for real-time scheduling, Rate Monotonic (RM) and Earliest

Deadline First (EDF) [20] are probably the most widely used techniques in the domain

of real-time systems. However, for a proper use in the field of general-purpose process-
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Fig. 1 General overview of the proposed approach.

ing, they need to be properly enriched with encapsulation techniques, such as aperiodic

servers [12]. The Proportional Share [27] and Pfair [3] techniques aim to approximate

the Generalized Processor Sharing theoretical concept of a fluid allocation, in which

each application using the resource marks a progress proportional to a given weight.

Another approach is based on the concept of Resource Reservations [22], in which the

resource allocation for each application is specified not only in terms of a share, but also

in terms of the desired time granularity. The Constant Bandwidth Server (CBS) [2]

is an EDF-based scheduler which provides a strong theoretical foundation that has

been proved to be able to cope with aperiodic arrivals. Two extensions of the CBS

were presented in [19][5] for allowing the sharing of resources between real-time tasks

in dynamic real-time systems. However, the aforementioned techniques apply only to

reservations which are assumed to be followed immediately by an allocation, and not

advance reservations.

More recently, a study on a task-level real-time scheduling algorithm that sup-

ports advance reservations was discussed in [21]. Work presented in [28] introduces a

workflow-level advance reservation model for DAGs (Directed Acyclic Graphs), taking

into account the worst execution time for whole workflow as specified by the user.

As in [21], the start-time of the workflow is strict and the reserved time interval is

proportional to the workflow execution time.

Studies on the performance of advance reservation mechanisms with rigid time con-

straints have shown that they lead in high fragmentation of the scheduling time, which

inevitably results in lower utilization [26]. To this end, techniques such as backfill-

ing [18] and advance reservations with flexible time constraints [14][11] are considered
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as a means to enhance utilization. In [23], SLAs are combined with flexible advance

reservations, which are scheduled based on their flexibility.

The problem of allocation of real-time distributed tasks on a set of heterogeneous

hosts has been investigated by Di Natale et al. in [10], in the context of automotive

embedded real-time systems. However, in that paper the focus was on deterministic

guarantees in safety-critical systems with hard real-time constraints, while the approach

presented in this paper, focusing on soft real-time systems, allows for probabilistic

service guarantees, and moreover considers the problem of advance reservations of

resources.

4 Notation

In this section, some basic notation is introduced for referring to resources, applications,

services, and advance reservation time intervals, in the subsequent discussion. Note

that the optimization algorithm proposed in this paper must be run each time a set of

new advance reservation requests arrives to the resource management service, where

the underlying resources may already be hosting a set of advance reservations that

were admitted in the past. Thus, the new applications should not disrupt the service

guarantees of the already admitted ones.

4.1 Resources Topology

The provider’s resources may be generally considered as an interconnection of hetero-

geneous networks that interconnect their own computing nodes. For example, various

LANs enclosing multi-processor computing nodes are interconnected by means of one

or more WANs. To this direction, the network topology is characterised by the following

elements:

– A set of computing nodes, or hosts: H = {1, . . . , NH} . Each host h ∈ H is char-

acterised by a computing capacity Uh, expressed in terms of availability of proces-

sor(s) share, and a memory capacity Ωh, expressed in bytes.

– A set of available subnets: S = {1, . . . , S} . Each subnet is characterized by a

maximum aggregate bandwidth Bs, expressed in terms of bytes/s, and a latency

Ls, that depend on the adopted type of medium, packet scheduling algorithm and

protocol for QoS assurance.

– The network topology information, specifying what hosts Hs ⊂ H are connected

to each subnet s ∈ S .

4.2 Application Workflows

The following notation is used to refer to applications:

– Set of application instances (referred to simply as applications from here on)

A = {1, . . . , NA} , comprising both the set of applications already hosted into

the system, denoted by Aold ⊂ A, and the set of new applications to be admitted,

denoted by Anew ⊂ A.
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– Each application a ∈ A is a linear workflow of n(a) real-time services A(a) ,
{

1, . . . , n(a)
}

, denoted also as
(

τ
(a)
1 , . . . , τ

(a)

n(a)

)

. Each service performs some CPU-

intensive computation, then transmits some data to the next service in the work-

flow, which in turn starts its own computations, and so on. Activation requests to

the workflow arrive with a minimum T (a) inter-arrival time 2

The following elements denote computing, memory and networking requirements, as

well as timing constraints, for the considered set of applications:

– Computation time c
(a)
i, j exhibited by each service τ

(a)
i of application A(a), if de-

ployed on physical node j ∈ H.

– Amount of memory ω
(a)
i needed by τ

(a)
i on the node where it will be deployed.

– Number m
(a)
i of bytes to be transmitted by each service τ

(a)
i ∈ Ã(a) of application

A(a), to τ
(a)
i+1, each time τ

(a)
i completes, where Ã(a) , A(a)\

{

τ
(a)

n(a)

}

.

– Response-time ρ
(a)
i of each service τ

(a)
i of A(a).

– End-to-end response-time ρ(a) of each application A(a).

For the sake of simplicity, the issue of how and whether to exploit parallelism on the

underlying host is not addressed, therefore each service is deployed within a real-time

resource reservation capable of handling a single execution flow at each time. This

means that, for multi-core and multi-processor platforms, the use of a partitioned real-

time scheduling policy is assumed. Therefore, VMUs hosting the services cannot take

advantage of supporting multiple virtual CPUs. However, note that the latter feature

is something that raises strong performance issues in most Virtual Machine Monitors.

However, it is straightforward to extend the framework so that applications are

characterised as generic Direct Acyclic Graphs (DAGs), instead of linear workflows,

which allows to have parallelism at least at the workflow level. In addition, the c
(a)
i, j

value is the worst-case execution time that would be obtained if τ
(a)
i were deployed

alone on one of the CPUs of the host j. The actual response-time of the service may

be higher depending on the computing node share assigned to the service. Due to the

interactive nature of the considered applications, it is reasonable to assume that each

workflow service will be active only for a short time within the reserved time I(a).

The above introduced notation considers the memory resource, referring to RAM

requirements and availability on the physical hosts. However, note that the same rea-

soning may easily be applied to the management of disk storage. This is omitted for

the sake of brevity.

In order to support multi-hop networking for connecting services of a workflow

application which communicate directly, the workflow model needs to explicitly possess

additional routing elements. This is also useful for modeling the computation-time

overhead incurred by the gatewaying physical hosts, especially if a VMU is actually

2 An analysis made by queueing theory on the activation pattern is not explicitly consid-
ered. However, two different time scales are taken under consideration: (1) on a coarse-grain

time-scale a generic probability π(a) for the application being actually activated by the user is
considered. Such value may derive from a queueing-network analysis of the application activa-
tion by analysing the users’ behavior. For example, the π(a) value may derive from a queueing
model with Poisson arrivals, e.g. exponential interarrival times. (2) on a fine-grain time-scale

it is considered that, when the application is actually being used by the user (with the π(a)

probability), its workflow is activated according to a sporadic arrival pattern with a minimum

inter-arrival period of T (a), which is realistic in the case of real-time applications.
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performing as a gateway. Clearly, in case multi-hop is not required, then the solution to

the allocation problem (presented in Section 6) will have the routing elements allocated

to the same physical nodes as the attached computing elements. In case the workflow

needs to access long-term storage (LTS) data that is located potentially outside of

the networks where the workflow is planned to be deployed, routing elements may

be needed for modelling the capability, for the workflow, to reach such LTS nodes.

