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Abstract. Machine Learning and Artificial Intelligence techniques are
disrupting several fields of engineering, including telecommunications. In
this domain, network operators are evaluating the use of data-oriented
techniques to improve the management of virtualized networking infras-
tructures in several aspects, including monitoring, optimization, traffic
forecasting, capacity planning, anomaly detection, and others. This pa-
per summarizes our ongoing experience in the area of adopting human-
machine interfaces based on Natural Language Processing for easing and
speeding-up the interactions between these systems and network opera-
tors in their everyday work.
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1 Introduction

Network operators handle the data traffic from millions of users spread through-
out vast areas. The amount of data managed by an operator is not limited to
traffic and customers’ data, but it also includes all the inventory and monitor-
ing data related to the infrastructure. In the last decade, the Network Function
Virtualization (NFV) [9] paradigm took momentum [12,27], causing the replace-
ment of traditional physical network appliances sized for peak-hour operations,
with Virtual Network Functions (VNFs). These are software components imple-
menting network functions that are deployed as virtual machines or containers
on general-purpose servers, following key Cloud Computing principles, like elas-
ticity and dynamic adaptation to continuously changing traffic conditions. For
the operator, it is vital to monitor all the appliances, physical and virtual, during
the daily activities to keep the health of the network under control .

The challange is to handle such a large quantity of information, because
data can be used to perform advanced monitoring operations such as fault de-
tection and avoidance [7,6], performance prediction [22,5,15], capacity planning
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and instance placement [13,4,1]. Artificial Intelligence (AI) and Machine Learn-
ing (ML) techniques may be enablers for readily identifying faults and have a
positive impact on the QoS of the hosted services [10].

All this data is organized and stored in traditional relational databases, as
well as NoSQL data stores. To access this information, technical knowledge of
querying languages is requested to a human operator that has to be able to build
complex queries, considering the entire structure of the tables in the databases.

In the past, there has been a noticeable amount of work in the attempt
to simplify and automate such interactive step [29]. The direction would be to
achieve a more natural interaction with the data management systems, allowing
to get the data just using natural language requests. However, considering the
variability in application domains, and the dynamism of possible requirements,
which constitutes a common factor in modern businesses, that was not enough
to have an effortless way to interact with the data.

Still, it is clear that a more direct access to the data pool, even for the
non-skilled worker, or even a complete automated retrieval, could provide clear
advantages in terms of proactive management, operations efficiency and quality
of service. This promise pushed significant research efforts towards the problem,
and new tools are entering the scene nowadays.

With the advent of Large Language Models (LLMs), part of the showcase
included tasks which are strictly related to what could be needed to accom-
plish that goal. Precisely, LLMs proved to be good at generating code [17,21],
including SQL from natural language requests (NL2SQL) [11]. From the many
announcements made by companies and research groups about reaching and out-
doing the performance of previous solutions on the NL2SQL problem, one could
be tempted to accept the idea that the problem has been already solved.

However, the ease with which the performance of the proposed models is
announced is not a match with the difficulties when trying to implement those
models in an industrial environment. While we are witnessing the growth of a
market of third-party cloud-based services simplifying access to these services
through appropriate APIs, we still need on-premise deployments of inference
and training pipelines, to respect the confidentiality requirements that often
characterize various industrial domains.

Paper contributions: This work is an industrial report, covering part of our on-
going attempts to achieve a higher degree of automation in the management of
virtualized networking infrastructures, leveraging Al techniques. After an intro-
duction to the general architecture in which AI/ML techniques are being used,
we dig into the specific problem of developing an LLM model for the NL2SQL
challenge, tailored to the Vodafone’s specific business requirements, showing pre-
liminary experimental results obtained using a variety of LLMs on a benchmark
of specific queries from the NFV infrastructure management domain.

First, we introduce some useful background on human-like interaction with
data in the following section.
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2 Background on NL2SQL

The idea to automatically generate SQL code from Natural Language is not
novel. SQL queries are highly syntactically structured in separate, but correl-
lated, parts. Leveraging this structured nature, it is possible to approach the
problem with methods coming from automatic software generation techniques,
sometimes called “Sketching” [23], to generate each part [30,26]. This technique
consists in providing a blueprint or partial implementation of the required code,
and the algorithm completes that. Unfortunately, these approaches were not able
to achieve near human performance, and often they were limited to specific cases.
A big jump in performance was given by LLMs that showed a stunning capabil-
ity to parse natural language text and produce meaningful output. Immediately,
the feeling was to have a tool which is able to adapt to human requests without
the need to nestle the operations into carefully pre-prepared blueprints.