These additional elements add complexity to the problem formulation, thus it may

be useful to reduce their presence at the bare minimum. For example, a few routing

elements may be needed at the point-of-access for actual users of the workflow (who

will actually reach the GRID where the workflow is being deployed traversing possibly

multiple subnets), but within the workflow they may be omitted. Should the resulting

workflow be rejected, a second try might be done by inserting one or a few routing

elements.

4.3 Real-time Scheduling

It is assumed that the real-time scheduling algorithm on each host allows for a simple

utilisation-based admission control test. For example, if a Pfair scheduler like the one

developed in the LITMUSRT project3 were available, then the maximum capacity Uh

could be an integer denoting the number of processors available on the host. On the

other hand, if a partitioned EDF scheduling policy were available, like in [6], then one

could model each processor as an individual host, where processors would be intercon-

nected by a virtual high-performance subnet. In both cases, each service is assumed to

be deployed within a resource-reservation [22] with maximum budget q
(a)
i and period

d
(a)
i . This amounts to providing to the service a scheduling guarantee of q

(a)
i time units

every d
(a)
i time units. As a consequence, it can be shown [24] that the time needed for

each service to complete is bounded by:

ρ
(a)
i ≤









c
(a)
i, j

q
(a)
i









d
(a)
i . (1)

However, if the budget is sufficient to sustain the worst-case execution time, then such

value simply reduces to d
(a)
i .

It is also assumed that subnets exhibit proper packet scheduling capabilities, so

that it is possible to assign a precise bandwidth b
(a)
i to each data flow needed by τ

(a)
i

for transmitting its result (m
(a)
i bytes) to τ

(a)
i+1, ensuring the temporal isolation among

multiple data flows within a certain tolerance. For example, the WF 2Q+ [4] scheduling

policy would meet such a requirement. This results in an end-to-end response-time that

may generically be written as:

ρ
(a) =

∑

i∈A(a)













c
(a)
i, j

q
(a)
i









d
(a)
i +

m
(a)
i

b
(a)
i

+ Ls



 . (2)

where Ls is the latency of subnet S. Note that, as a corner case, a subnet may also

represent a point-to-point link, or the local “loopback” connection.

3 More information is available at http://www.cs.unc.edu/~anderson/litmus-rt.
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4.4 Advance Reservations

The following notation defines quantities of interest for the advance reservations frame-

work:

– The available time-slots which may be booked in advance are all of the same du-

ration of ∆t time units, and are denoted by T , {tk}k∈N
, i.e., tk+1 = tk +∆t.

– Each request of advance reservation for an application A(a) is associated a time-

interval I(a) ,
{

ts(a) , . . . , tf(a)−1

}

⊂ T , of duration
(

f (a) − s(a)
)

∆t, over which

it may be activated by users’ requests.

The actual time instants at which users will activate the workflow within I(a) is un-

known, with the only constraint being that two consecutive activations should be re-

quested at a distance of at least T (a) (or, should they arrive at shorter distances,

they might be enqueued). However, as it will be highlighted in Section 6.2, the re-

source provider is assumed to possess a statistical knowledge on the actual expected

activation pattern of the application by the end users.

In the following, the set of applications whose advance reservation time-intervals
{

I(a)
}

include a given time-slot tk is denoted by A(tk) ,

{

a ∈ A | tk ∈ I(a)
}

, and

similarly are defined the symbols Aold(tk) ⊂ Aold and Anew(tk) ⊂ Anew . For the

purpose of simplifying notation, in the rest of this paper, whenever the reference time-

slot is implicitly identified, the symbols A, Aold and Anew are used in place of the

more formally correct ones with the time-slot indication.

4.4.1 Grouping of Advance Reservation Time-slots

In this paper, it is assumed that the allocation (both in terms of deployment decisions,

and of scheduling parameters) of each application A(a), once computed, is kept constant

over the entire time-interval I(a). When evaluating the admission of a set of new

applications Anew , the time horizon of interest from the advance reservations viewpoint

is the union I of the time-intervals of all the new applications to be admitted: I ,
⋃

a∈Anew
I(a). As shown in [15], the entire set of time-slots tk ∈ I may be logically

partitioned into G disjoint time-slices G , {Ih}h=1,...,G , of non-uniform duration of

tnh time-slots each, over which the set of potentially overlapping applications does

not change. Formally: ∀tk ∈ I, tk ∈ Ih =⇒ ∀tj ∈ Ih, A(tj) = A(tk). In what

follows, A(Ih) will be used as a shorthand for denoting A(min Ih). Furthermore, for

each application a ∈ A, G(a) will denote the set of disjoint time-slices concerning A(a),

i.e.: G(a) ,

{

Ih ∈ G | A(a) ∈ A(Ih)
}

. Note that G(a) constitutes a partition of I(a),

and that the overall number of time instants within is f (a) − s(a).

5 Service Level Agreement Model

Before introducing the formal problem formulation, it is interesting to overview the pos-

sible optimization objectives that may be pursued, considering the resource provider

perspective, and the constraints dictated within the customer’s SLAs. In general, ad-

vance reservations are defined in the SLA by a set of timing constraints, and the VSN

resource requirements. When dealing with real-time workflows of services that can be
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distributed across multiple sites and activated in an arbitrary fashion across a long time

span, like in our model, acceptance of SLA requests adversely affects the availability of

the resources and results in increased rejections, reduced utilisation and consequently

reduced revenue. To address this problem we exploit the arbitrary pattern of the work-

flows’ activation and the principle that some clients may accept probabilistic guarantees

at reduced service fees (accepting the possibility to face with overbooking). Summaris-

ing, the SLA for a new application a ∈ Anew, in our stochastic model, carries the

following parameters:

– The description of the application workflow A(a), which must be complemented by

the resource requirements of nodes and links4: c
(a)
i, j , ω

(a)
i and m

(a)
i .

– The time-interval I(a) during which the application may be activated by the user.

– An upper bound R(a) for the end-to-end response-time ρ(a) of the workflow execu-

tion.

– A minimum probability φ(a) that the time constraint R(a) is respected, i.e., the

constraint is that the φ(a)− th quantile of the observed ρ(a) distribution should be

≥ R(a).

– A minimum probability ξ(a) that the workflow is actually available when the request

arrives (within I(a)), namely that there are sufficient resources for its activation

when needed.

– A revenue (gain) G(a) for the provider in case a new advance reservation is accepted.

– A penalty P (a) for the provider if the QoS constraints are violated.

Note that φ(a) and ξ(a) constitute a formal metric for the “flexibility” of the client

under a stochastic SLA. A stochastic SLA is a generalisation of a deterministic one, i.e.,

setting both φ(a) and ξ(a) to 1, the client is allowed to require determinism in an SLA.

However, it is expected that the pricing model used by providers will acknowledge more

flexible consumers by awarding them with lower prices G(a), whereas consumers with

less flexibility are charged at higher prices. The way G(a) and P (a) may be determined

or negotiated is out of the scope of the present paper, and will be considered in future

research.

6 Formalization of the problem

Using the definitions in Section 4, the problem under study may now be formalized.

First of all, let us introduce the variables (unknown) to be computed:

– Set of allocations of services to hosts: ∀a ∈ Anew , ∀i ∈
{

1, . . . n(a)
}

, ∀j ∈ H,

x
(a)
i, j = 1 if τ

(a)
i is deployed on host j and 0 otherwise.

– Set of allocations of services to subnets (variables introduced for the purpose of

clarity): ∀a ∈ Anew , ∀s ∈ S , y
(a)
i, s = 1 if τ

(a)
i is deployed on some node j ∈ Hs.

– Set of allocation periods/deadlines for computation: ∀a ∈ Anew , ∀i ∈
{

1, . . . n(a)
}

,

d
(a)
i , with a consequent utilization of

c
(a)
i, j

d
(a)
i

, where j ∈ H is the physical node where

task τ
(a)
i has been deployed.

4 Such values may not necessarily be specified by the customer, but rather be available
to the provider by means of other mechanisms, i.e., by recurring to a proper monitor-
ing/benchmarking [16].
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– Set of allocation bandwidth for networking: ∀a ∈ Anew , ∀i ∈
{

1, . . . n(a)
}

, b
(a)
i ,

insisting on the subnet mediating the communications between τ
(a)
i and τ

(a)
i+1.

6.1 Deterministic Formulation

Let us now focus on a single advance reservation time-slot tk, thus in what follows

A is a short-hand for A(tk). The set of constraints for the problem is summarised as

follows.

– Each service must be allocated to exactly one host:

∀a ∈ Anew , ∀i ∈ A(a)
,
∑

j∈H

x
(a)
i, j = 1. (3)

– Each service must be allocated to exactly one subnet:

∀a ∈ Anew , ∀i ∈ A(a)
,
∑

s∈S

y
(a)
i, s = 1. (4)

– Coherence between x
(a)
i, j and y

(a)
i, s allocations (i.e., the y

(a)
i, s variables may be derived

from the x
(a)
i, j ones, however they are introduced for clarifying the exposition):

∀a ∈ Anew, ∀i ∈ A(a)∀s ∈ S ,
∑

j∈Hs

x
(a)
i, j = y

(a)
i, s . (5)

– Each pair of consecutive tasks needs to be connected to the same subnet:

∀a ∈ Anew , ∀i ∈ Ã(a)
,
∑

s∈S

y
(a)
i, sy

(a)
i+1, s = 1. (6)

– The additional load imposed on each subnet cannot overcome the residual available

bandwidth capacity:

∀s ∈ S ,
∑

a ∈ A

i ∈ Ã(a)

y
(a)
i, sb

(a)
i ≤ Bs (7)

– The additional load imposed on each host cannot overcome the residual available

computing capacity:

∀j ∈ H,
∑

a∈A

∑

i∈A(a) x
(a)
i, j c

(a)
i, j

d
(a)
i

≤ Uj . (8)

– A maximum value R(a) for ρ(a) (the budget is assumed equal to the WCET in

Equation (2)):
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∀a ∈ A,
∑

i∈A(a)

(

d
(a)
i +

m
(a)
i

b
(a)
i

+
∑

s∈S

y
(a)
i, sLs

)

≤ R
(a)

. (9)

The constraint in Equation (9) is valid under the assumption that the reservations on

the underlying physical resources are tuned so as to sustain at least one execution of

the entire workflow every minimum workflow activation period T (a). This implies the

following further constraints:

– Minimum processor shares ensuring a non-enqueueing semantics of tasks activa-

tions:

∀a ∈ Anew, ∀i ∈ A(a)
, d

(a)
i ≤ T

(a)
. (10)

– Minimum network bandwidth ensuring a non-enqueueing semantics for consecutive

messages (this allows for considering the traffic generated by τ
(a)
i as having a

maximum burstiness of m
(a)
i bytes, and a bandwidth requirements of

m
(a)
i

T (a) ):

∀a ∈ Anew, ∀i ∈ A(a)
,
m

(a)
i

b
(a)
i

+
∑

s∈S

y
(a)
i, sLs ≤ T

(a)
. (11)

A more interesting perspective is the one in which the possibility of rejecting one

or more applications is added to the problem. One possible way of dealing with this

is by introducing the Boolean variables
{

x(a)
}

with a value of 1 if A(a) is admitted

and 0 otherwise. Then, the constraints of the problem as expressed in Equations (3)

up to (6) need to be replaced by the following set:























x(a) ∈ {0, 1} ∀a ∈ A
∑

s∈S y
(a)
i, sy

(a)
i+1, s = x(a) ∀a ∈ A, ∀i ∈ Ã(a)

∑

j∈H x
(a)
i, j = x(a) ∀a ∈ Anew, ∀i ∈ A(a)

∑

s∈S y
(a)
i, s = x(a) ∀a ∈ Anew , ∀i ∈ A(a).

(12)

Equations (7) up to (11) along with the equations in (12) define the set of constraints

of the presented allocation problem. Note that, as of now, the new application work-

flows have been admitted deterministically, due to the presence of the saturation con-

straints (7) and (8), which do not allow for overbooking of the physical hosts. In the

following, a possible objective function conforming to the provider’s business policy is

introduced complementing the deterministic problem formulation, and then a proba-

bilistic rework is presented in Section 6.2.

6.1.1 Accounting for Advance Reservation Intervals

Let us focus now on the entire set I of time-slots involved in the advance reservation

process for the new applications. Considering a single time-slot tk, let C(tk) denote the

set of constraints from 3 to 11 (or equivalently their probabilistic variant introduced

later in Section 6.2.1), where the set of applications over which the constraints are posed

is actually A(tk). Due to the potential changes in the set of overlapping reservations

within I, the sets of constraints C(tk) need clearly to be intersected for all of the time-

slots tk ∈ I. So, the set of problem constraints which correctly account for the advance

reservations is, in principle:
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∧

tk∈I

C(tk) (13)

where the
∧

operator denotes logical and, and the constrained variables are always

the same, while the constraints parameters may change over the considered time-slots

tk. However, it is not necessary to actually consider each time-slot individually. In fact,

it is clear that, in Equation (13), C(tj) generates exactly identical constraints ∀tj ∈ Ih,

(see Section 4.4.1) therefore they are redundant, and only one set of constraints should

be considered, for each tj ∈ Ih, for example the one relative to the earliest time.

Equation (13) thus becomes:

∧

tk∈{min Ih|h=1,...,G}

C(tk). (14)

6.1.2 Objective function

When deploying a set of applications within an IRMOS domain, the above formalized

problem needs to be solved by optimizing some proper metrics expressing the goodness

of the found allocation. Clearly, from a provider perspective, such metrics might be

significant of the costs associated with each deployment solution. The problem set-up

expressed in equations from (3) to (11) is deterministic, and, as such, a simple metric to

be optimized is the cost associated to the use of each host, i.e. each host j is associated

a cost of ζj , which is incurred for each time-slot in which the host is actually used

for at least one advance reservation (i.e., it needs to be turned on, or bought/rented).

Therefore, let Hoff (Ih) ⊂ H denote the set of hosts which have not been booked

yet for any time-slot tk ∈ Ih (e.g., min Ih), when Anew needs to be deployed. The

optimization goal becomes:

min
x
(a)
i, j , y

(a)
i, s, d

(a)
i , b

(a)
i

∑

Ih∈G

∑

j∈Hoff (Ih)

ζjmj, h, (15)

where the
{

mj, h

}

are Boolean variables with a value of 1 if the jth host is involved

in the allocation specified by the
{

x
(a)
i, j

}

at any time within Ih (e.g., within the min Ih

time-slot) and 0 otherwise. These variables may actually be computed as a logic com-

bination of the x
(a)
i, j values, and of the advance reservation time-intervals

{

I(a)
}

, what

may be formalised by adding to the problem the following constraints:

{

Kmj, h ≥
∑

a∈A(min Ih), i∈A(a) x
(a)
i, j

mj, h ≤
∑

a∈A(min Ih), i∈A(a) x
(a)
i, j

∀Ih ∈ G (16)

for a sufficiently high constant K ≥
∑

a∈A n(a), where G denotes the set of overlapping

reservation time-slices as introduced in Section 4.4.1.