The origin of this success was the conception of the “Transformer Architec-
ture” in the Vaswani et. al. paper [24], originally composed of two parts: Encoder,
which is processing the input into an internal representation; Decoder, which is
producing the output in an autoregressive mode. After that work, different varia-
tions of the original Transformer were proposed leading to different models. The
main branches can be summarized as: Encoder-Decoder models as the original
Transformer; Encoder-only models, such as the Bert [8]; Decoder-only models,
such as Chat-GPTx [2]. Even if the Encoder part is considered to be responsi-
ble of the “understanding” capabilities of the models, Decoder-only models have
shown to be able to handle that too.

Indeed, whilst in the NL2SQL problem one could expect that the encoder is
necessary to better capture the request, it is often the case that good performing
models are of the autoregressive type, that is, Decoder-only [16,28].

Talking about performance, the works dealing with the NL2SQL problem
usually are centered around specific datasets. Each dataset is made from a dif-
ferent set of databases, containing different topics, with different formats and
complexity. One of the most popular one is the WikiSQL, which is reported as
challenging due to the high number of tables it contains. This feature is expected
to force the LLM models to generalize more [18], avoiding overtraining on a single
database’s vocabulary. However, the limitation of the WikiSQL dataset lies in
the simple nature of the queries and schemas. In the original WikiSQL work [30],
the dataset was proposed with several assumptions to make the problem simpler
and tractable at that time. For this reason, whilst WikiSQL is a good baseline,
it is not sufficient to cover more realistic cases. Having said this, it follows that a
lot of results of LLM models achieving top performance on the WikiSQL dataset
could not transfer directly to real applications.

The need for more challenging material pushed some research groups to pro-
pose more realistic datasets, such Spider [28] and BIRD [16]. The realism is
given by introducing complex requests that require using the large spectrum of
SQL language and reasoning. An interesting contribution of the BIRD dataset is
the addition of “hints” in the input data. This add-on is necessary to realistically
make it possible to parse more complex requests and also to train the model to
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reason on the question/schema pairs. A sample from the BIRD dataset is shown
in Table 1. As it can be seen there, the question requires to associate the concept
of “highest eligible rate” to a quantity that has to be computed indirectly from
the columns of a table. The hint consists in defining the requested quantities
such that the model can learn to recognize that concept.

Question|What is the highest eligible free rate for K-12 students in the schools in Alameda
County?

Hint Eligible free rate for K-12 = ‘Free Meal Count (K-12)‘ / ‘Enrollment (K-12)¢

SQL SELECT ‘Free Meal Count (K-12)° / ‘Enrollment (K-12)° FROM frpm WHERE
‘County Name‘ = ’Alameda’ ORDER BY (CAST(‘Free Meal Count (K-12)° AS
REAL) / ‘Enrollment (K-12)‘) DESC LIMIT 1;

Table 1. Sample from the BIRD dataset showing the presence of “Hint”.

Given the new level of complexity, it was expected that on these new datasets
the performance of the LLMs would be lower than on the trivial WikiSQL one.
For example, the best ezecution accuracy on the BIRD dataset, after 1 year
of many attempts, is around 65%. The execution accuracy is a measure the
capability of the model to generate SQL queries that, when executed on the
respective SQL database, are able to return the expected answer. These results
show that the problem is still open and more effort is needed to reach the level
of accuracy and reliability needed for real industrial applications.

3 Approach

This report springs from a research project [10] that has the goal of setting
up a modular data-driven framework for operating Virtualized Networking In-
frastructures. Such infrastructure has the capability to be paired with Artificial
Intelligence modules that can support, co-operate or automate the handling of
the Network Operations. Figure 1 depicts the main components of the Voda-
fone NFV intelligence system that already integrates Al modules to perform
optimization of the operative costs [4] and near real-time anomaly detection [7].

The missing link for attempting full automation will require an integrative
module, reported as “Network Automation Intelligence” in Figure 1, that lever-
ages the vast integration capabilities of LLMs. Eventually, this module will be
able to autonomously provide reports on the system status as shown in Fig. 2
and co-operate with the other AT modules to improve the system performance.

In the following, we describe the strategy by which we tackled the NL2SQL
problem, reporting on various issues we encountered during the implementation.
First, as mentioned in Section 2, modern LLMs exhibit non-negligible limitations
in realiably tackling real use-cases, as needed in a network operator production
environment. Therefore, we aimed at realizing a data processing pipeline using
a customized model, obtained by fine-tuning a general-purpose LLM, which are
expected to lead to improved accuracy figures.




LLMs for Virtualized Networking Infrastructures: An Industrial Report 5

Operator

Dashboard

/
{C%?}AI Optimization B
* ‘I-

Virtual
Infrastructure
inventory

O

Operator

{§} Network
{§} Automation
Intelligence

Detected
Anomalies
DB

Fig. 1. Network Operations and associated Data Management.

3.1 Model Selection

In setting up the LLM framework, the first step consisted in selecting a model.
Given the large number of contributions on LLMs, it was possible to benefit
from different pre-trained models, based on different architectures. Precisely, an
initial group of models have been selected as possible candidates for the task:

— T5-large model with 738M parameters [19];
Flan-T5-large model with 783M parameters [3];
CodeT5+ model with 770M parameters [25];

— StarcoderBase model with 7B parameters [17].

The T5-based models were selected due to the Encoder-Decoder architecture
that, at least in theory, should guarantee good properties in terms of instruction
understanding. Indeed, the final application sees a human operator interacting,
using natural language, with the LLM model to get some answer out of the
company databases. There were several models available, which were reporting
good capabilities to perform well in a diversity of application domains.

One of them was the Flan-T5, which was advertised as good at generalizing
well on different prompts, without requiring the few shots approach. Considering
that our final goal is to have something that can be used by operators asking
different things, we decided to include this model in our evaluation.
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Fig. 2. Example of possible application where a user’s natural language request triggers
automatic data retrieval and report generation about the status of the VNF infrastruc-
ture by a set of LLMs deployed on-premises.

Another model, that was interesting for our task, was the CodeT5+, which
was pre-trained on coding tasks. Given the code nature of the SQL output, this
model had the opportunity to behave well.

We decided to keep also the baseline T5 to see the differences. In the family
of the T5, all the models were selected in the sub-billion parameters size. The
criterion driving the size selection was the possibility to finetune the model with
the available hardware without requiring too many optimization workarounds.
Whilst the community developed several methods to make the training more
manageable, usually it is a matter of trade-off between model performance and
training feasibility. In this preliminary study we preferred to avoid introducing
too many tunable variables which will make the results more difficult to analyse.
In our case, the sub-billion models could undergo fine-tuning, without requiring
extra quantization or computation offloading. The goal was to see what can be
achieved with a relatively simple model, once trained on a specific dataset.

Even if our initial focus was on the full Encoder-Decoder architecture, many
other works and public benchmarks were reporting better performances for
Decoder-only models. One example is the Starcoder that was the substrate of
some LLMs at the top of the BIRD [16] benchmark. This LLM is pre-trained on
the curated coding dataset The Stack [14], thus it was expected to have a good
starting point on which to build NL2SQL LLMs. Curiously, those good results
were achieved with the 7-billion version of the model. Even if it is ten times
bigger that the T5-large, it is one of the smallest among the better performing
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ones. For this reason, we decided to consider also the Starcoder model in our
pool, expecting it to be a sort of good reference standard in our set.

One aspect, which was important to consider during our exploration, was the
context length and memory occupation of the models. Depending on the specific
application, the NL2SQL task could require a lot of context in the prompt. The
models should allow for long context length without hitting the common Out-
Of-Memory (OOM) error during fine-tuning. The Starcoder model allows a max
context, of 8K tokens, which turned out to be enough for our task. Conversely,
the smaller T5 models, even if occupying less memory, with their 512 context
length, and supporting a relative attention which does not bound the max con-
text length, suffered from OOM when trying to increase to context lenght above
1.5K tokens on the same hardware used to fine-tune the 7B Starcoder. This needs
to be considered when selecting LLM models, or when deciding the input format.