Having introduced in the problem the possibility of rejecting one or more appli-

cations, it is useful to introduce the gain G(a) acquired by the provider in case the

application a is accepted into the objective function as in:

min
x
(a)
i, j , y

(a)
i, s, d

(a)
i , b

(a)
i

∑

Ih∈G

∑

j∈Hoff (Ih)

ζjmj, h −
∑

a∈A

x
(a)

G
(a)

. (17)
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In the case of admitting a single application A(a), the above shown optimization goal

implies that A(a) is accepted into the framework only if the additional costs incurred by

the provider for the additional hosts that are possibly needed are lower than the revenue

G(a) due to accepting the request. However, apart from minimizing the cost, it is in

the best interest of the provider to assign to each of the services of a new application

the maximum and minimum values for the deadlines and bandwidth respectably. This

is due to the fact that assigning maximum utilization and bandwidth to the accepted

applications, would hinder the possibility to host more applications in the future on

the same host and would not allow for taking advantage of sharing tactics to the

fullest. To this end, the following variables for representing the sum of the deadlines

and bandwidth respectably are introduced:

{

∑

i∈A d
(a)
i = d(a) ∀a ∈ A

∑

i∈A b
(a)
i = b(a) ∀a ∈ A

(18)

In order to "push" towards the use of the maximum values for d(a) and minimum

for b(a), so that the solution is found on the geometric boundary (in the solution

space) defined by response-time constraints, and not the one defined by the utilization

constraints, the objective function takes its final form:

min
x
(a)
i, j , y

(a)
i, s, d

(a)
i , b

(a)
i

∑

Ih∈G

∑

j∈Hoff (Ih)

ζjmj, h −
∑

a∈A

x
(a)
(

G
(a) + w

(a)
d
(a)
)

, (19)

where w(a) are proper coefficients useful for adapting the heterogeneous quantities in

the sum, and configuring their relative weights in the overall objective.

6.2 Probabilistic Formalisation

6.2.1 Probabilistic response-time guarantees

The response-time constraints may be relaxed in a probabilistic sense, if, instead of

relying on worst-case estimates for the computation requirements
{

c
(a)
i, j

}

, as well as

the message sizes
{

m
(a)
i

}

, they are (more effectively, for multimedia) considered as

non-completely known values, and modeled as stochastic variables. For the sake of

simplicity, it is assumed that they are independent and identically distributed (i.i.d.),

and that the provider has an estimate of a certain quantile of their distributions:

Pr
[

c
(a)
i, j ≤ C

(a)
i, j

]

≥ α
(a)
i , Pr

[

m
(a)
i ≤ M

(a)
i

]

≥ β
(a)
i , Pr

[

ω
(a)
i ≤ Ω

(a)
i

]

≥ γ
(a)
i , with5

∏

i∈A(a) α
(a)
i β

(a)
i γ

(a)
i ≥ φ(a) (note that one or more of the mentioned probabilities

may be set to 1). Then, in order for an application A(a) ∈ Anew to be admitted into

the system, instead of guaranteeing that ρ(a) ≤ R(a) deterministically, it is sufficient

to guarantee that Pr
[

ρ(a) ≤ R(a)
]

≥ φ(a) (this guarantee should be kept also for

workflows that have already been accepted into the system). This is simply achieved

by requiring that6 the computation requirements c
(a)
i, j be replaced with their quantiles

5 Keeping a sufficient number of quantiles for each service, the provider may find the proper
ones that fulfill this condition for a given φ(a) value from the SLA.

6 Details are omitted for the sake of brevity, however they can be found in [9].
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C
(a)
i, j in Equation (8), the communication requirements m

(a)
i with their quantiles M

(j)
i

and the memory requirements ω
(a)
i with their quantiles Ω

(a)
i, j in Equation (9). Note that,

if φ(a) = 1, then the mentioned quantiles are all forced to become 100% quantiles, i.e.,

worst-case values (and the deterministic case is obtained as a particular case of the

probabilistic one).

6.2.2 Probability of conflicting sets of advance-reservations

Traditional real-time admission control techniques would only accept an application

as long as schedulability may be deterministically guaranteed, e.g., by means of Equa-

tion (8) for what concerns computing. However, as already mentioned, in our soft

real-time context, the provider is assumed to possess a probability of actual activation

π(a) of each application A(a) by their user(s). Therefore, whenever such probabilities

become sufficiently low, it may be reasonable for the provider to overbook the physical

resources over which these are deployed, as long as the user is fine with a probabilistic

availability guarantee at discounted rates. In case more applications are actually acti-

vated among the ones deployed on some physical resources, than the actual underlying

capacities, the provider may still have additional moves to play, before leaving the user

with an SLA violation. For example, it might exploit virtualization and live-migrate

one or more of the workflow services to other hosts. These policies are out of the scope

of this paper, which is instead focused on an attempt to achieve an initial placement of

workflows that is optimum in the first place, so that occurrence of the just mentioned

issues may be reduced to the bare minimum.

Now a resource overbooking strategy is formalised. To this purpose, assume the

probabilities π(a) are all independent from each other. Then, the probability PB that

any subset B ⊂ A of applications be active at any given time, while all of the others

be inactive, may be written as:

PB =
∏

a∈B

π
(a)

∏

a∈A\B

π(a),

where the overline denotes probability complement: ∀x ∈ R, x , 1 − x. Focusing on

computing, the probability that a service i of an application A(a) is actually active

on a host Hj is π(a)x
(a)
i, j . However, whenever a workflow is active, any of its services

may potentially be active, thus we are interested in the probability of having at least

one of the A(a) services deployed on a host Hj actually active. This may be expressed

as π(a)

(

1−
∏n(a)

i=1 x
(a)
i, j

)

. Therefore, the probability Pj,B of having each subset of

workflows actually occupying resources on Hj , and imposing a load equal to Lj =
∑

a∈B

∑n(a)

i=1

c
(a)
i, jx

(a)
i, j

d
(a)
i

, may be expressed as:

Pj,B = Pr







Lj =
∑

a∈B

n(a)
∑

i=1

c
(a)
i, jx

(a)
i, j

d
(a)
i







=
∏

a∈B

π
(a)

n(a)
∏

i=1

x
(a)
i, j

∏

a∈A\B



1− π
(a)

n(a)
∏

i=1

x
(a)
i, j



 .

(20)

Therefore, the Pj,B probabilities (which depend on the problem variables) constitute

the probability values associated to the Probability Mass Function of the Lj stochastic

variable representing the computational load on Hj .
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An alternative approach may want to consider only one service within each appli-

cation workflow as active at any given time, i.e., a new workflow activation cannot take

place before the previous one has completely terminated. Another possible variant is

the one in which one may want to consider different activation probabilities π
(a)
i for the

various services of a workflow, e.g., in order to account for the fact that one service runs

usually much longer than another one, along the pipeline. These variations to the pro-

posed model may be performed by properly reworking the above expression for Pj,B in

Equation (20), using π
(a)
i = π(a)

∑

j∈H x
(a)
i, jC

(a)
i, j

u
(a)
i

, where the probability π
(a)
i of finding a

service active increases when decreasing the reserved CPU share u
(a)
i =

∑

j∈H x
(a)
i, jC

(a)
i, j

d
(a)
i

for that service, due to the fact that for each activation it will take longer for the service

to complete. By replacing the expression of u
(a)
i into the one for π

(a)
i , the following

equation is obtained: π
(a)
i = π(a)d

(a)
i .

The problem formulation may thus be enriched by constraining the probability for

A(a) to find enough available resources when actually activated to be higher than ξ(a),

with the following formalization7 :

– adding to the problem further Boolean variables v
j
B, z

j
B and ws

B for each B ⊂ A,

j ∈ H and s ∈ S , encoding whether or not the spare computing or memory capacity

on host j or network capacity on network s suffice for hosting the applications in

B;
– adding the following set of constraints (see [9] for details):

Uj −
∑

b∈B
∑

i∈A(b) x
(b)
i, j

u
(b)
i

−
∑

i∈A(a) x
(a)
i, j

u
(a)
i

≥ K
(

v
j
B

− 1
)

, ∀j, B

Uj −
∑

b∈B
∑

i∈A(b) x
(b)
i, j

u
(b)
i

−
∑

i∈A(a) x
(a)
i, j

u
(a)
i

≤ Kv
j
B

− e, ∀j, B

Ωj −
∑

b∈B
∑

i∈A(b) x
(b)
i, j

ω
(b)
i

−
∑

i∈A(a) x
(a)
i, j

ω
(a)
i

≥ K
(

z
j
B

− 1
)

, ∀j, B

Ωj −
∑

b∈B
∑

i∈A(b) x
(b)
i, j

ω
(b)
i

−
∑

i∈A(a) x
(a)
i, j

ω
(a)
i

≤ Kz
j
B

− e, ∀j, B

Bs −
∑

b∈B, i∈Ã(b) y
(b)
i, s

b
(b)
i

−
∑

i∈Ã(a) y
(a)
i, s

u
(a)
i

≥ K
′ (

ws
B − 1

)

, ∀s, B

Bs −
∑

b∈B, i∈Ã(b) y
(b)
i, s

b
(b)
i

−
∑

i∈Ã(a) y
(a)
i, s

u
(a)
i

≤ K
′
ws

B − e
′
, ∀s, B

∑

Ih∈G(a)
tnh

f(a)−s(a)
·
∑

j∈H(
∑

i∈A(a)
∑

B⊂A(Ih)\{a} v
j
B∪{a}·

Pi,B(Ih)) ·

· (
∑

i∈A(a)
∑

B⊂A(Ih)\{a} z
j
B∪{a}·

Pi, B(Ih)) ·

·
∑

s∈S (
∑

i∈Ã(a)
∑

B⊂A(Ih)\{a} ws
B∪{a}

Ps, B(Ih)) ≥ ξ(a), ∀a

(21)

where K and K
′

are sufficiently large constants, whereas e and e
′

are sufficiently small

ones. The first two inequalities constrain the
{

v
j
B

}

variables to encode whether or not

the service allocation variables
{

x
(a)
i, j

}

are overallocating computing capacity on each

host. The next four inequalities play a similar role for memory and networking. The

last inequality constitutes the actual probabilistic availability constraint, derived from

Equation 20, where the availability has been averaged over the grouping intervals in

G(a) (f (a) − s(a) is the number of time-slots in the reserved time-span I(a) and tnh is

the number of time-slots grouped under group h). This means that if, in a proposed

allocation, the period of actually overlapping and overbooking reservation is sufficiently

shorter than the overall allocation duration, then the application is likely to be accepted

anyway. This corresponds to an interpretation of the probability ξ(a) which considers

a random activation moment of A(a), among the possible ones within I(a). However,

7 Details are omitted for the sake of brevity, however they can be found in http://feanor.

sssup.it/~tommaso/eng/papers-soca09.html.
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according to a different policy, an application may be given the stronger guarantee

that, no matter when it is activated, it will find enough resources to run with a given

probability. This may equally be formalised by removing in the last line of 21 the sum

over the Ih intervals and the weighting factor tnh

f(a)−s(a) , but replicating the constraint

for all of the Ih ∈ G(a).

However, it is clear that with a maximum probability of the workflow is not ex-

pected to find the needed resources as available, when activated by the user, leading

to the necessity to pay the penalty P (a) back to the customer. From the provider’s

perspective, considering a high number of applications, for each application a ∈ Anew

admitted into the system (x(a) = 1), the immediate gain G(a) should be discounted by

the expected penalty due to SLA violations ξ(a)P (a), obtaining the following overall

objective function, to replace the one in Equation (17):

min
x
(a)
i, j , y

(a)
i, s, d

(a)
i , b

(a)
i

∑

Ih∈G

∑

j∈Hoff (Ih)
ζjmj, h−

∑

a∈A x(a)
(

G(a) − ξ(a)P (a) + w(a)d(a)
)

.
(22)

Note that, in order for the provider to consider acceptance of an application, a

necessary condition is that the revenue is greater than the expected penalty G(a) >

ξ(a)P (a), and that, in case not all applications can be admitted, the ones leading to

greater spreads between revenues and associated costs (immediate or expected) will be

accepted.

It should also be noted that in this paper, the formulation of the probabilistic case

for the considered problem has been simplified as compared to the preliminary pub-

lished version [9]. This has been necessary when facing with a practical implementation

of the proposed technique with various solvers, in order to decrease the computation

time needed to solve the problem. Also, note that the problem presented in this paper

considers also the memory resource in addition to the computing and networking ones.

6.2.3 Estimation of mean execution response time

Alternatively to the quantile-based response-time constraint as discussed in Section 6.2.1,

it is possible to provide a weaker guarantee relying on the average response-time con-

straint. Services of an application with such a type of guarantee would exploit all of the

available bandwidth found on the host they have been allocated to, when the applica-

tion is actually activated by the user. Also, in such case we rely on a reservation period

assignment which is sufficiently small so as to let Equation (1) to be approximated as:

ρ
(a)
i =

c
(a)
i, j

u
(a)
i

(see [24] for details). Based on the analysis in [15], the utilization assigned

to the service τ
(a)
i of application a ∈ A can be considered as a discrete random variable

u
(a)
i with a finite number of possible values, and with a probability distribution that

changes for each time-slice Ih ∈ G(a).

∀B ⊂ A(Ih)\ {a} , Pr



U
(a)
A, i =

∑

j∈H

x
(a)
i, jUj −

∑

j∈H

∑

b∈B

x
(b)
i, j

C
(b)
i, j

d
(b)
i



 = Pj,B(Ih),
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where Pj,B(Ih) is defined in Equation 20. Thus, it is possible to estimate the service

expected response-time ρ
(a)
i , conditioned to an activation of the workflow in any tk ∈

Ih :

E
[

ρ
(a)
i | tk ∈ Ih

]

=
∑

B⊂A(Ih)\{a}
Pj,B(Ih)·

·
∑

j∈H x
(a)
i, jC

(a)
i, j

∑

j∈H x
(a)
i, jUj−

∑

j∈H

∑

b∈B x
(b)
i, j

C
(b)
i, j

d
(b)
i

(23)

It is also possible to estimate the expected value of the overall response-time during

the time span I(a) as in:

E
[

ρ
(a)
i

]

=
∑

Ih∈G(a)

tnh

f (a) − s(a)
E
[

ρ
(a)
i | tk ∈ Ih

]

(24)

Concluding, it is possible to formalize the constraint to be added to the problem in

order to ensure a minimum average end-to-end response-time R
(a)

(as defined in the

SLA):

∑

i∈A(a)

∑

Ih∈G(a)

tnh

f (a) − s(a)

∑

B⊂A(Ih)\{a}

Pj,B(Ih)·

·

∑

j∈H x
(a)
i, jC

(a)
i, j

∑

j∈H x
(a)
i, jUj −

∑

j∈H

∑

b∈B x
(b)
i, j

C
(b)
i, j

d
(b)
i

≤ R
(a)

(25)

where the networking terms may be handled similarly.