3.2 Datasets and Repositories

As reported in Section 2, the development of LLMs is built around datasets for
fine-tuning. Other research groups and companies released curated data for the
NL2SQL task, together with code repositories freely available to perform hassle-
free fine-tuning and evaluation of custom models. However, we found it difficult
to reproduce the experiments given the fast obsolescence of the APIs used for
LLM operations. This is probably an indicator that the technology is still not
quite mature for industrial usage. For example, some models can benefit from
using a specific datatype, such as the new "bf16" that is not well-supported on
a T-years-old Tesla v100 and the same training script could lead to different
results and unexpected failures. Even without considering hardware acceleration
issues, we also found that a less-than-2-years-old research related repository was
already incompatible with the current version of the Huggingface library, leading
to subtle errors and software misbehavior that translated into weeks of lost
development time. Another problem we found is that each repository provides
the dataset with a specific format, requiring to perform adaptation in case one
requires cross comparisons.

For our project, we decided to make an extended dataset, re-elaborating
the data from Wiki-SQL [30], Spider [28] and BIRD [16] in a common format
that can be easily employed during our experiments. It is possible to find more
datasets online, particularly using the Huggingface Hub, but the selection of the
previous datasets was driven by the fact that they also provide the original
databases to perform execution accuracy tests.

It is common knowledge that, to obtain good accuracy in the NL2SQL task,
LLMs should be provided with an informative context [20]. Precisely, it was
highlighted that embedding the structure of the database in the input is nec-
essary to allow the contextualization of the natural language question on the
specific database. The level of details of the database structure may vary and
depends on the specific application and model. There were works that considered
table headers sufficient to contextualize the questions, whilst others embedded
the full schema in the input. In realistic scenarios, the context should include as
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much information as possible about the database schema. The way the schema
is encoded is another design choice. Some implementations are using a natural
language description of the schema, others are using the SQL “create table ...”
statement, whilst others use just a string with information about tables, columns’
names and their types.

After different attempts, in this work, we opted for a compact representation
of the full schema, with information about tables and keys. Precisely, we extract
all the database structure in json format, and then we serialize it in a string to
be included in the LLM prompt. The rationale behind our choice was that the
natural language representation of the schema was too long and unnecessarily
variable. The “create table...” format was dependent on the specific SQL dialect,
and it was also long once tokenized. Our approach is trying to pack all the
information needed to perform queries and link tables together in a uniform
format, while being also independent from specific SQL dialects.

It is worth to add some considerations regarding this “in-house” customiza-
tion. Changing the representation format of the LLM input and context could
hinder the capability to leverage pre-trained models. This is because the pre-
training could have been biased towards a specific format. It’s then a good
custom to check whether the customizations of the LLM inputs could lead to
performance deterioration when using pre-trained models.

4 Preliminary Results

Currently, some preliminary results, obtained after some fine-tuning campaigns,
using an NVIDIA A100-40G, on our extended dataset, report the T5-large and
Flan-Tb5-large models as low-performing, with a bare 5-7% execution accuracy.
The dataset included about 20K training samples and 1.5K test samples. Af-
ter shuffling, the traning dataset was split into 70% training, 30% validation
parts. The evaluation loss was reaching a minimum after about 5 epochs. The
obtained low performance could have been expected, considering that it is in
line with other comparable models on online leaderboards. However, the similar
size model CodeT5+ was able to deliver a 35% execution accuracy on the BIRD
dataset. This confirms that a pre-training on code is beneficial for the NL2SQL
task. The StarcoderBase-7B model, fine-tuned using LoRa adapters, was not
achieving better performances due to the limitation in terms of our computation
availability, which was forcing the LoRa rank to be kept low.

For these reasons, our attention was concentrated on the small CodeT5+. An
indicative value for a good performance on the BIRD dataset would be around
60% of execution accuracy, achieved by specialized models such as the DeepSeek-
Coder-7B. Yet, the final goal would be to obtain a good performance on a specific
dataset coming from the Vodafone use case.