7 Numerical Example

In this section, a simple example is sketched out in order to highlight the advantages

of the proposed SLA model for the provisioning of probabilistic service guarantees.

To this purpose, the allocation problem is made trivial by considering a workflow

application, denoted as d (Anew = {d}), that consists of only one service that has to

be deployed necessarily on one of three given hosts . Also, only computing requirements

are considered, whereas the networking requirements are neglected. A time horizon T

of 2400 time-slots is considered, in which there are already three applications Aold =

{a, b, c} , allocated on each one of the three hosts j, with the parameters shown in

Table 1. Since the new application to be admitted consists of only one service, the

probability of its service being active given that the new application is active is equal

to 1. Finally, it is also assumed that in the three hosts there is only one potential group

of conflict Ih and that the number of time-slots under conflict tnh has a different value

depending on the host: {200, 500, 1000}. According to the execution requirements of

the pre-existing applications as shown in Table 1, in order to maintain deterministic

guarantees, the maximum utilization offered to the new application would be 0.05, thus

d would not be admitted. Given that the client of the new application has defined some

flexibility in his SLA, we can examine what the hosts have to offer under probabilistic

guarantees.
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Table 1 Admission Parameters for applications

A c d U π

a 10 100 0.1 0.050

b 60 120 0.5 0.002

c 35 100 0.35 0.015

d 30 120 0.25 0.030

Table 2 Probability of availability under different groups of conflict and expected execution
time under different number of time slots

B Pj, B(Ih) UA

{d} 0.9170333 1

{a,d} 0.0491515 0.9

{b,d} 0.0018715 0.5

{c,d} 0.0142215 0.65

{a,b,d} 0.0000985 0.4

{a,c,d} 0.0007485 0.55

{b,c,d} 0.0000285 0.15

{a,b,c,d} 0.0000015 0.05

tnh Pr
[

U(d) ≤ UA

]

E
[

ρ(d)
]

200 0.9985 119.832

500 0.9965 119.579

1000 0.8263 99.156

By applying the grouping methodology in Section 4.4.1, and the analysis in Sec-

tion 6.2, 8 different subgroups of overlapping reservations are obtained B ⊂ A : {d},

{a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}. For each B the probability of

overlapping activation of new application d, Pj,B(Ih), can be calculated using Equation

20. For example, Pj, {a, d}(Ih) = π(a) ·(1−π(b))·(1−π(c))·π(d) = 0.05·(1−0.002)·(1−0.015)·1 ≅

0.0491515. The probability of occurrence for all possible subgroups B, along with the cor-

responding available utilization values UA, can be obtained similarly and are presented

in Table 2.

As it can be seen, only the last two possible combinations exhibit overallocation

if d is accepted, and such combinations occur with a quite low probability, as evident

from Table 2. By using Equation (25) on the first host we obtain: Pr
[

Uavail ≥ U(d)
]

=

∑

Ih∈G(d) Pr
[

Uavail ≥ U(d) | d activated at tk ∈ Ih

] tnh

f(d)−s(d)
= [200 · (0.91703 + 0.0491515 + 0.0018715 +

0.0142215 +0.0000985 +0.0007485) + 2200]/2400 ≅ 0.9985. Also by using Equation (24) the expected

response time for the new application d on the same host can be estimated: E
[

ρ(d)
]

=

200·[(0.91703+0.0491515+0.0018715+0.0142215+0.0000985+0.0007485)·30/0.25+0.0000285·30/0.15+0.0000015·

30/0.05] + 2200 · 30/0.25/2400 ≅ 119.832.

So, d would receive the required utilization with a probability of 99, 85%, whereas

the average response time would be 119.832. By applying the same rules on each one of

the three candidate hosts the values that are presented in Table 2 are obtained. If these

estimated pairs of values match the SLA parameters (i.e., they satisfy Equations (21)

and (25) respectively), then the related host may be considered as a candidate for

hosting d.

8 Solving the problem

In the previous subsections, the problem of optimum deployment of distributed, in-

teractive, real-time workflows, providing proper probabilistic availability and service

guarantees, while conforming to the resource provider business policy, has been for-

malised as a set of constraints and objective function, along with a set of interesting
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variants that may be used depending on the context. The formalised problem, both in

the deterministic settings of Section 6.1, and in the probabilistic ones of Section 6.2,

falls generally within the class of Mixed-Integer Non-Linear Programming (MINLP)

optimization problems. For modelling it, GAMS (General Algebraic Modeling System)

[1] was used, which is designed specifically for large-scale modelling applications. Due

to the inherent non-linearity and non-convexity of the implemented model, BARON

(Branch-And-Reduce Optimization Navigator) [25], which is a computational system

for solving non-convex optimization problems to global optimality, was adopted in order

to solve it. While traditional MINLP algorithms are guaranteed to converge only under

certain convexity assumptions, BARON implements deterministic global optimization

algorithms of the branch-and-bound type that are guaranteed to provide global optima

under fairly general assumptions. To this end, and in order to achieve convergence to

global optimality, additional model constraints were required to be added to the prob-

lem in order to speed up the solver solution time and increase the probability of success.

These included the addition of lower and upper bounds on variables and their expres-

sions in the MINLP to be solved as well as proper scaling of the equations. Solving the

problem using different MINLP solvers that are available in GAMS (such as SBB, Al-

phaECP and Coinbonmin) showed that BARON not only offers a global solution when

the others solvers fail to do so, but it is also able to do so in considerably less time. All

results presented in the analysis that follows have been obtained using BARON under

GAMS v23.3 on Intel Core i7 (2.67 GHz) processor with 4GB of RAM.

At first step the analysis is focused on the ability of the proposed approach to al-

locate applications on already occupied hosts under probabilistic guarantees. In order

to illustrate this, a case study of five hosts H = {j1, j2, j3, j4, j5}, belonging to same

subnet, with the characteristics shown in Table 4 is provided. For this set of exper-

iments, the complexity is narrowed down by assuming that the requirements of the

new applications in terms of bandwidth are negligible considering the capacity of the

underlying subnet, and thus all parameters related to the network are omitted from

the analysis. It is considered that there are two applications A
(b)
old

= {b1, b2} already

deployed on them with allocation parameters as shown in Table 4 and it is further as-

sumed that there are two new application A
(a)
new = {a1, a2} requesting admission with

the parameters shown in Table 3. Both existing and new applications consist of three

services {τ1, τ2, τ3} and exhibit different computation times c
(a)
i, j on the different hosts.

In order to “stress” the optimization problem it is further assumed that φ(a) = 1, forcing

the model to use their worst-case values and consequently to constrain the end-to-end

response time ρ
(a)
i using Equation 9 (see Section 6.2.1). Under these settings there are

two unoccupied hosts, i.e. Hoff = {j3, j4}, and two out of the three already occupied

hosts, j2 and j5, exhibit overallocation and the number of time slots under conflict

is 200. The values of R(a) have been selected so as to prohibit the admission of all

services that compose the new applications on the already occupied hosts {j1, j2, j5}

under deterministic guarantees.

Four indicative cases are examined with each of them having different requirements

in terms of minimum probability that the workflow applications will be available on

request ξ(a), as presented in Table 5.1. Furthermore, having already set the value of φ(a)

equal to 1 for all cases implies that for the cases where ξ(a) is set to 1 the formulation

of the problem becomes “deterministic”, allowing us to make a comparison against its

probabilistic version. BARON was used to solve the GAMS models that correspond to

the four cases and the solutions are summarized in Tables 5.(2) to 5.(5) respectably.
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Table 3 Admission parameters for A
(a)
new = {a1, a2}

Anew a1 a2

G(a) 50 40

P (a) 20 10

π(a) 10-4 2·10-4

R(a) 120 150

I(a) 2400 2400

T (a) 1000 1000

c
(a)
i, j

j1 j2 j3 j4 j5

c
(a1)
1, j

50 60 40 45 55

c
(a1)
2, j

30 40 20 25 35

c
(a1)
3, j

30 40 20 25 35

c
(a2)
1, j

60 70 50 55 65

c
(a2)
2, j

40 50 30 35 45

c
(a2)
3, j

40 50 30 35 45

Table 4 Allocation parameters for A
(b)
old

= {b1, b2} and hosts H = {j1, j2, j3, j4, j5} charac-
teristics

Aold u
(b)
i

d
(b)
i

π
(b)
i

j

τ
(b1)
1

0.417 120 0.060 j1

τ
(b1)
2 0.333 120 0.060 j2

τ
(b1)
3 0.583 60 0.030 j5

τ
(b2)
1

0.700 100 0.020 j2

τ
(b2)
2

0.333 120 0.024 j1

τ
(b2)
3 0.562 80 0.016 j5

j ∈ H ζj Uj

j1 - 0.250

j2 - -0.033

j3 5 1.000

j4 5 1.000

j5 - -0.145

According to BARON’s output, for Case I which calls for deterministic treatment for

both applications (ξ(a1) = ξ(a2) = 1), only one of the two applications is accepted

for admission with its services being allocated in already occupied hosts (Table 5.2).

Interestingly, for Case II in which the probabilistic constrain for application a1 has been

relaxed to 0.8, both applications are accepted with two of their services being allocated

on both unoccupied hosts {j3, j4}, whereas the rest of the services are allocated on

the rest of the (already occupied) hosts {j1, j2, j5}. By relaxing the constraint on

application a2 to 0.8 as well (Case III), it is shown that all services that comprise

the applications are being allocated on the three already occupied hosts (Table 5.4),

and by further relaxing both probabilities to 0.7 (Case IV), the solution presented in

Table 5.5 indicates that the number of occupied hosts is reduced from 3 to 2. It should

be noted that the total number of discrete and non-linear variables of the modeled

problem is 242 and 1143, respectively. The major conclusions are summarized in Table

6, including the solution time, the iterations that were needed and the value of the

objective function.

In the second step, the focus of the analysis is shifted towards the trade-off that

can be achieved between the computing power and the network bandwidth that are

required in order to achieve a specific end-to-end response time. To this end, two

available subnets S = {s1, s2} are considered, where s1 = {j1, j2}, s2 = {j3, j4} and

Hoff = {j4}. We also consider a case of having two new applications for submission

consisting of two services with the parameters shown in Table 3 (only the first two out of

the three services are considered in this case) but with a reduction of the requested end-

to-end response time to R(a1) = R(a2) = 80 and an increase of time slots under conflict

from 200 to 1000. The residual bandwidth capacity of the two subnets is 1000 and 9000

bps respectably, whereas network latency is considered negligible. In order to highlight

the trade-off between utilization and network bandwidth, two indicative cases (Table

7.1) are provided in which the probabilities of availability of the resources remain fixed

to ξ(a1) = ξ(a2) = 0.9, and only the number of bytes m(a) to be transmitted by service
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Table 5 Obtained solutions

Cases ξ(a1) ξ(a2)

I 1.0 1.0

II 0.8 1.0

III 0.8 0.8

IV 0.7 0.7

(1) Cases

Anew u
(a)
i

d
(a)
i

π
(a)
i

x
(a)
i, j

= 1

τ
(a1)
1

1.000 55 0.005 j1

τ
(a1)
2 1.000 35 0.004 j4

τ
(a1)
3 1.000 30 0.003 j2

τ
(a2)
1

- - - -

τ
(a2)
2

- - - -

τ
(a2)
3 - - - -

Anew u
(a)
i

d
(a)
i

π
(a)
i

x
(a)
i, j

= 1

τ
(a1)
1

1.000 50.0 0.005 j1

τ
(a1)
2 0.800 50.0 0.005 j2

τ
(a1)
3 1.000 20.0 0.002 j3

τ
(a2)
1

0.963 67.5 0.013 j5

τ
(a2)
2

0.947 47.5 0.009 j5

τ
(a2)
3 1.000 35.0 0.007 j4

(2) Case I (3) Case II

Anew u
(a)
i

d
(a)
i

π
(a)
i

x
(a)
i, j

= 1

τ
(a1)
1 1.000 60 0.006 j2

τ
(a1)
2 1.000 30 0.003 j1

τ
(a1)
3

1.000 30 0.003 j1

τ
(a2)
1

1.000 60 0.012 j1

τ
(a2)
2 1.000 45 0.009 j5

τ
(a2)
3 0.889 45 0.009 j1

Anew u
(a)
i

d
(a)
i

π
(a)
i

x
(a)
i, j

= 1

τ
(a1)
1 0.909 55 0.005 j1

τ
(a1)
2 1.000 30 0.003 j1

τ
(a1)
3

1.000 35 0.004 j5

τ
(a2)
1

1.000 60 0.012 j1

τ
(a2)
2 1.000 45 0.009 j5

τ
(a2)
3 0.889 45 0.009 j1

(4) Case III (5) Case IV

Table 6 Comparison of different cases

Case I II III IV

# accepted apps 1 2 2 2

# unoccupied hosts 2 0 2 2

# new allocated hosts 2 5 3 2

objective value -50.000 -76.000 -84.000 -81.000

solution time (secs) 7.250 13.891 4.609 5.984

iterations 12 86 32 59

τ
(a2)
1 to service τ

(a2)
2 changes. In the first case (m(a1)=m(a2)=10000), applications

a1 and a2 are being allocated onto subnets s1 and s2, as shown in Table 7.2. The

values assigned to the utilization and network bandwidth indicate that for application

a2 the reduced bandwidth is being compensated by an increased utilization compared

to what application a1 is receiving, with the latter being allocated onto subnet s2
under greater network bandwidth but less utilization. Interestingly, by increasing the

number of bytes transmitted by application a2 to 36000 (Case II), application a2 is still

allocated onto the same subnet and host with a further increase of its overall utilization

from an average of 0.555 to 0.746 to compensate for the limited bandwidth capacity

(Table 7.3). The model used consists of 104 discrete and 806 non-linear variables and

the solution time required is 2.485 and 3.531 secs respectably.
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Table 7 Obtained solutions with network enabled

Cases m(a1) m(a2)

I 10000 10000

II 10000 36000

(1) Cases

Anew u
(a)
i

d
(a)
i

b
(a)
i

π
(a)
i

x
(a)
i, j

= 1 y
(a)
i, s

= 1

τ
(a1)
1

1.000 50.000 5500 0.005 j1 s1

τ
(a1)
2

0.710 28.182 - 0.003 j2 s1

τ
(a2)
1 0.436 34.389 9000 0.007 j3 s2

τ
(a2)
2 0.674 44.500 - 0.009 j3 s2

(2) Case I

Anew u
(a)
i

d
(a)
i

b
(a)
i

π
(a)
i

x
(a)
i, j

= 1 y
(a)
i, s

= 1

τ
(a1)
1 0.941 42.500 1000 0.004 j2 s1

τ
(a1)
2

0.727 27.500 - 0.003 j2 s1

τ
(a2)
1

1.000 15.000 9000 0.003 j3 s2

τ
(a2)
2 0.492 61.000 - 0.012 j3 s2

(3) Case II

9 Conclusions

This paper addressed the problem of optimum allocation of distributed real-time work-

flows under probabilistic service guarantees. It presented a mathematical description of

the problem that constitutes a probabilistic admission control test in which statistical

knowledge of actual usage by the users is leveraged, in order to host more real-time

tasks over the same physical node than it would be allowed by traditional deterministic

real-time admission control tests. It also presented an SLA model that allows for proper

trade-offs between the saturation levels of the provider’s resources and the penalties to

be paid to the clients in case of misbehavior. In order to provide a strong assessment

of the effectiveness of the proposed technique, the problem was modeled on GAMS

and solved using BARON global solver under realistic provider’s settings. Future work

will focus on the scalability aspect of the proposed approach against large-scale cloud

computing systems and high performance computing Grids by embracing hierarchi-

cal allocation strategies. To this direction a custom solver especially for solving the

presented optimization problem will also be developed and compared against existing

global and heuristic MINPL solvers available.