A limited number of natural language requests have been gathered from
Vodafone network operators and a set of state-of-the-art LLMs ready-to-go mod-
els have been selected as a comparison set. Precisely, our choices were DeepSeek-
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Coder-7B[11], SQLCoder® and Mistral-7B*. These models are advanced, and
they can be used more interactively. Indeed, in the case of DeepSeek and Mistral
we tried also a “2-passes” approach, where the model was fed with the error mes-
sages returned by the SQL engine in case a first attempt to generate a valid SQL
query failed. In both cases, the models were able to correct some first-attempt
mistakes and lead to SQL queries that could be parsed by the SQL engine.

Performing a quick test on the specific Vodafone data, leveraging only LLMs
fine-tuned on other databases, the results were disappointing, as reported in
Fig. 3, where different indicators were gathered during the tests. It was con-
sidered a Success when the model produced a valid SQL query and the value
obtained from running this query on the database matched the value from the
ground truth query. In terms of Failures, there were two possibilities: the SQL
query was not valid, or the numerical value returned from the database did not
match the ground truth. In the former case, it was often due to LLMs tendency
to make up the answer, a phenomenon also called “hallucination”. The typical
hallucination observed in the tests consisted in the models referring to tables
or columns not in the database schema. In the latter case, the LLMs were not
“understanding” the user request and were retrieving the wrong quantitites.

On the 62 Vodafone samples, the CodeT5+ was able to successfully hit
around 15 of them. This is not a good result, however, as it can be seen from the
figure, also the state-of-the art reference models were performing on the same
level as our small model. The DeepSeek model is the one which was able to
perform better in terms of valid SQL generation, however it anyway fell short in
retrieving the right quantities. This is the reason why, from the figure it reports a
higher number of value fails. The lower number of value fails of the other models
are due to the fact that their generated queries were not able to be run by the
SQL engine. In general, considering the overal success rate, both the DeepSeek
and the CodeT5+ were able to achieve around 20% of execution accuracy.

These results seem to indicate that the capabilities of the selected LLMs
were not sufficient when used unmodified, and a tailored fine-tuning, using data
similar to the final use-case, can be beneficial. The CodeT5+ model was one tenth
of the other models in size, but it performed comparatively well, so it seems a
good candidate for further studies, focusing on a more specific fine-tuning.

5 Conclusions and Future Work

In this paper, we briefly mentioned the challenges being faced at Vodafone to
industrialize a NL2SQL LLM-based pipeline to help network operators query
the vast amounts of data being collected in the operator geo-distributed NFV
infrastructure spanning across several EU countries.

Despite the wide availability of open-source software for LLM-based NLP
computations, building on these technologies an effective human-machine inter-
face for network operators proved to be all but straightforward. Indeed, several

3 Defog SQLCoder: https://github.com/defog-ai/sqlcoder.
4 Mistral-7B: https://mistral.ai/news/announcing-mistral-7b/.
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Fig. 3. Performance Counters of different models on the Vodafone test dataset.

challenges come in the way, from software dependency problems, to a wide range
of incompatible data-sets formats that cannot be readily translated among each
other, to problems related to the memory capacity and processing capabilities
of the GPU(s) under use. These are to be added to the classical problem of cre-
ating high-quality specialized data sets over which to fine-tune domain-specific
models, that is typical of the industrial deployment of Al-based solutions.

Following the issues highlighted in the preliminary results reported in this
paper, it is possible to outline a set of future actionable steps. Precisely, the
fine-tuning operation on the CodeT5+ led to a noticeable improvement, however,
hallucination issues were making it very unreliable on the Vodafone test dataset.
In this regard, the following future steps will be taken: produce a custom dataset
for extended fine-tuning, built on the schema of the real databases at Vodafone,
and including human-curated domain-specific knowledge “hints”; consider the
usage of Retrieaval Augmented Generation (RAG) techniques; consider the usage
of multiple LLMs with routing.

Moreover, we plan to combine the NL2SQL building block with several others
that are needed to realize the vision outlined in this paper: querying has to be
performed across heterogeneous data storage systems, including local SQL-based
and NoSQL, cloud-based ones; the results of the queries need to be represented
in formats that are more readily usable by operators than tables, like graphs,
heat maps and others. Finally, human-machine interaction may take advantage
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of voice-based exchanges. These are all aspects that will be explored in our
ongoing research plans on the topic.
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