References

1. General Algebraic Modeling system (GAMS). GAMS Development Corporation. Available
at http://www.gams.com/.

2. L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time sys-
tems. In RTSS ’98: Proceedings of the IEEE Real-Time Systems Symposium, page 4,
Washington, DC, USA, 1998. IEEE Computer Society.

3. S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D.A. Varvel. Proportionate progress: A
notion of fairness in resource allocation. Algorithmica, 15:600–625, 1994.

4. Jon C. R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms.
IEEE/ACM Transactions on Networking, 5(5):675–689, October 1997.



23

5. Marco Caccamo, Giorgio C. Buttazzo, and Deepu C. Thomas. Efficient reclaiming in
reservation-based real-time systems with variable execution times. IEEE Trans. Comput.,
54(2):198–213, 2005.

6. Fabio Checconi, Tommaso Cucinotta, Dario Faggioli, and Giuseppe Lipari. Hierarchical
multiprocessor CPU reservations for the linux kernel. In Proceedings of the 5

th Interna-
tional Workshop on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT 2009), Dublin, Ireland, June 2009.

7. Tommaso Cucinotta, Gaetano Anastasi, and Luca Abeni. Real-time virtual machines. In
Proceedings of the 29

th IEEE Real-Time System Symposium (RTSS 2008) – Work in
Progress Session, Barcelona, December 2008.

8. Tommaso Cucinotta, Gaetano Anastasi, and Luca Abeni. Respecting temporal constraints
in virtualised services. In Proceedings of the 2

nd IEEE International Workshop on Real-
Time Service-Oriented Architecture and Applications (RTSOAA 2009), Seattle, Washing-
ton, July 2009.

9. Tommaso Cucinotta, Kleopatra Konstanteli, and Theodora Varvarigou. Advance reserva-
tions for distributed real-time workflows with probabilistic service guarantees. In Proceed-
ings of the IEEE International Conference on Service-Oriented Computing and Applica-
tions (SOCA 2009), Taipei, Taiwan, December 2009.

10. Abhijit Davare, Qi Zhu, Marco Di Natale, Claudio Pinello, Sri Kanajan, and Alberto
Sangiovanni-Vincentelli. Period optimization for hard real-time diustributed automotive
systems. In Proc. of DAC’07, San Diego, California, USA, June 2007.

11. Umar Farooq, Shikharesh Majumdar, and Eric W. Parsons. Impact of laxity on scheduling
with advance reservations in grids. In MASCOTS ’05: Proceedings of the 13th IEEE Inter-
national Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, pages 319–324, Washington, DC, USA, 2005. IEEE Computer Society.

12. Luca Abeni Giorgio Buttazzo, Giuseppe Lipari and Marco Caccamo. Soft real-time sys-
tems: Predictability vs. efficiency. Springer, 2005.

13. Kartik Gopalan. Real-time support in general purpose operating systems, 2001.
14. Neena R. Kaushik, Silvia M. Figueira, and Stephen A. Chiappari. Flexible time-windows

for advance reservation scheduling. In MASCOTS ’06: Proceedings of the 14th IEEE Inter-
national Symposium on Modeling, Analysis, and Simulation, pages 218–225, Washington,
DC, USA, 2006. IEEE Computer Society.

15. Kleopatra Konstanteli, Dimosthenis Kyriazis, Theodora Varvarigou, Tommaso Cucinotta,
and Gaetano Anastasi. Real-time guarantees in flexible advance reservations. In Proceed-
ings of the 2

nd IEEE International Workshop on Real-Time Service-Oriented Architecture
and Applications (RTSOAA 2009), Seattle, Washington, July 2009.

16. George Kousiouris, Fabio Checconi, Alessandro Mazzetti, Zlatko Zlatev, Juri Papay,
Thomas Voith, and Dimosthenis Kyriazis. Distributed interactive real-time multimedia
applications: A sampling and analysis framework. In Proceedings of the 1st International
Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), 2010.

17. Karthik Lakshmanan and Raj Rajkumar. Distributed resource kernels: Os support for
end-to-end resource isolation. In RTAS ’08: Proceedings of the 2008 IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 195–204, Washington, DC,
USA, 2008. IEEE Computer Society.

18. Bo Li and Dongfeng Zhao. Performance impact of advance reservations from the grid
on backfill algorithms. In GCC ’07: Proceedings of the Sixth International Conference
on Grid and Cooperative Computing, pages 456–461, Washington, DC, USA, 2007. IEEE
Computer Society.

19. Giuseppe Lipari, Gerardo Lamastra, and Luca Abeni. Task synchronization in reservation-
based real-time systems. IEEE Trans. Comput., 53(12):1591–1601, 2004.

20. C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM, 20(1):46–61, 1973.

21. Anwar Mamat, Ying Lu, Jitender Deogun, and Steve Goddard. Real-time divisible load
scheduling with advance reservation. In ECRTS ’08: Proceedings of the 2008 Euromi-
cro Conference on Real-Time Systems, pages 37–46, Washington, DC, USA, 2008. IEEE
Computer Society.

22. Clifford Mercer, Stefan Savage, and Hideyuki Tokuda. Processor capacity reserves for
multimedia operating systems. In Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, 1994.



24

23. Marco A. Netto, Kris Bubendorfer, and Rajkumar Buyya. Sla-based advance reservations
with flexible and adaptive time qos parameters. In ICSOC ’07: Proceedings of the 5th in-
ternational conference on Service-Oriented Computing, pages 119–131, Berlin, Heidelberg,
2007. Springer-Verlag.

24. Luigi Palopoli, Tommaso Cucinotta, Luca Marzario, and Giuseppe Lipari. AQuoSA —
adaptive quality of service architecture. Software – Practice and Experience, 39(1):1–31,
2009.

25. Nikolaos V. Sahinidis. BARON Branch and Reduce Optimization Navigator User’s Man-
ual v4.0. University of Illinois at Urbana-Champaing, Department of Chemical Engineer-
ing, June 2000. Available at http://archimedes.cheme.cmu.edu/baron/manuse.pdf.

26. W. Smith, I. Foster, and V. Taylor. Scheduling with advanced reservations. In Proceedings
of the 14th International IEEE/ACM Parallel and Distributed Processing Symposium,
May 2000.

27. Ion Stoica, Hussein Abdel-wahab, Kevin Jeffay, Sanjoy K. Baruah, Johannes E. Gehrke,
and C. Greg Plaxton. A proportional share resource allocation algorithm for real-time,
time-shared systems, 1996.

28. H. Zhao and R. Sakellariou. Advance reservation policies for workflows. In Proceedings
of the 12th International Workshop on Job Scheduling Strategies for Parallel Processing,
volume 4376, pages 47–67, June 2006.


